CS 483 - Data Structures and Algorithm Analysis
Lecture I: Chapter 1

R. Paul Wiegand

George Mason University, Department of Computer Science

January 25, 2006
Personal & Course Introduction

- **Personal Introduction:**
 - Current position & Research interests
 - Industry experience
 - Personal expectations

- **Course Introduction:**
 - Course title & topic
 - Degree requirement & Pre-req’s
 - Hand out info sheet

- **Course Syllabus:**
 - Office hours and contact info
 - Grading, projects, & homeworks
 - Cheating
 - Course schedule

- **How to succeed:**
 - Be curious & motivated
 - Read!! (BEFORE class)
 - Build good habits that work for you
 - Ask for help

Motivating the Course

- Why this course matters:
 - Forrest for the trees
 - Making educated & informed decisions
 - Need as designer AND implementor
 - Engineer versus technician

- Personal reflections:
 - “Don’t know Big-O stuff!”
 - “The JDK comes with a \texttt{Sort} routine…”
 - Etc.

- Key ideas (from Henry Hamburger)
Computational Problems

What is a computational problem?

- Problem statement
 - The statement of a problem specifies in general terms the relationship between input and output
 - Example: Sort a set of numbers in non-decreasing order (sorting problem)
 - Input: \(\langle a_1, a_2, \ldots, a_n \rangle \)
 - Output: \(\langle a'_1, a'_2, \ldots, a'_n \rangle : a'_1 \leq a'_2 \leq \cdots \leq a'_n \)

- Problem instance
 - A problem instance consists of the input, satisfying whatever constraints are imposed by the problem statement) needed to compute a “solution” to the problem.
 - Example problem instance:
 - Input: \(\langle 4, 6, 7, 1, 9, 3, 8, 10, 5, 2 \rangle \)
 - Output (solution): \(\langle 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \rangle \)

- Are problems inherently hard (or harder than others)?
Algorithms

What is an algorithm?

- Algorithm
 - A recipe, a list of instructions, a transformation of data ...
 - Cormen et al.: An algorithm is any well-defined computation procedure that takes some value, or set of values, as input and produces value, or set of values, as output.
 - Levitin: An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.
 - In a sense, algorithms are “procedural solutions to problems”

- Important point about algorithms
 - Unambiguous instructions
 - Input range specified carefully
 - Multiple representations for same algorithm
 - Multiple algorithms for solving the same problem
 - Different alg. based on different ideas with different trade-offs
Example: Greatest Common Divisor

Input: $m, n \in \mathbb{N}$, where $(m \geq 0 \land n > 0) \lor (m > 0 \land n \geq 0)$

Output: Largest integer that divides both m and n evenly

Euclid(m, n)

while $n \neq 0$ do

\[r \leftarrow m \mod n \]

\[m \leftarrow n \]

\[n \leftarrow r \]

return m

ConsecutiveInteger(m, n):

step-1: $t \leftarrow \min\{m, n\}$

step-2: if $\frac{m}{t} \in \mathbb{N}^+$, goto step-4

step-3: if $\frac{n}{t} \in \mathbb{N}^+$, return t

step-4: $t \leftarrow t - 1$, goto step-2

- Are these algorithms guaranteed to stop?
- Are there different input restrictions?
- Look over the “middle-school method” in the book ...
Steps for Designing Algorithms

- Understand the problem
- Assess computational resources (memory, speed, etc.)
- Decide between an exact or approximate algorithm
- Choose appropriate data structures
- Specify an algorithm in pseudo-code
- Prove correctness
- Analyze the algorithm
- Implement & test the algorithm
Issues Surrounding the Design of Algorithms

- An algorithm is **correct** if it produces the required result for every legitimate input.
- An **exact** algorithm produces solutions to problems that are exactly correct.
- An **approximate** algorithm produces solutions to problems that are approximately correct.
- A **data structure** is a way to store and organize (related) information in order to facilitate access and modification.

Algorithm analysis:
- Efficiency (time, space): how algorithms scale wrt input size
- Simplicity
- Generality
 - Type of problems solved
 - Range of inputs accepted
Sorting

- Arrange a set of values in a total or partial ordering
- Often make use of a *key* for sorting more complicated data
- With key-comparison based sorts, cannot do better than $n \log n$ time
- Sorting algorithms are *stable* if given two elements with equal key values at positions i and j such that $i < j$, after the sort they will appear in positions i' and j' such that $i' < j'$.
- Sorting algorithms are called *in place* sorts if they do not require more than a constant amount of memory beyond what is stored in the list.
Searching & String Processing

- **Searching**
 - Find a given value, called a *search key*, in a set of values
 - A variety of algorithms exist (sequential search, binary search, etc.)
 - Sometimes data are stored in data structures that make them more conducive for searching (hash maps, red-black trees, etc.)
 - Engineers have to pay attention to applications where the underlying data may change frequently relative to the number of searches.

- **String Processing**
 - A *string* is a sequence of characters from some well-defined alphabet (e.g., binary strings)
 - Large class of problems dealing with the handling of strings
 - An example problem is *string matching*: Find the positions of a substring in a master string.
Graph & Combinatorial Problems

- **Graph Problems**
 - A *graph* is a collection of vertices, some of which are connected by edges.
 - Traditional examples: graph traversal, finding shortest-path, finding minimum spanning tree, etc.
 - Can be computationally very hard.
 - Examples of hard graph problems:
 - Traveling salesperson problem.
 - Graph coloring problem.

- **Combinatorial Problems**
 - Problems in which one must find a combinatorial object that satisfies certain constraints and has some desired property.
 - Tend to be the hardest types of computational problems.
 - Many graph problems are combinatorial problems.
Geometric & Numerical Problems

- Geometric Problems
 - Geometric problems deal with geometric objects (e.g., points, lines, polygons, etc.)
 - For example:
 - Closest-pair problem
 - Convex hull problem
 - These are *different* than graph problems!

- Numerical Problems
 - Problems involving continuous mathematical objects
 - For example:
 - Solving systems of equations
 - Computing derivatives & definite integrals
 - Optimizing numerical functions, etc.
Linear Data Structures: Elementary data structures

The following are two elementary data structures useful for produce more abstract linear data structures called *lists* (a finite sequence of data items)

array — A sequence of n items of the same data type stored contiguously in memory and accessible using an *index*

- Pre-established, fixed size
- Constant time access, insertion and deletion can be challenging
- Example: bit string, 1 0 0 1 1 0 1

linked list — A sequence of zero or more *nodes*, each containing data and *pointer(s)* to other node(s)

- Not necessarily fixed in size
- Linear time access, insertion and deletion are simpler
- Linked lists can be *single-linked* or *doubly-linked*
- Linked lists can have a *header*, which stores useful information (e.g., length)
Linear Data Structures: Advanced data structures

The following are two special types of lists.

stack — A list in which insertions and deletions can only be done at one end

- LIFO – last in, first out
- May be implemented by an array or a linked list
- Basic operations: Push, Pop

queue — A list in which elements are accessed & deleted from one end (front) and inserted at the other end (rear)

- FIFO – first in, first out
- May be implemented by an array or a linked list
- Basic operations: Enqueue, Dequeue
- Position in a queue can be determined using a priority (priority queues)
Graphs: Simple

- Graphs are collections of points called **vertices** and line segments, called **edges**, connecting (some of the) vertices.

- Formally: $G := \langle V, E \rangle$, where V is a finite set of labels corresponding to vertices (e.g., $V := \{a, b, c\}$) and E is a finite set of pairs of these items (e.g., $E := \{(a, b), (a, c)\}$)

- **Undirected graph**: Edges are unordered, i.e., $(a, b) = (b, a)$

- **Directed graph**: Edges are ordered and thus imply a direction

- **Complete**—every pair of vertices is connected by an edge

- **Dense**—most vertices are connected

- **Sparse**—few vertices are connected
Graphs: Representation

adjacency matrix — Enumerate vertices in \(\{1 \ldots n\} \), create an \(n \times n \) matrix of boolean values indicating whether an edge exists between the specified vertices

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Undirected graphs result in symmetric matrices
- Easily determine if an edge exists, requires space
- Good for dense graphs

adjacency list — Create a linked list for each vertex containing the vertices to which that vertex is connected

- Somewhat more difficult to determine edge existence, more compact in space
- Good for sparse graphs
Graphs: Weights, Paths, & Cycles

- We refer to a *weighted graph* when there are costs or values associated with the edges in a graph.
 - Adjacency matrix: Use numeric values in cells of the matrix, special character for no-edge (e.g., ∞)
 - Adjacency list: Attach values to nodes in the linked list

- Properties of graphs:
 - A *path* a sequence of adjacent vertices connected by an edge
 - A path is called *simple* if all edges are distinct
 - Path *length* is the total number of vertices in the sequence
 - A *directed path* is a sequence of vertices in which every consecutive pair of vertices is connected by an edge directed from the vertex listed first the next one
 - A *graph* is *connected* if a path exists for every pair of vertices
 - A *cycle* is a simple path of positive length that starts and ends with the same vertex
 - A graph is said to be *acyclic* if it admits no cycles
Graphs: Trees

A (free) tree is a connected, acyclic graph. A forest is multiple trees, or an unconnected, acyclic graph.

- $|E| = |V| - 1$
- For every two vertices, there’s always exactly one simple path between them
- \therefore we can select an arbitrary vertex to be the root
- For any $v \in T$, all vertices on the path between the root and v are called ancestors
- The last edge on that path before v is called the parent, v is the child of that node, etc.
- A vertex with no children is called a leaf
- A vertex with all its descendants is called a subtree
- The depth ν is the length of the simple path from the root to ν
- The height of a tree is the length of the longest simple path from
Sets & Dictionaries

What is a set?
A *set* is an unordered collection (possibly empty) of distinct items.

- We can implement a set as a bit vector over the *universal set*
- We can implement a set with a list structure (with insertion constraints)
- A *multiset* or *bag* is a set without the uniqueness constraint (an unordered collection of objects)
- Basic operations of a multiset: *Search*, *Insert*, *Delete*
- A basic data structure that accomplishes these operations is a *dictionary*
- Sometimes we need to dynamically partition some *n*-element set into a collection of disjoint sets.
- Sometimes we need to take the union or intersection of sets
Assignments

- Section 1.1: Problems 5, 7, 9
- Section 1.2: Problems 4, 5, 7
- Section 1.3: Problems 1, 4, 8, 9*
- Section 1.4: Problems 2, 4, 6*, 9

*Challenge problem