Review for Midterm

Midterm Overview: More details

- ER Diagrams (34 pts)
- Translate English description into ER diagram (20)
- Generate CREATE TABLE statement from ER diagram fragment (8)
- Reason about ER diagram (6)
- Query writing (36 pts)
- Write RA queries from English description
- Query execution (12 pts)
- Manually execute queries over relation instances \& discuss
- General questions (18 pts)
- Fill in the blank, T/F, etc.
- Extra Credit (2 pts)

Material for you to get ready for Midterm...

- These slides.
>Solutions of HW1a, HW1b, HW2;
>You should:
$>$ Review the lectures' slides and hws;
$>$ Do the readings in the textbook;
$>$ Do exercises at the end of chapters.

HW 2 Answers

1. RA

$$
\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {pid }} \sigma_{\text {color='red' }} \text { Parts }\right) \bowtie \text { Catalog }\right) \bowtie \text { Suppliers }\right)
$$

3. ■ RA

$$
\begin{aligned}
& \rho\left(R 1, \pi_{\text {sid }}\left(\left(\pi_{\text {pid }} \sigma_{\text {color }=^{\prime} \text { red' }} \text { Parts }\right) \bowtie \text { Catalog }\right)\right) \\
& \rho\left(R 2, \pi_{\text {sid }} \sigma_{\text {address='221PackerStreet' }} \text { Suppliers }\right)
\end{aligned}
$$

$$
R 1 \cup R 2
$$

4. \quad RA

$$
\begin{aligned}
& \rho\left(R 1, \pi_{\text {sid }}\left(\left(\pi_{\text {pid }} \sigma_{\text {color='red' }} \text { Parts }\right) \bowtie \text { Catalog }\right)\right) \\
& \rho\left(R 2, \pi_{\text {sid }}\left(\left(\pi_{\text {pid }} \sigma_{\text {color='green' }} \text { Parts }\right) \bowtie \text { Catalog }\right)\right) \\
& R 1 \cap R 2
\end{aligned}
$$

HW 2 Answers

7. $\quad \mathrm{RA}$

$$
\left(\pi_{\text {sid }, \text { pid }} \text { Catalog }\right) /\left(\pi_{\text {pid }} \sigma_{\text {color }=^{\prime} \text { red }{ }^{\prime} \vee \text { color }=^{\prime} \text { green' }} \text { Parts }\right)
$$

8. . RA

$$
\begin{aligned}
& \rho\left(R 1,\left(\left(\pi_{\text {sid }, \text { pid }} \text { Catalog }\right) /\left(\pi_{\text {pid }} \sigma_{\text {color='red' }} \text { Parts }\right)\right)\right) \\
& \rho\left(R 2,\left(\left(\pi_{\text {sid }, \text { pid }} \text { Catalog }\right) /\left(\pi_{\text {pid }} \sigma_{\text {color }=\text { 'green' }} \text { Parts }\right)\right)\right) \\
& R 1 \cup R 2
\end{aligned}
$$

10. $\quad \mathrm{RA}$

$$
\begin{aligned}
& \rho(\text { R1, Catalog }) \\
& \rho(\text { R2, Catalog })
\end{aligned}
$$

$$
\pi_{R 1 . p i d} \sigma_{R 1 . p i d=R 2 . p i d \wedge R 1 . s i d \neq R 2 . s i d}(R 1 \times R 2)
$$

HW 2 Answers

11. RA

$$
\begin{aligned}
& \rho\left(R 1, \pi_{\text {sid }} \sigma_{\text {sname }=^{\prime} \text { YosemiteSham' }} \text { Suppliers }\right) \\
& \rho(R 2, R 1 \bowtie \text { Catalog }) \\
& \rho(R 3, R 2) \\
& \rho\left(R 4(1 \rightarrow \text { sid }, 2 \rightarrow \text { pid }, 3 \rightarrow \text { cost }), \sigma_{R 3 . \operatorname{cost}<R 2 . \operatorname{cost}}(R 3 \times R 2)\right) \\
& \pi_{p i d}\left(R 2-\pi_{\text {sid }, \text { pid,cost }} R 4\right)
\end{aligned}
$$

HW 1b ER

ER Diagram does not document that Wait_For Rank attribute must be $<=10$

HW 1b Schema (Slightly Different Naming)

```
1-Students(SSN:String)
```

1-Students(SSN:String)
2-Professors(SSN:String)
2-Professors(SSN:String)
3-GTAs(SSN:String, Salary:Integer)
3-GTAs(SSN:String, Salary:Integer)
4-Class(Department:String, Course Number:Integer)
4-Class(Department:String, Course Number:Integer)
5-Section(Department:String, Course Number:Integer, Section ID:Integer,Team_ID: Integer, Rating:Integer)
5-Section(Department:String, Course Number:Integer, Section ID:Integer,Team_ID: Integer, Rating:Integer)
6- Req_of(Course_Department:String,Course_Course_Number:Integer,
6- Req_of(Course_Department:String,Course_Course_Number:Integer,
PreReq_Department:String, PreReq_Course_Number:Integer)
PreReq_Department:String, PreReq_Course_Number:Integer)
7- Team(Team ID:Integer)
7- Team(Team ID:Integer)
8- CanTeach(SSN:String, Department:String, Course Number:Integer)
8- CanTeach(SSN:String, Department:String, Course Number:Integer)
9- Takes(SSN:Integer, Department:String, Course Number:Integer, Section ID:Integer,
9- Takes(SSN:Integer, Department:String, Course Number:Integer, Section ID:Integer,
Grade:String)
Grade:String)
10- Waits_For(SSN:Integer, Department:String, Course Number:Integer,
10- Waits_For(SSN:Integer, Department:String, Course Number:Integer,
Section ID:Integer, Rank:Integer)
Section ID:Integer, Rank:Integer)
11- On_Team_Prof(SSN:String, Team ID:Integer)
11- On_Team_Prof(SSN:String, Team ID:Integer)
12-On_Team_GTA(SSN:String,Team ID:Integer)

```
12-On_Team_GTA(SSN:String,Team ID:Integer)
```


Problem 2.7

- Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a free lifetime supply of medicine if you design its database. Given the rising cost of health care, you agree. Here's the information that you gather:
- Patients are identified by an SSN, and their names, addresses, and ages must be recorded.
- Doctors are identified by an SSN. For each doctor, the name, specialty, and years of experience must be recorded.
- Each pharmaceutical company is identified by name and has a phone number.
- For each drug, the trade name and formula must be recorded. Each drug is sold by a given pharmaceutical company, and the trade name identifies a drug uniquely from among the products of that company. If a pharmaceutical company is deleted, you need not keep track of its products any longer.
- Each pharmacy has a name, address, and phone number.
- Every patient has a primary physician. Every doctor has at least one patient.

Problem 2.7

- Exercise 2.7 Here's the information that you gather (continued):
- Each pharmacy sells several drugs and has a price for each. A drug could be sold at several pharmacies, and the price could vary from one pharmacy to another.
- Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for several patients, and a patient could obtain prescriptions from several doctors.
- Each prescription has a date and a quantity associated with it. You can assume that, if a doctor prescribes the same drug for the same patient more than once, only the last such prescription needs to be stored.
- Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical company can contract with several pharmacies, and a pharmacy can contract with several pharmaceutical companies. For each contract, you have to store a start date, an end date, and the text of the contract.
- Pharmacies appoint a supervisor for each contract. There must always be a supervisor for each contract, but the contract supervisor can change over the lifetime of the contract.

Problem 2.7

1. Draw an ER diagram that captures the preceding information. Identify any constraints not captured by the ER diagram.
2. How would your design change if each drug must be sold at a fixed price by all pharmacies?
3. How would your design change if the design requirements change as follows: If a doctor prescribes the same drug for the same patient more than once, several such prescriptions may have to be stored.

Problem 2.7

Relational Database Schema

Doctors(ssn:integer,name:string, specialty:string,year_exp:integer)
PK: ssn
Patients(ssn:integer,name:string,age:integer,address:string,ssnDoctor:integer)
PK: ssn FK: ssnDoctor references Doctors
Pharmacies(name:string, phone:integer, address:string)
PK: name
PharmCo(name:string, phone:integer)
PK: name
Drugs(tradeName: string,formula:string,pharmCoName: string)
PK: pharmCoName, tradeName FK: pharmCoName references PharmCo
Prescribes(ssnPatient:integer, ssnDoctor:integer, pharmCoName: string, tradeName:sring, date:date, qty:integer)
PK: FK: ssnPatient references PatientsssnPatient,ssnDoctor,pharCoName,tradeName FK: ssnDoctor references DoctorsFK: (pharCoName,tradeName) referencesDrugs
Sells(pharmCoName: string, tradeName: string, pharmacyName: string , price:float)
PK: pharmCoName,tradeName,pharmacyName FK: (pharmCoName,tradeName) references DrugsFK: pharmacyName references Pharmacies
Contracts(pharmCoName: string,pharmacyName: string, startDate:date, endDate:date, text:string, supervisor:string)
PK: pharCoName,pharmacyName

FK: pharmCoName references PharmCo
FK: pharmacyName references Pharmacies

Each faculty is assigned to exactly one office room. An office room is assigned to at least one faculty. Is the following E-R diagram correct?
If your answer is NO, indicate what is wrong in this E-R diagram.

Answer: Correct!

A faculty teaches at most three classes, but a class is taught by exactly one faculty. Is the following E-R diagram correct?
If your answer is NO, indicate what is wrong in this E-R diagram.

Answer: NO

$>$ Total participation of Faculty w.r.t teaches.
$>$ Key Constraint on Faculty w.r.t teaches.
$>$ Partial participation of Classes w.r.t teaches.

A faculty schedules office hours in exactly one office room at a weekday and time, and this information must be recorded An office may be assigned to several facullies' office hours at different days and times. All offices are assigned to faculty's office hours. In the following E-R Diagram, complete the dashed lines to reflect the appropriated participation and key constraints.

A faculty schedules office hours in exactly one office room at a weekday and time, and this information must be recorded. An office may be assigned to several faculties' office hours at different days and times. All offices are assigned to faculty's office hours. In the following E-R Diagram, complete the dashed lines to reflect the appropriated participation and key constraints.

A faculty schedules office hours in exactly one office room at a weekday and time, and this information must be recorded. An office may be assianed to several faculties' office hours at different days and times. All offices are assianed to faculty's office hours. In the following E-R Diagram, complete the dashed lines to reflect the appropriated participation and key constraints.

Problem 4.2

Given two relations R1 and R2, where R1 contains N1 tuples and R2 contains N2 tuples, with $N 2>N 1>0$, give the minimum and maximum possible sizes (in tuples) for the resulting relation produced by each of the following relational algebra expressions. In each case, state any assumptions about the schemas for R1 and R2 needed to make the expression meaningful.

$$
|R 1|=N 1,|R 2|=N 2, \quad 0<N 1<N 2
$$

Expression	Assumption	Min	Max
$R 1 \cup R 2$	$R 1$ and $R 2$ areunion-compatibl	$N 2$	$N 1+N 2$
$R 1 \cap R 2$	$R 1$ and $R 2$ areunion-compatibl	0	$N 1$
$R 1-R 2$	$R 1$ and $R 2$ areunion-compatibl	0	$N 1$
$R 1 \times R 2$	non ϵ	$N 1^{*} N 2$	$N 1^{*} N 2$
$S_{a=5}(R 1)$	$R 1$ hasan attributeameda	0	$N 1$
$p_{a}(R 1)$	$R 1$ hasan attributeameda, $N 1>0$	1	$N 1$
$R 1 / R 2$	Thesetof attributesf $R 2$ is a subsebf thesetof attributesf $R 1$	0	0
$R 2 / R 1$	Thesetof attributesf $R 1$ is a subsebf thesetof attributesf $R 2$	0	$N 2 / N 1]$

Problem 4.4

Consider the following schema:

Suppliers(sid:integer, sname:string, address:string)
Parts(pid:integer, pname:string, color:string)
Catalog(sid:integer, pid:integer, cost:real)
The Catalog relation lists the prices charged for Parts by Suppliers.

State what the following queries compute.

Suppliers(sid:integer, sname:string, address:string)
Parts(pid:integer, pname:string, color:string)
Catalog(sid:integer, pid:integer, cost:real)
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\sigma_{\text {color='red' }}\right.\right.\right.$ Parts $\left.) \bowtie\left(\sigma_{\text {cost }<100 \text { Catalog })}\right)\right) \bowtie$ Suppliers $)$

Answer: Find the Supplier names of the suppliers who supply a red part that costs less then 100 dollars.

> Suppliers(sid:integer, sname:string, address:string)
> Parts(pid:integer, pname:string, color:string)
> Catalog(sid:integer, pid:integer, cost:real)
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\sigma_{\text {color='red' }}\right.\right.\right.$ Parts $) \bowtie\left(\sigma_{\text {cost }<100}\right.$ Catalog $) \bowtie$ Suppliers $\left.)\right)$

Answer: This Relational Algebra statement does not return anything because of the sequence of projection operators. Once the sid is projected, it is the only field in the set. Therefore, projecting on sname will not return anything.

Suppliers(sid:integer, sname:string, address:string)
Parts(pid:integer, pname:string, color:string)
Catalog(sid:integer, pid:integer, cost:real)
$\left(\pi_{\text {sname }}\left(\left(\sigma_{\text {color }=\text { 'red }}\right.\right.\right.$ Parts $) \bowtie\left(\sigma_{\text {cost }<100 \text { Catalog })}\right) \bowtie$ Suppliers $\left.)\right) \cap$

$$
\left(\pi_{\text {sname }}\left(\left(\sigma_{\text {color='green' }} \text { Parts }\right) \bowtie\left(\sigma_{\text {cost<100 Catalog })}\right) \bowtie \text { Suppliers }\right)\right)
$$

Answer: Find the Supplier names of the suppliers who supply a red part that costs less than 100 dollars and a green part that costs less than 100 dollars.

Suppliers(sid:integer, sname:string, address:string)

Parts(pid:integer, pname:string, color:string)
Catalog(sid:integer, pid:integer, cost:real)

$$
\stackrel{\left(\pi_{\text {sid }}\left(\left(\sigma_{\text {color='red }} \text { Parts }\right) \bowtie\left(\sigma_{\text {cost }<100 \text { Catalog })}\right) \bowtie \text { Suppliers }\right)\right)}{\left(\pi_{\text {sid }}\left(\left(\sigma_{\text {color='green' }} \text { Parts }\right) \bowtie\left(\sigma_{\text {cost }<100 \text { Catalog })} \bowtie \text { Suppliers }\right)\right)\right.}
$$

Answer: Find the Supplier ids of the suppliers who supply a red part that costs less than 100 dollars and a green part that costs less than 100 dollars.

Suppliers(sid:integer, sname:string, address:string)

Parts(pid:integer, pname:string, color:string)
Catalog(sid:integer, pid:integer, cost:real)

$$
\begin{array}{r}
\pi_{\text {sname }}\left(\left(\pi_{\text {sid,sname }}\left(\left(\sigma_{\text {color='red }} \text { Parts }\right) \bowtie\left(\sigma_{\text {cost }<100} \text { Catalog }\right) \bowtie \text { Suppliers }\right)\right)\right. \\
\left.\quad\left(\pi_{\text {sid,sname }}\left(\left(\sigma_{\text {color='green' }} \text { Parts }\right) \bowtie\left(\sigma_{\text {cost }<100} \text { Catalog }\right) \bowtie \text { Suppliers }\right)\right)\right)
\end{array}
$$

Answer: Find the Supplier names of the suppliers who supply a red part that costs less than 100 dollars and a green part that costs less than 100 dollars.

