
Multiobjective Optimization of Co-Clustering Ensembles

Francesco Gullo
Yahoo! Research Barcelona
gullo@yahoo-inc.com

AKM Khaled Ahsan Talukder
Department of Computer Science

George Mason University
atalukde@gmu.edu

Sean Luke
Department of Computer Science

George Mason University
sean@cs.gmu.edu

Carlotta Domeniconi
Department of Computer Science

George Mason University
carlotta@cs.gmu.edu

Andrea Tagarelli
Department of Electronics, Computer, and Systems Sciences

University of Calabria, Italy
tagarelli@deis.unical.it

ABSTRACT
Co-clustering is a machine learning task where the goal is
to simultaneously develop clusters of the data and of their
respective features. We address the use of co-clustering en-
sembles to establish a consensus co-clustering over the data.
In this paper we develop a new preference-based multiob-
jective optimization algorithm to compete with a previous
gradient ascent approach in finding optimal co-clustering
ensembles. Unlike the gradient ascent algorithm, our ap-
proach once tackles the co-clustering problem with multiple
heuristics, then applies the gradient ascent algorithm’s joint
heuristic as a preference selection procedure. We are able
to significantly outperform the gradient ascent algorithm on
feature clustering and on problems with smaller datasets.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous—Evolution-
ary Computation

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
This paper describes a novel application of multiobjec-

tive optimization to the problem of producing optimal co-
clustering ensembles. Co-clustering is an unsupervised ma-
chine learning technique for identifying groups of objects
related by their similar feature values. Co-clustering is dis-
tinguished from ordinary clustering in that it simultaneously
discovers clusters of similar objects with regard to the values,
and clusters of similar features with regard to the objects
related by them. Often these cluster pairs do a better job of
identifying the underlying structure in the data.

Ensemble learning is an approach to producing higher
quality learned solutions by combining the results of several
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different kinds of learning algorithms. These are fed into
an ensemble learning algorithm to produce a solution (in
our case, a consensus co-clustering) which ideally would
be superior to any one member of the ensemble. Many
such machine learning ensemble algorithms are essentially
optimizers, hunting for sets of weights that produce a solution
which is as optimal as possible according to one or more
heuristic criteria.

In prior work [1, 2] we applied both a rudimentary multi-
objective optimization algorithm (or MOEA) and a custom
gradient ascent approaches to search for optimal consensus
co-clusterings. The multiobjective optimization technique
bred candidate consensus co-clusterings using two heuris-
tic objective functions: one which examined how well the
co-clustering clustered the features, and another which exam-
ined how well it clustered the objects. The gradient ascent
approach instead used a single (and more discriminating)
combined heuristic function, and performed better.

Here we revise the multiobjective optimization approach
with a more advanced technique based on a customized
version of the NSGA-II algorithm. This version uses the
two heuristics, originally found in the earlier multiobjective
optimization approach, to build a Pareto front (NSGA-II’s
“archive”), but then uses the advanced combined heuristic
function to select parents from the front to breed new children.
We provide a single solution at the end of the run by returning
the member of the final Pareto front which maximized the
combined heuristic function.

For a fuller description of this work, see [3].

2. PREVIOUS WORK
Previous literature has tackled clustering from an evolu-

tionary computation perspective, and most commonly, from
a multiobjective one. Kin et al [6] tackled the problem of op-
timizing the right model framework to fit to the data using a
combination of multiobjective evolutionary optimization and
local search (K-means, EM). Handl and Knowles [4] applied
multiobjective optimization to examine the trade-off between
the number of clusters and cluster solution quality. Oliveira
et al examined cluster ensemble discovery by applying mul-
tiple objective optimization to cluster features [7]. Jin and
Sendhoff [5] applied multiobjective optimization in a wide
variety of machine learning contexts, including unsupervised
clustering. However only our prior work [1] has examined
co-clustering from an evolutionary optimization standpoint.



Data Set Algorithm Θf P-value Θo P-value Θof P-value

Iris
MOEA-CB-PCE 0.5564 (> 99.8%) 0.0813 0.7348 (> 95.0%)

CB-PCE 0.2332 0.4702 (> 99.8%) 0.6902

Wine
MOEA-CB-PCE 0.5945 (> 99.8%) 0.1943 0.7748 (> 99.8%)

CB-PCE 0.1142 0.4119 (> 99.0%) 0.3402

Glass
MOEA-CB-PCE 0.7464 (> 99.8%) 0.0834 0.9048 (> 99.8%)

CB-PCE 0.1302 0.4702 (> 99.8%) 0.1203

E. Coli
MOEA-CB-PCE -0.003 -0.0013 0.011

CB-PCE 0.0046 (> 99.8%) 0.0894 (> 99.8%) 0.0881 (> 99.8%)

TraceData
MOEA-CB-PCE -0.00241 -0.0492 -0.0587

CB-PCE 0.018 (> 99.8%) 0.2347 (> 99.8%) 0.2493 (> 99.8%)

Table 1: Results on the different benchmark datasets. CB-PCE is compared against a MOEA employing the
same objective function in its tournament selector, hill-climbing, and final Pareto front reduction. Bold faced
results are statistically significantly superior.

3. APPROACH
We have three objective functions available: Ψo(C, E), a

heuristic optimization function over object clusters, Ψf (C, E),
a heuristic optimization function over feature clusters, and
Ψof (C, E), a heuristic optimization function jointly over both
object and feature clusters. We applied a “preference-based”
version of NSGA-II to this problem, where the experimenter
provides a priori information such as the region on the Pareto
front which is preferred over others. Ψof (C, E) provided this
preference information: at the end of the run, we returned the
individual on the Pareto front which maximized Ψof (C, E).
Additionally, while the NSGA-II algorithm used Ψo(C, E)
and Ψf (C, E) as its two objective functions for purposes
of building the archive, it used Ψof (C, E) as the objective
function for assembling the population from the archive via
tournament selection. Finally, every 25 generations we added
a bit of hill-climbing based on Ψof (C, E). The details of the
algorithm may be found in [3].

4. EXPERIMENTS
We performed experiments comparing our MOEA with two

gradient ascent techniques described in [2], called CB-PCE
and FCB-PCE. CB-PCE optimizes with a slow but precise
version of Ψof (C, E), and FCB-PCE uses a fast approximation.
In each case we compared the technique against our MOEA
using the same version of Ψof (C, E).

The experiments were done on four benchmark datasets
from the UCI Machine Learning Repository1 (Iris, Wine, Glass,
and E. Coli) and on a time-series dataset from UCR Time
Series Classification Page2 (Trace Data). Because of very
high time cost involved, we performed only ten independent
runs for each combination of technique and dataset. We
performed non-parametric two-tailed t-tests to determine
statistical significance. P-values are shown in Table 1.

A co-clustering has two equally important measures of
accuracy: how well it properly clusters the object data, and
how well it properly clusters the features. We used the Θo,
Θf measures from [2], respectively, and also the Θof measure
provided an overall assessment taking into account both
co-clustering aspects.

Table 1 summarizes the performance results for CB-PCE.
For FCB-PCE (similar), see [3]. Our MOEA model tended

1http://archive.ics.uci.edu/ml/
2http://www.cs.ucr.edu/∼eamonn/time series data/

to attain better consensus co-clustering in terms of Θf and
Θof on the simpler problems (Iris, Wine, Glass). However on
E. Coli and the much more difficult Trace Data, it could not
outperform the gradient ascent algorithm.

This was the opposite of what we had expected. We had
hypothesized that local optima would trap the gradient ascent
algorithm on the more complex problems, but on the simpler
problems a straightforward gradient ascent would outperform
a global algorithm like the MOEA. This suggests that the
underlying spaces may not be what we had expected.
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