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Abstract. Protein function prediction is one of the fundamental tasks
in the post genomic era. The vast amount of available proteomic data
makes it possible to computationally annotate proteins. Most computa-
tional approaches predict protein functions by using the labeled proteins
and assuming that the annotation of labeled proteins is complete, and
without any missing functions. However, partially annotated proteins
are common in real-world scenarios, that is a protein may have some
confirmed functions, and whether it has other functions is unknown.

In this paper, we make use of partially annotated proteomic data,
and propose an approach called Protein Function Prediction using
Dependency M aximization (ProDM). ProDM works by leveraging the
correlation between different function labels, the ‘guilt by association’ rule
between proteins, and maximizes the dependency between function labels
and feature expression of proteins. ProDM can replenish the missing func-
tions of partially annotated proteins (a seldom studied problem), and can
predict functions for completely unlabeled proteins using partially anno-
tated ones. An empirical study on publicly available protein-protein inter-
action (PPI) networks shows that, when the number of missing functions
is large, ProDM performs significantly better than other related methods
with respect to various evaluation criteria.

1 Introduction

Proteins are macromolecules that serve as the fundamental building blocks and
functional components of a living cell. The knowledge of protein functions can
promote the development of new drugs, better crops and synthetic biochemicals
[14]. With the development of high-throughput biotechnologies, it is easy to
collect various proteomic data, but the functions of these proteomic data cannot
be determined at the same pace. The availability of vast amount of proteomic
data enables researchers to computationally annotate proteins. Thus various
computational models have been developed to reduce the cost associated with
experimentally annotating proteins in the wet lab.

Numerous computational approaches have been proposed for protein function
prediction. Some approaches assume that two proteins with similar sequences
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should have similar functions. These methods use a kernel function (i.e., string
kernel [12]) to measure the similarity between the sequences of a pair of proteins
and predict their functions. A protein often interacts with other proteins to ac-
complish certain tasks. Some algorithms take advantage of this knowledge and
use protein-protein interaction (PPI) networks to automatically make predic-
tions [5,18,20,24]. Further, some approaches integrate multiple data types (i.e.,
PPI networks, protein sequences, and gene co-expression networks) for protein
function prediction [13,21].

Proteins have multiple functions and each function can be viewed as a la-
bel. These function labels are typically correlated. Traditional protein function
prediction approaches often formulate the problem as a multiple binary classi-
fication problem [12] and ignore the correlation between labels. To avoid this
limitation, multi-label learning is widely used for protein function prediction
[10,15,24]. Multi-label learning can make use of label correlations to boost the
prediction accuracy and assign more than one function to a protein [20,22]. Other
approaches train a binary classifier for each function label, and then organize
these classifiers in a hierarchical (tree or direct acyclic graph) structure according
to the Function Catalogue (FunCat) [16]1 or Gene Ontology [2]2 database [14].
In this paper, we focus on protein function prediction using multi-label learning
and function correlation.

All these approaches assume that the available annotations for the labeled
proteins are complete. In practice, we may just have a subset of the functions of
a protein, and whether some functions are missing is unknown. In other words,
proteins may not be completely annotated [4], i.e., function annotations may be
only partial. This kind of multi-label learning problem is called multi-label weak-
label learning [19], a much less studied problem in the literature [4,22]. Unlike
traditional multi-label learning methods [10,21,24], we study protein function
prediction using incomplete annotations and propose a technique called Protein
Function Prediction using Dependency M aximization (ProDM). ProDM can
replenish the missing functions of partially annotated proteins and predict the
function of completely unlabeled proteins using the partially annotated ones. Our
empirical study on publicly available PPI datasets shows that ProDM performs
better than other related approaches on these two prediction problems, and it is
also computationally efficient.

2 Related Work

Various network-based methods have been proposed for protein function predic-
tion [18]. Schwikowski et al. [17] make predictions for a protein based on the
functions of its interacting proteins. They observed that the interacting pro-
teins are likely to share similar functions, which is recognized as the ‘guilt by
association’ rule. Chua et al. [6] found that indirectly interacting proteins share
few functions, and extended the PPI network by integrating the level-1 (direct)

1 http://mips.helmholtz-muenchen.de/proj/funcatDB/
2 http://www.geneontology.org/

http://mips.helmholtz-muenchen.de/proj/funcatDB/
http://www.geneontology.org/
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and level-2 (indirect) neighbors using different weights. These methods use a
threshold on the predicted likelihood to attach more than one function to a pro-
tein. However, these methods do not take into account the correlation among
functions.

More recently, multi-label learning approaches [23] have been introduced for
protein function prediction. Pandey et al. [15] incorporated function correlations
within a weighted k-nearest neighbor classifier, and observed that incorporating
function correlations can boost the prediction accuracy. Jiang et al. [10] applied
the learning with local and global consistency model [25] on a tensor graph to
predict protein functions. Zhang et al. [24] included a function correlation term
within the manifold regularization framework [3] to annotate proteins. Jiang
et al. [9] conducted label propagation on a bi-relation graph to infer protein
functions. To avoid the risk of overwriting functions during label propagation, Yu
et al. [21] introduced a Transductive Multi-label Classifier (TMC) on a directed
bi-relation graph to annotate proteins. Chi et al. [5] considered the fact that
proteins’ functions can influence the similarity between pairs of proteins and
proposed an iterative model called Cosine Iterative Algorithm (CIA). In each
iteration of CIA, the most confidently predicted function of an unlabeled protein
is appended to the function set of this protein. Next, the pairwise similarity
between training proteins and testing proteins is updated based on the similar
functions within the two sets for each protein. CIA uses the updated similarity,
function correlations, and PPI network structures to predict the functions on
the unlabeled proteins in the following iteration.

All the above multi-label learning approaches focus on utilizing function corre-
lation in various ways and assume that the function annotations on the training
proteins are complete and accurate (without missing functions). However, due
to various reasons (e.g., the evolving Gene Ontology scheme, or limitations of
experimental methods), we may be aware of some of the functions of a protein,
but don’t know whether other functions are associated with the same protein.
Namely, proteins are partially annotated. Learning from partially (or incom-
plete) labeled data is different from learning from partial labels [7]. In the latter
case, one learns from a set of candidate labels of an instance, and assumes that
only one label in this set is the ground-truth label. Learning from partially la-
beled data is also different from semi-supervised and supervised learning, as they
both assume complete labels. In this paper, we study how to leverage partially
annotated proteins, a less studied scenario in protein function prediction and
multi-label learning literature [4,19,22].

Several multi-label weak-label learning approaches have been proposed. Sun
et al. [19] introduced a method called WEak Label Learning (WELL). WELL is
based on three assumptions: (i) the decision boundary for each label should go
across low density regions; (ii) any given label should not be associated to the
majority of samples; and (iii) there exists a group of low rank-based similarities,
and the approximate similarity between samples with different labels can be com-
puted based on these similarities. WELL uses convex optimization and quadratic
programming to replenish the missing labels of a partially labeled sample. As
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such, WELL is computationally expensive. Buncak et al. [4] annotated unlabeled
images using partially labeled images, and proposed a method called MLR-GL.
MLR-GL optimizes the ranking loss and group Lasso in a convex optimization
form. Yu et al. [22] proposed a method called Protein function prediction using
W eak-label Learning (ProWL). ProWL can replenish the missing functions of
partially annotated proteins, and can predict the functions of completely un-
labeled proteins using the partially annotated ones. However, ProWL depends
heavily on function correlations and performs the prediction for one function
label at a time.

To alleviate these drawbacks associated with ProWL, we develop a new
protein function prediction approach called Protein function prediction using
Dependency M aximization (ProDM). ProDM uses function correlations, the
‘guilt by association’ rule [17], and maximizes the dependency between the fea-
tures and function labels of proteins, to complete the prediction for all the func-
tion labels at one time. In our empirical study, we observe that ProDM performs
better than the other competitive methods in replenishing the missing func-
tions, and performs the best (or comparable to the best) in predicting function
for completely unlabeled proteins.

3 Problem Formulation

For the task of replenishing missing functions, we have available n partially anno-
tated proteins. The goal is to replenish the missing functions using such partially
annotated proteins. For the task of predicting the functions of completely unla-
beled proteins, we have a total of n = l + u proteins, where the first l proteins
are partially annotated and the last u proteins are completely unlabeled. The
goal here is to use the l partially annotated proteins to annotate the u unlabeled
ones.

Let Y = [y1,y2, . . . ,yn] be the currently available function set, with yic = 1
if protein i has the c-th function, and yic = 0 otherwise. At first, we can define
a function correlation matrix M

′ ∈ R
C×C based on cosine similarity as follows:

M
′
st =

Y T
.s Y.t

‖Y.s‖‖Y.t‖ (1)

where M
′
st is the correlation between functions s and t, and Y.s represents the

s-th column of Y . There exists a number of ways (e.g., Jaccard coefficient [24]
and Lin’s similarity [15]) to define function correlation. Here, we use the cosine
similarity for its simplicity and wide application [5,20,22]. If Y is represented in
a probabilistic function assignment form, Eq. (1) can also be applied.

From Eq. (1), we can see that M
′
st measures the fraction of times function s

and t co-exist in a protein. We normalize M
′
as follows:

Mst =
M

′
st

∑C
c=1 M

′
sc

(2)
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Mst can be viewed as the probability that a protein has function t given that it
is annotated with function s.

Now, let’s consider the scenario with incomplete annotations and extend the
observed function set Y to Ỹ = YM . Our motivation in using Ỹ is to append
the missing functions using the currently known functions and their correlations.
More specifically, suppose the currently confirmed functions Yi for the i-th pro-
tein have a large correlation with the c-th function (which may be missing), then
it is likely that this protein will also have function c. Based on this assumption,
we define the first part of our objective function as follows:

Ψ1(f) =
1

2

n∑

i=1

C∑

c=1

(fic − ỹic)
2 =

1

2

n∑

i=1

‖F − Ỹ ‖22 (3)

where fic is the predicted likelihood of protein i with respect to the c-th function,
ỹic is the extended function annotation of protein i with respect to the c-th
function, and F = [f1, f2, . . . , fn] is the prediction for the n proteins.

Since a protein has multiple functions, and the overlap between the function
sets of two proteins can be used to measure their similarity, the larger the number
of shared functions, the more similar the proteins are. This function induced
similarity between proteins was used successfully in Chi et al. [5] and Wang et
al. [20]. The function annotations of a protein can be used to enrich its feature
representation. Thus, we define the function-based similarity matrixW f ∈ R

n×n

between n proteins as follows:

W f
ij =

yT
i yj

‖yi‖‖yj‖ (4)

Note that W f
ij measures the pairwise similarity (induced by the function sets of

two proteins) between proteins i and j, whereas Mst in Eq. (2) describes the
pairwise function correlations.

We now define a composite similarity W between pairwise proteins as:

W = W p + ηW f (5)

where W p ∈ R
n×n describes the feature induced similarity between pairs of

proteins. Here W p can be set based on the amino acid sequence similarity of a
protein pair (i.e., string kernel [12] for protein sequence data), or by using the
frequency of interactions found in multiple PPI studies (i.e., PPI networks in
BioGrid3), or the weighted pairwise similarity based on reliability scores from
all protein identifications by mass spectrometry (e.g., Krogan et al. [11]4). η is
a predefined parameter to balance the tradeoff between W p and W f . It is set to
η =

∑n,n
i=1,j=1 W

p
ij/

∑n,n
i=1,j=1 W

f
ij .

The second part of our objective function leverages the knowledge that pro-
teins with similar amino acid sequences are likely to have similar functions. In

3 http://thebiogrid.org/
4 http://www.nature.com/nature/journal/v440/n7084/suppinfo/

nature04670.html

http://thebiogrid.org/
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
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other words, we capture the ‘guilt by association’ rule [17], which states that in-
teracting proteins are more likely to share similar functions. This rule is widely
used in network-based protein function prediction approaches [5,17,18,22]. As in
learning with local and global consistency [25], we include a smoothness term as
the second part of our objective function:

Ψ2(f) =
1

2

n∑

i,j=1

‖ fi√
Dii

− fj√
Djj

‖2Wij

= tr(FT (I −D− 1
2WD− 1

2 )F )

= tr(FTLF ) (6)

whereD is a diagonal matrix with Dii =
∑n

j=1 Wij . I is an n×n identity matrix,

L = I −D− 1
2WD− 1

2 , and tr(·) is the matrix trace operation.
Here, we assume the function labels of a protein depend on the feature rep-

resentation of this protein. We encode this assumption as the third part of our
objective function. To capture the dependency between the function labels and
the features of proteins we take advantage of the Hilbert-Schmidt Independence
Criterion (HSIC) [8]. HSIC computes the squared norm of the cross-covariance
operator over the feature and label domains in Hilbert Space to estimate the
dependency. We choose HSIC because of its computational efficiency, simplicity
and solid theoretical foundation. The empirical estimation of HSIC is given by:

HSIC(F, Y, pxy) =
tr(KHSH)

(n− 1)2
=

tr(HKHS)

(n− 1)2
(7)

where H,K, S ∈ R
n×n, Kij = k(xi,xj) is used to measure the kernel induced

similarity between two samples, Sij = s(fi, fj) is used to describe the label
induced similarity between two samples, Hij = δij− 1

n , δij = 1 if i = j, otherwise
δij = 0, pxy is the joint distribution of x and y. HSIC makes use of kernel
matrices to estimate the dependency between labels and features of samples, thus
it can also be applied in the case that there is no explicit feature representation
for the n samples, as in the case of PPI network data. Although there are many
other ways to initialize K and S, in this paper, we set K = W and Sij = yT

i yj

for its simplicity and its strong empirical performance. Alternative initializations
of K and S will be investigated in our future study.

3.1 The Algorithm

By integrating the three objective functions introduced above, we obtain the
overall objective function of ProDM:

Ψ(F ) = tr(FTLF ) + α‖F − Ỹ ‖22 − βtr(HKHFFT ) + γtr(FTF ) (8)

where α > 0 and β > 0 are used to balance the tradeoff between the three
terms. Our motivation to minimize Ψ(F ) is three-fold: (i) two proteins with sim-
ilar sequences (or frequently interacting) should have similar functions, which



580 G. Yu et al.

corresponds to the smoothness assumption in label propagation [25]; (ii) pre-
dictions in F should not change too much from the extended function labels
Ỹ ; and (iii) the dependency between the function labels and the features of a
protein should be maximized. In Eq. (8) we also add a term tr(FTF ) (weighted
by γ > 0 ) to enforce the sparsity of F , since each function is often associated
with a relatively small number of proteins.

ProWL [22] makes use of function correlations and the ‘guilt by association’
rule to replenish the missing functions of partially annotated proteins. In addi-
tion, ProDM incorporates the assumption of dependency maximization. ProWL
relies on the function correlation matrix M to extend the observed function an-
notations and to define the weight of each function label of a protein (see Eq.
(3) in [22]). In contrast, ProDM exploits the function correlations to expand
the incomplete function sets. As the number of missing functions increases, the
function correlation matrix M becomes less reliable [22]. Therefore, when the
number of missing functions is large, ProDM outperforms ProWL. In addition,
ProWL predicts each function label separately and computes the inverse of a ma-
trix for each label. ProDM, instead, predicts all C labels at once, and computes
the inverse of a matrix only once. As a result, ProDM is faster than ProWL.
These advantages of ProDM with respect to ProWL are corroborated in our
experiments.

Eq. (8) can be solved by taking the derivative of Ψ(F ) with respect to F :

∂Ψ(F )

∂F
= 2(LF + α(F − Ỹ )− βHKHF + γF ) (9)

By setting ∂Φ(F )
∂F = 0, we obtain:

F = α(L + αI − βHKH + γI)−1Ỹ (10)

In Eq. (10), the complexity of the matrix multiplication HKH is O(n3) and
the complexity of the matrix inverse operation is O(n3). Thus, the time com-
plexity of ProDM is O(n3). In practice, though, L, H , and K are all sparse
matrices, and Eq. (10) can be computed more efficiently. In particular, the
complexity of sparse matrix multiplication is O(nm1), where m1 is the num-
ber of nonzero elements in K. In addition, instead of computing the inverse of
(L+αI −βHKH+ γI) in Eq. (10), we can use iterative solvers (i.e., Conjugate
Gradient (CG)). CG is guaranteed to terminate in n iterations. In each iteration,
the most time-consuming operation is the product between an n×n sparse ma-
trix and a label vector (one column of Ỹ ). Thus, in practice, the time complexity
of ProDM is O(m1n+ tm2nC), where C is the number of function labels, m2 is
the number of nonzero elements in (L+αI−βHKH+ γI), and t is the number
of CG iterations. CG often terminates in no more than 20 iterations.

4 Experimental Setup

Datasets We investigate the performance of ProDM on replenishing missing
functions and predicting protein functions on three different PPI benchmarks.
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The first dataset, Saccharomyces Cerevisiae PPIs (ScPPI), is extracted from
BioGrid5. We annotate these proteins according to FunCat [16] database and
use the largest connected component of ScPPI for experiments, which includes
3041 proteins. FunCat organizes function labels in a tree structure. We filtered
the function labels and used the 86 informative functions. Informative functions
[10,24] are the ones that have at least 30 proteins as members and within the
tree structure these functions do not have a particular descendent node with
more than 30 proteins. The weight matrix W p of ScPPI is specified by the
number of PubMed IDs, where 0 means no interaction between two proteins, and
q > 0 implies the interaction is supported by q distinct PubMed IDs. The second
dataset, KroganPPI is obtained from the study of Krogan et al. [11]6. We use its
largest connected component for the experiments and annotate these proteins
according to FunCat. After the preprocessing, KroganPPI contains 3642 proteins
annotated with 90 informative functions. The weight matrix of W p is specified
by the provider. The third dataset, HumanPPI is obtained from the study of
Mostafavi et al. [13]7. HumanPPI is extracted from the multiple data types of
Human Proteomic data. The proteins in HumanPPI are annotated according
to the Gene Ontology [2]. Similarly to [10,13], we use the largest connected
components of HumanPPI and the functions that have at least 30 annotated
proteins. The weight matrix W p of HumanPPI is specified by the provider. The
characteristics of these processed datasets are listed in Table 1.

Table 1. Dataset Statistics (Avg±Std means average number of functions for each
protein and its standard deviation)

Dataset #Proteins #Functions Avg±Std

ScPPI 3041 86 2.49 ± 1.70
KroganPPI 3642 90 2.20 ± 1.60
HumanPPI 2950 200 3.80 ± 3.77

Comparative Methods. We compare the proposed method with: (i) ProWL
[22], (ii) WELL [19]8, (iii) MLR-GL [4]9, (iv) TMC [21], and (v) CIA [5]. The
first three approaches are multi-label learning models with partially labeled data,
and the last two methods are recently proposed protein function prediction al-
gorithms based on multi-label learning and PPI networks. WELL and MLR-GL
need an input kernel matrix. We substitute the kernel matrix with W p, which
is semi-definite positive and can be viewed as a Mercer kernel [1]. WELL was
proposed to replenish the missing functions of partially annotated proteins. We
adopt it here to predict the functions of completely unlabeled proteins by in-
cluding the unlabeled proteins in the input kernel matrix. MLR-GL is targeted

5 http://thebiogrid.org/
6 http://www.nature.com/nature/journal/v440/n7084/suppinfo/

nature04670.html
7 http://morrislab.med.utoronto.ca/∼sara/SW/
8 http://lamda.nju.edu.cn/code WELL.ashx
9 http://www.cse.msu.edu/∼bucakser/MLR GL.rar

http://thebiogrid.org/
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
http://morrislab.med.utoronto.ca/~sara/SW/
http://lamda.nju.edu.cn/code_WELL.ashx
http://www.cse.msu.edu/~bucakser/MLR_GL.rar
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at predicting the functions of completely unlabeled proteins using partially an-
notated proteins. We adapt it to replenish the missing functions of partially
annotated proteins by using all the proteins as training and testing set. As was
done for MLR-GL, we also adapt TMC to replenish the missing functions. Due
to the iterative procedure of CIA, it cannot be easily adapted to replenish miss-
ing functions. The parameters of WELL, MLR-GL, ProWL, TMC, and CIA are
set as the authors specified in their code, or reported in the papers. For ProDM,
we search for optimal α values in the range [0.5, 1] with step size 0.05, and β
values in the range [0.01, 0.1] with step size 0.01. In our experiments, we set
α and β to 0.99 and 0.01, respectively, since we observed that the performance
with respect to the various metrics does not change as we vary α and β around
the fixed values. Similarly to ProWL, we set γ to 0.001.

Experimental Protocol In order to simulate the incomplete annotation sce-
nario, we assume the annotations on the currently labeled proteins are complete
and mask some of the ground truth functions. The masked functions are con-
sidered missing. For presentation, we define a term called Incomplete Function
(IF) ratio, which measures the ratio between the number of missing functions
and the number of ground truth functions. For example, if a protein has five
functions (labels), and two of them are masked (two 1s are changed to two 0s),
then the IF ratio is 2/5 = 40%.

Evaluation Criteria. Protein function prediction can be viewed as a multi-
label learning problem and evaluated using multi-label learning metrics [10,22].
Various evaluation metrics have been developed for evaluating multi-label learn-
ing methods [23]. Here we use five metrics: MicroF1, MacroF1, HammingLoss,
RankingLoss and adapted AUC [4]. These metrics were also used to evaluate
WELL [19], MLR-GL [4], and ProWL [22]. In addition, we design RAccuracy
to evaluate the performance of replenishing missing functions. Suppose the pre-
dicted function set of n proteins is Fp, the initial incomplete annotated function
set is Fq, and the ground truth function set is Y . RAccuracy is defined as follows:

RAccuracy =
|(Y − Fq) ∩ Fp|

|(Y − Fq)|
where |(Y − Fq)| measures how many functions are missing among n proteins
and |(Y −Fq)∩Fp| counts how many missing functions are correctly replenished.
To maintain consistency with other evaluation metrics, we report 1-HammLoss
and 1-RankLoss. Thus, similarly to other metrics, the higher the values of 1-
HammLoss and 1-RankLoss, the better the performance.

5 Experimental Analysis

5.1 Replenishing Missing Functions

We performed experiments to investigate the performance of ProDM on replen-
ishing the missing functions of n partially labeled proteins. To this end, we
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consider all the proteins in each dataset as training and testing data. To per-
form comparisons against the other methods, we vary the IF ratio from 30%
to 70%, with an interval of 20%. A few proteins in the PPI networks do not
have any functions. To make use of the ‘guilt by association’ rule and keep the
PPI network connected, we do not remove them and test the performance of
replenishing missing functions on the proteins with annotations. We repeat the
experiments 20 times with respect to each IF ratio. In each run, the missing func-
tions are randomly masked for each protein according to the IF ratio. F ∈ R

n×C

in Eq. (10) is a predicted likelihood matrix. MicroF1, MacroF1, 1-HammLoss
and RAccuracy require F to be a binary indicator matrix. Here, we consider the
functions corresponding to the r largest values of fi as the functions of the i-th
protein, where r is determined by the number of ground-truth functions of this
protein. To simulate the incomplete annotation scenario, we assume the given
functions of the i-th protein in a dataset are ground-truth functions, and mask
some of them to generate the missing functions. The experimental results are
reported in Tables 2-4. In these tables, best and comparable results are in bold-
face (statistical significance is examined via pairwise t-test at 95% significance
level).

Table 2. Results of replenishing missing functions on ScPPI

Metric IF Ratio ProDM ProWL WELL MLR-GL TMC

MicroF1
30% 93.88±0.12 86.28±0.14 60.49±0.54 23.67±0.50 91.80±0.20
50% 79.09±0.28 68.36±0.36 47.42±0.74 26.98±0.49 77.09±0.28
70% 71.67±0.51 60.09±0.51 42.06±0.04 27.15±0.59 69.79±0.44

MacroF1

30% 94.05±0.18 86.28±0.18 55.35±0.52 24.06±0.79 90.98±0.24
50% 78.39±0.33 67.81±0.36 43.80±0.55 27.45±0.72 74.72±0.35
70% 70.05±0.45 59.45±0.62 38.25±0.87 27.98±0.72 67.34±0.52

1-HammLoss

30% 99.65±0.01 99.20±0.01 97.71±0.03 95.58±0.03 99.52±0.01
50% 98.79±0.02 98.17±0.02 96.95±0.04 95.77±0.03 98.67±0.02
70% 98.36±0.03 97.69±0.03 96.64±0.00 95.78±0.03 98.25±0.03

1-RankLoss

30% 99.67±0.02 95.16±0.02 94.78±0.07 44.38±0.39 99.65±0.02
50% 96.80±0.12 91.95±0.24 90.41±0.24 41.43±0.66 97.06±0.10
70% 94.92±0.17 88.03±0.24 89.01±0.26 38.06±0.77 94.52±0.29

AUC
30% 98.79±0.05 94.92±0.04 93.09±0.04 55.63±0.38 98.77±0.04
50% 95.63±0.14 92.07±0.16 88.24±0.24 54.01±0.66 95.97±0.10
70% 93.09±0.22 88.85±0.20 86.08±0.35 52.60±0.46 93.04±0.29

RAccuracy
30% 49.24±1.28 38.05±1.07 23.94±1.55 46.18±1.04 46.01±1.52
50% 46.57±0.71 32.14±0.92 18.83±1.01 35.59±0.91 42.46±0.76
70% 44.18±1.03 31.41±1.03 17.12±0.12 33.89±0.74 41.42±0.82

From these Tables (2-4), we can observe that ProDM performs much better
than the competitive methods in replenishing the missing functions of proteins
across all the metrics. Both ProDM and ProWL take advantage of function
correlations and of the ‘guilt by association’ rule, but ProDM significantly out-
performs ProWL. The difference in performance between ProDM and ProWL
confirms our intuition that maximizing the dependency between functions and
features of proteins is effective. The performance of WELL is not comparable
to that of ProDM. The possible reason is that the assumptions used in WELL
may be not suitable for the PPI network datasets. The performance of MLR-GL
varies because it is targeted at predicting functions of unlabeled proteins using
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Table 3. Results of replenishing missing functions on KroganPPI

Metric IF Ratio ProDM ProWL WELL MLR-GL TMC

MicroF1
30% 95.51±0.13 93.05±0.08 61.04±0.27 14.78±0.23 88.67±0.12
50% 79.46±0.22 68.39±0.27 48.54±0.67 16.18±0.29 70.93±0.22
70% 70.23±0.35 60.25±0.29 43.72±0.19 16.09±0.34 61.82±0.31

MacroF1
30% 95.70±0.18 94.57±0.15 58.24±0.20 13.71±0.28 88.41±0.12
50% 78.92±0.25 71.51±0.32 52.09±1.08 15.12±0.34 69.20±0.33
70% 69.01±0.40 62.30±0.46 48.79±0.52 14.92±0.35 60.20±0.44

1-HammLoss
30% 99.78±0.01 99.66±0.00 98.08±0.01 95.81±0.01 99.44±0.01
50% 98.99±0.01 98.44±0.01 97.47±0.03 95.87±0.01 98.57±0.01
70% 98.53±0.02 98.04±0.01 97.23±0.01 95.87±0.02 98.12±0.02

1-RankLoss
30% 99.75±0.02 99.61±0.02 96.50±0.03 39.88±0.37 99.52±0.02
50% 96.87±0.12 94.55±0.12 91.60±0.09 39.99±0.27 96.20±0.16
70% 94.37±0.14 91.02±0.25 89.89±0.06 38.48±0.39 93.28±0.19

AUC
30% 98.87±0.04 98.58±0.04 94.90±0.05 45.49±0.28 98.59±0.05
50% 95.47±0.12 92.55±0.15 88.88±0.14 46.65±0.32 94.63±0.18
70% 91.91±0.16 86.90±0.35 85.87±0.10 46.45±0.37 90.58±0.24

RAccuracy
30% 44.97±1.63 14.90±0.98 9.24±0.66 30.90±1.48 23.89±1.30
50% 42.20±0.63 11.04±0.77 7.03±0.22 23.83±0.71 27.89±0.61
70% 36.25±0.75 14.89±0.61 7.68±0.44 21.69±0.80 27.06±0.65

Table 4. Results of replenishing missing functions on HumanPPI

Metric IF Ratio ProDM ProWL WELL MLR-GL TMC

MicroF1
30% 96.60±0.14 95.12±0.14 86.21±0.10 15.76±0.30 91.90±0.15
50% 88.48±0.41 77.18±0.24 64.93±0.26 16.36±0.21 77.98±0.27
70% 79.20±0.55 61.91±0.30 51.91±0.46 16.10±0.29 69.05±0.31

MacroF1
30% 96.21±0.16 94.76±0.16 87.95±0.03 15.79±0.27 91.43±0.15
50% 87.49±0.46 76.86±0.30 70.43±0.18 16.00±0.26 77.05±0.31
70% 77.58±0.53 62.19±0.30 59.05±0.37 15.45±0.26 67.67±0.35

1-HammLoss
30% 99.87±0.01 99.81±0.01 99.48±0.00 96.80±0.01 99.69±0.01
50% 99.56±0.02 99.13±0.01 98.67±0.01 96.82±0.01 99.16±0.01
70% 99.21±0.02 98.55±0.01 98.17±0.02 96.82±0.01 98.83±0.01

1-RankLoss
30% 99.81±0.02 99.74±0.03 97.19±0.03 54.78±0.32 99.73±0.02
50% 98.73±0.07 96.90±0.21 87.55±0.44 58.09±0.29 98.31±0.12
70% 97.50±0.15 93.56±0.41 83.97±0.08 58.35±0.36 96.76±0.21

AUC
30% 98.65±0.04 98.52±0.05 93.51±0.13 54.32±0.22 98.44±0.04
50% 97.37±0.09 95.86±0.15 83.05±0.20 55.90±0.21 96.82±0.10
70% 95.48±0.14 91.31±0.28 76.12±0.48 55.69±0.26 94.64±0.18

RAccuracy
30% 80.39±0.80 71.86±0.79 20.50±0.59 30.92±1.09 53.35±0.83
50% 73.14±0.96 46.78±0.55 18.23±0.62 23.92±0.56 48.66±0.63
70% 63.28±0.97 32.76±0.53 15.09±0.82 21.41±0.45 45.36±0.55

partially annotated proteins, whereas here it is adapted for replenishing missing
functions. TMC is introduced to predict functions for completely unlabeled pro-
teins using completely labeled ones; TMC sometimes outperforms ProWL and
WELL. This is because the missing functions can be appended in the bi-relation
graph. In fact, TMC also makes use of function correlations and the ‘guilt by
association’ rule, but it still loses to ProDM. The reason is that ProDM maxi-
mizes the dependency between proteins’ functions and features. The margin in
performance achieved by ProDM with respect to ProWL and TMC demonstrates
the effectiveness of using dependency maximization in replenishing the missing
functions of proteins.

We also observe that, as more functions are masked, ProWL downgrades much
more rapidly than ProDM. As the IF ratio increases, the function correlation ma-
trixM becomes less reliable. ProWL usesM to estimate the likelihood of missing
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functions and to weigh the loss function. ProDM only utilizes M to estimate the
probability of missing functions and makes additional use of dependency max-
imization. Thus ProDM is less dependent on M . Taking RAccuracy on ScPPI
as an example, ProDM on average is 33.55% better than ProWL, 49.60% better
than WELL, 19.31% better than MLR-GL, and 8.21% better than TMC. These
results confirm the effectiveness of ProDM in replenishing the missing functions.
Overall, this experimental results confirm the advantages of combining the ‘guilt
by association’ rule, function correlations, and dependency maximization.

5.2 Predicting Unlabeled Proteins

We conduct another set of experiments to study the performance of ProDM in
predicting the function of completely unlabeled proteins using partially labeled
ones. In this scenario, l < n proteins are partially annotated and n− l proteins
are completely unlabeled. At first, we partition each dataset into a training
set (accounting for 80% of all the proteins) with partial annotations and into
a testing set (accounting for the remaining 20% of all the proteins) with no
annotations. We run the experiments 20 times for each dataset. In each round,
the dataset is randomly divided into training and testing datasets. We simulate
the setting of missing functions (IF ratio=50%) in the training set as done in
the experiments in Section 5.1, but r is determined as the average number of
functions (round to the next integer) of all proteins. From Table 1: r is set to
3 for ScPPI and KroganPPI, and to 4 for HumanPPI. The results (average of
20 independent runs) are listed in Tables 5-7. Since RAccuracy is not suitable
for the settings of predicting completely unlabeled proteins, the results for this
metric are not reported.

Table 5. Prediction results on completely unlabeled proteins of ScPPI

Metric ProDM ProWL WELL MLR-GL TMC CIA
MicroF1 32.78±1.37 30.06±1.15 16.75±2.03 24.15±1.40 3.67±0.38 20.78±0.38
MacroF1 31.91±1.48 31.33±1.74 5.19±0.71 26.25±1.50 2.00±0.39 26.27±0.39

1-HammLoss 95.73±0.10 95.56±0.09 94.69±0.16 95.19±0.09 93.89±0.05 94.96±0.05
1-RankLoss 73.13±2.72 60.37±1.64 73.57±0.05 41.56±1.06 28.29±0.70 21.82±0.70

AUC 78.40±1.57 78.63±0.74 77.00±0.53 61.47±1.26 55.72±0.84 63.38±0.84

Table 6. Prediction results on completely unlabeled proteins of KroganPPI

Metric ProDM ProWL WELL MLR-GL TMC CIA
MicroF1 22.55±1.35 22.40±0.97 14.35±1.25 13.58±0.86 3.32±0.52 13.78±0.52
MacroF1 18.26±1.53 17.68±1.11 1.47±0.30 12.80±0.92 2.05±0.41 13.85±0.41

1-HammLoss 96.40±0.08 96.40±0.08 96.04±0.03 95.99±0.07 95.52±0.06 95.99±0.06
1-RankLoss 66.69±1.19 75.41±0.88 75.43±0.22 48.40±1.13 61.26±0.89 18.43±0.89

AUC 72.26±0.73 74.78±0.73 74.16±0.12 58.80±1.10 61.35±0.68 59.45±0.68

From Tables 5-7, we can observe that ProDM achieves the best (or compa-
rable to the best) performance among all the comparing methods on various
evaluation metrics. ProDM and ProWL have similar performance in the task of
predicting the functions of completely unlabeled proteins. One possible reason is
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Table 7. Prediction results on completely unlabeled proteins of HumanPPI

Metric ProDM ProWL WELL MLR-GL TMC CIA
MicroF1 24.57±1.03 23.18±1.24 16.43±1.78 12.87±0.76 1.91±0.28 12.86±0.28
MacroF1 20.58±1.18 19.32±0.90 15.55±1.30 11.95±0.78 1.61±0.26 9.90±0.26

1-HammLoss 97.17±0.05 97.11±0.09 96.85±0.10 96.73±0.05 96.33±0.07 96.72±0.07
1-RankLoss 76.70±1.07 76.64±2.01 62.98±1.82 67.89±1.44 50.93±0.77 33.87±0.77

AUC 78.82±1.19 77.41±0.92 62.30±1.38 66.23±0.85 51.78±1.21 67.08±1.21

that F is initially set to Ỹ and {ỹj}nj=l+1 are zero vectors. WELL works better
than MLR-GL in replenishing the missing functions, and it loses to MLR-GL in
predicting the functions of unlabeled proteins. One possible cause is that WELL
is targeted at replenishing missing functions, and here it’s adjusted to predict
functions on completely unlabeled proteins. MLR-GL predicts protein functions
under the assumption of partially annotated proteins, and it is outperformed by
ProDM. MLR-GL optimizes the ranking loss and the group Lasso loss, whereas
ProDM optimizes an objective function based on the function correlations, the
‘guilt by association’ rule, and the dependency between the function labels and
the features of proteins. We can claim that ProDM is more faithful to the char-
acteristics of proteomic data than MLR-GL. For the same reasons, ProDM often
outperforms WELL, which takes advantage of low density separation and low-
rank based similarity to capture function correlations and data distribution.

TMC sometimes performs similar to ProDM in the task of replenishing the
missing functions. However, TMC is outperformed by other methods when mak-
ing predictions for completely unlabeled proteins. A possible reason is that TMC
assumes the training proteins are fully annotated, and the estimated function
correlation matrix M may be unreliable when IF ratio is set to 50%. CIA also
exploits function-based similarity and PPI networks to predict protein functions,
but it’s always outperformed by ProDM and by ProWL. There are two possible
reasons. First, CIA does not account for the weights of interaction between two
proteins. Second, CIA mainly relies on the function induced similarity W f , and
when training proteins are partially annotated, this similarity becomes less reli-
able. CIA performs better than TMC. One reason might be that CIA exploits a
neighborhood count algorithm [17] to initialize the functions on unlabeled pro-
teins in the kick-off step of CIA, whereas TMC does not. All these results show
the effectiveness of ProDM in predicting unlabeled proteins by considering the
partial annotations on proteins.

5.3 Component Analysis

To investigate the benefit of using the ‘guilt by association’ rule and of ex-
ploiting function correlations, we introduce two variants of ProDM, namely
ProDM nGBA and ProDM nFC. ProDM nGBA corresponds to Protein func-
tion prediction using Dependency M aximization with no ‘Guilt By Association’
rule. Specifically, ProDM nGBA is based on Eq. (8) without the first term; that
is, ProDM nGBA uses only the partial annotations and function correlations to
replenish the missing functions. ProDM nFC corresponds to Protein function
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prediction using Dependency M aximization with no Function Correlation. In
ProDM nFC, Y is used in Eq. (8) instead of Ỹ . We increase the IF ratio from
10% to 90% at intervals of 10%, and record the results of ProDM, ProDM nGBA
and ProDM nFC with respect to each IF ratio. For brevity, in Figure 1 we just
report the results with respect to MicroF1 and AUC on HumanPPI.
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Fig. 1. The benefit of using both the ‘guilt by association’ rule and function correlations
(ProDM nFC is ProDM with no function correlation, and ProDM nGBA is ProDM
with no ‘guilt by association’ rule)

From Figure 1, we can observe that ProDM, ProDM nGBA, and ProDM nFC
have similar performance when few functions are missing. This indicates that
both the ‘guilt by association’ rule and function correlations can be utilized to
replenish the missing functions. However, as the number of missing function
increases, ProDM generally outperforms ProDM nGBA and ProDM nFC. The
reason is that ProDM, unlike ProDM nGBA and ProDM nFC, makes use of both
the ‘guilt by association’ rule and function correlations. This fact shows that it’s
important and reasonable to integrate these two components in replenishing
missing functions.

5.4 Run Time Analysis

In Table 8 we record the average run time of each of the methods on the three
datasets. The experiments are conducted on Windows 7 platform with Intel
E31245 processor and 16GB memory. TMC assumes the training proteins are ac-
curately annotated, and it takes much less time than the other methods. MLR-GL

Table 8. Runtime Analysis (seconds)

Dataset ProDM ProWL WELL MLR-GL TMC
ScPPI 60.77 83.09 1687.09 22.66 2.29
KroganPPI 80.60 134.94 3780.24 32.40 3.62
HumanPPI 64.02 194.62 5445.97 50.68 3.49
Total 178.37 412.65 10913.30 105.74 9.40
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relaxes the convex-concave optimization problem into a Second Order Cone Pro-
gramming (SOCP) [4] problem, and it ranks 2nd (from fast to slow). ProDM takes
less time than ProWL, since ProDM infers the functions of a protein in one step,
whereas ProWL divides the prediction into C subproblems. WELL uses eigen-
decomposition and convex optimization, and it costs much more than the other
methods. As such, it is desirable to use ProDM for protein function prediction.

6 Conclusions

In this paper, we study protein function prediction using partially annotated
proteins and introduce the ProDM method. ProDM integrates the maximiza-
tion of dependency between features and function labels of proteins, the ‘guilt
by association’ rule, and function correlations to replenish the missing functions
of partially annotated proteins, and to predict the functions of completely un-
labeled proteins. Our empirical study on three PPI networks datasets shows
that the proposed ProDM performs significantly better than the competitive
methods. In addition, we empirically demonstrate the benefit of integrating the
‘guilt by association’ rule, function correlations, and dependency maximization
in protein function prediction.
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