
Uncovering Trajectories of Informal Learning in Large
Online Communities Of Creators

Seungwon Yang, Carlotta Domeniconi, Matt Revelle, Mack Sweeney, Ben U. Gelman,
Chris Beckley, and Aditya Johri

George Mason University
4400 University Drive, Fairfax, VA 22030, U.S.A.

syang20@gmu.edu, {carlotta, revelle}@cs.gmu.edu,
{msweene2, bgelman, cbeckley, ajohri3}@gmu.edu

ABSTRACT
We analyzed informal learning in Scratch Online – an
online community with over 4.3 million users and 6.7
million instances of user-generated content. Users develop
projects, which are graphical interfaces consisting of
interacting programming blocks. We investigated two
fundamental questions of how we can model informal
learning, and which patterns of informal learning emerge.
We proceeded in two phases. First, we modeled learning as
a trajectory of cumulative programming block usage by
long-term users who created at least 50 projects. Second,
we applied K-means++ clustering to uncover patterns of
learning and corresponding subpopulations. We found four
groups of users manifesting four different patterns of
learning, ranging from the smallest to the largest
improvement. At one end of the spectrum, users learned
more and in a faster manner. At the opposite end, users did
not show much learning progress, even after creating
dozens of projects. The modeling and clustering of
trajectory patterns that enabled us to quantitatively analyze
informal learning may be applicable to other similar
communities. The results can also support administrators of
online communities in implementing customized
interventions for specific subpopulations.

Author Keywords
Learning analytics; informal learning; modeling; clustering;
programming; Scratch; online community.

ACM Classification Keywords
H.3.3. Information Search and Retrieval: Clustering; K.3.1.
Computers and Education: Computer Uses in Education.

INTRODUCTION
Thousands of massive open online courses (MOOCs) [17],
Q&A forums [28], tutorial sites [31], and online
communities of creators (OCOCs) [29] attract people
interested in learning. MOOCs provide a formal learning
environment with specific learning goals, rubrics to follow,
and assessments on learner performance toward goals.
Other online communities such as OCOCs offer platforms
with tools and services to create content both individually
and in collaboration with others. Although these settings do
not provide formally structured instruction, they do provide
participants the opportunity to learn important content and
skills informally [5, 9, 14, 19].

Within formal contexts, such as MOOCs, assessment of
learning outcomes is relatively straightforward as student
progress can be measured against educational aims of the
course. Consequently, MOOCs incorporate automatic and
formal assessments to measure learner progress in order to
provide feedback [4, 30]. In contrast, online communities
that support informal learning often lack appropriate means
to assess progress of their members.

In this paper, we aimed to analyze informal learning
occurring in Scratch online [23, 24] by addressing the
questions of how we can model informal learning, and
which patterns of informal learning may emerge.
Specifically, we focused on measuring and analyzing the
three aspects of learning:

• Amount of learning

• Speed of learning
• Potential prior knowledge
Scratch users are mainly kids and teenagers who create and
share their ‘projects,’ which are games, animations, arts,
and other media content. Projects are constructed by
importing multimedia files and editing/controlling them
using a visual programming language called Scratch. The
Scratch language consists of various programming
‘blocks,’ which are the software version of Lego™ bricks.
Once created, a project can be shared with other users.
Remixing – creating a project based on another’s project –
is also highly encouraged in the community. Although
there may be exceptions (e.g., sophisticated arts project

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

L@S 2015, March 14 - 18, 2015, Vancouver, BC, USA Copyright 2015
ACM 978-1-4503-3411-2/15/03…$15.00
 http://dx.doi.org/10.1145/2724660.2724674

may not require a large vocabulary), we believe that a
wider spectrum of vocabulary block use identified from a
user’s original projects (non-remix) may be an indicator of
learning. We developed a two-phase approach to answer
our questions:

• Phase I: Model informal learning of a user as a trajectory
of cumulative vocabulary block use, as s/he creates more
projects over time. Visualize trajectories for all projects,
as well as only the original projects.

• Phase II: Find and compare patterns of trajectories using
a clustering approach to uncover subpopulations that
share similar learning patterns [11, 18]. Examine samples
from each cluster for detail analysis.

This study contributes to the learning community by
exploring an approach to quantitatively measure informal
learning from a large online community – which is difficult
due to the nature of online communities (e.g., non-goal
directed, less structured). It may also trigger administrators
of online communities to implement targeted services for
specific subpopulations.

After introducing related studies, we plunge into modeling
and clustering the trajectories of programming block use.
Then, we present the clustering results and examples in
each cluster, followed by the discussions regarding the
meaning of our results and limitations. We provide
implications of this study, and conclude with an overall
summary and future work.

RELATED STUDIES

Scratch Online
A core goal of Scratch is to make the creation and sharing
of interactive content easy for users [20]. Within the
Scratch programming environment as shown in Figure 1,
users program with blocks, which map to programming
constructs and allow users to manipulate data including
media content (e.g., sounds, videos, images). Users can
then share these interactive creations on the Scratch website
[23]. The website is an online community where users may

run and build on others’ ideas and projects. Members can
import the source code of any project into their own
workspace and remix it.

In addition to the Scratch project’s goal of creating and
sharing programs, a fundamental element behind its
creation has been to provide an alternate model for how the
Web can be used for learning. The Scratch team envisioned
learning outcomes related to programming and math skills
as well as skills in design, creativity, communication, and
so on. Learning is inherently a collaborative process that
occurs across communities of practice. The Scratch
community was created with the goal to foster learning
among users through interaction and sharing of ideas and
projects [15, 16].

Resnick et al. wrote about the Scratch in ‘Programming for
all’ and their goal has always been to develop an approach
to programming that would appeal to people who had not
considered themselves programmers [20]. In May 2007, a
website was launched to allow for more sharing of projects
on the Web. Maloney et al. studied the use of Scratch at a
Computer Clubhouse where urban youth between the age
of 8-18 used Scratch [13]. The findings from this research
indicated that users learned key programming concepts
even in the absence of instructional interventions or
experienced mentors. The ease of use for the Scratch
platform and its interactivity made it attractive for users.

Informal Learning and Assessment
One of the alternate mechanisms that is accepted as central
to revising the current model of education is emphasizing
and improving learning that occurs in informal settings [2,
6]. Even when in formal learning environments, people
gain from participation in informal learning activities [2, 8].
Consequently, informal settings and activities represent an
important opportunity for engineering students to develop
technical capabilities, social skills, strengthen their
engineering identities, and cultivate habits necessary for
life-long learning [3]. The lack of research on informal
learning within engineering education was highlighted in
the Educating the Engineers of 2020 report, which raised

Figure 1. Scratch interface: (a) a project window, (b) blocks, (c) scripts, and (d) a script constructed with blocks.

(a)$ (b)$ (c)$ (d)$

the question, ‘How can formal education be better
integrated with informal and lifelong learning by
engineering graduates?’ [6].

The topic of assessment for online learning (e.g., MOOCs)
has already found significant traction within the Learning at
Scale community. For instance, Kulkarni et al. investigated
ways to scale up peer assessment [12]. Peer assessment is a
useful tool in the learning process, but it suffers from
quality issues. The authors use machine learning techniques
to scale this process whereby the quality is maintained and
the burden of grading is not high. Brooks et al. propose a
cluster-based interface that allows teachers to read, grade,
and provide feedback on large groups of answers at once
[4]. Wilkowski et al. looked at grading in MOOCs where
the solutions are complex and qualitative items require
subjective judgment [30]. They incorporated meta-
evaluation, which evaluates the self-evaluation of students,
and found that the assessments were accurate. These
studies are interesting in that they investigated assessment
issues occurring in large online courses. However, the
primary setting for these studies was not on informal
learning, but on MOOCs that provide formal learning.

Studies do exist for assessing informal learning. For
example, Naturalistic Assessments [14] focuses on STEM
learning taking place outside institutions. Naturalistic
Assessment is focused on people’s awareness of who
knows how to do what. Carliner [5] proposes self-
assessments, process portfolios, and certifications for
measuring informal learning occurring in a professional
environment. However, these approaches may not scale to
large communities, are obtrusive to online community
members, or require longitudinal studies to capture the
cumulative nature of learning [19].

TRAJECTORIES OF VOCABULARY PROGRESS

Modeling Vocabulary Progress

The Scratch Dataset
The Lifelong Kindergarten Group at the MIT Media Lab
created the Scratch dataset from the Scratch Online
Community [24, 25]. It contains five years of data between
2007 and 2012, including 1 million users and their 1.9
million projects, grouped in five categories (Table 1).
Demographics of users have not been published due to
privacy concerns considering that the majority of Scratch
users are kids and teens. Data files in each category
accompanied their documentation, which describe variable
fields, summary statistics, and omitted observations.

In this study, we selected 3,852 long-term users each with
at least 50 original projects. In total, there were 618,721
projects of which 145,916 were original and 472,805 were
remixed. Each project consists of sprites (characters in a
project), imported media files, and programming blocks.
Users can stack up blocks and specify variables (e.g., ‘10
steps’, ‘0.25 beats’) embedded in blocks to control sprites
and media (Figure 1 (c) and (d)). In total, 170 different
types of blocks are available.

Category Description Count*

Core

Data files describing the
major objects and
relationships captured by the
Scratch website

18 (1)

Text &
Code

User submitted texts useful
for text and natural language
processing analysis

8 (3)

Project
Analytics

Detail data of blocks, drums,
media, midi instruments,
save history, and sprites of
projects

6

Other
Scratch
Website

Scratch Media wiki dump,
forum posts, and Text-based
Games forum posts

3(3)

Code
Code used to generate the
datasets from the MySQL
database used by Scratch

1

Table 1. The Scratch dataset. *The numbers inside
parentheses denote the number of data files in preparation

(not available).

Assigning Block Weights
Some blocks are commonly used while others appear only
rarely in the projects. The question then arises: should the
different block types be equally considered when modeling
users’ progress? We assumed that users create simple
projects at the beginning using a set of common blocks. As
users create more projects and become familiar with the
Scratch editor, they may explore blocks that they have not
used before, gradually expanding their vocabulary set.
Based on this assumption, we considered the presence of
rarely used blocks in a project as a sign of a more advanced
progress in learning about blocks, as compared to the
presence of common blocks.

To account for this difference of the blocks, we assigned a
weight to each block using Inverse Document Frequency
(IDF) [27], which was computed from the entire set of
original projects of all users in our selected data set:

!!! = ! log!"
!!!
!!!!!

! (1)

where P is the total number of original projects, and !!! is
the number of original projects containing a vocabulary
block bj 1 ≤ !! ≤ 170 . We added ‘1’ to both numerator
and denominator in (1) as a smoothing term to avoid
negative weights and division by zero. Thus, our IDF
weight vector W has 170 elements, one for each
corresponding vocabulary block:

!! = ! !!! … !!! … !!!"# (2)

The highest weight value is 5.17, and is assigned to the
blocks used most rarely, e.g., changebrightnessshift; very
common blocks, such as eventhatmorph_startclicked,

receive a weight value that is close to zero (Figure 2). The
total sum of weights is 402.94.

Figure 2. Vocabulary weights computed from IDF.

Modeling Learning Trajectories
We modeled the informal learning of a user as a trajectory
of cumulative vocabulary block use. Procedures shown
below are based on the analysis of the user’s first 50
projects – including original and remix. Since our main
focus was to examine the use of blocks as a user creates
projects one by one, we used the project sequence, instead
of actual time stamps, as the unit of trajectories.

For each user u, we proceed as follows (the user ID ranges
from 1 to 3852).

1. Align all projects of a user u including original and
remix in sequence from the earliest to the latest.

2. Construct a 50 x 170 matrix Pu using the first 50
projects and frequencies of their 170 blocks:

!! = !

!!,! ⋯ !!,! ⋯ !!,!"#
⋮ ⋮ ⋮
!!,!

⋱
⋯
⋱

!!,!
⋱
⋯
⋱

!!,!"#
!!!⋮ ⋮ ⋮
!!!",! ⋯ !!",! ⋯ !!",!"#

 (3)

where !!,! is the frequency of block bj 1 ≤ !! ≤ 170 in
project i 1! ≤ !! ≤ 50 .

3. Create a matrix Pc by cumulatively summing rows in Pu

(e.g., the ith row of Pc is the element-wise sum of the
first i rows in Pu).

4. Create a binary matrix Pb from Pc (‘1’ if frequency of an
element > 0, ‘0’ otherwise).

5. Compute a trajectory by applying weights on the
elements of Pb and summing values in each row: Vu =
(PbWT)T. The final result is a 50-dimensional vector:

!! = [!!,!!!!!!!,! !… !!!,! !… !!!,!"] (4)

where !!,! is a cumulative sum of weighted vocabulary
blocks for a user u, computed using the first i projects. It is
a weighted binary count considering whether a block was
ever used (frequency is ignored). We compute Vu for all

3,852 users to construct a matrix Tall that has 3,852 x 50
dimensions:

!!"" != !

!!
⋮
!!
⋮

!!,!"#

 (5)

6. Create a vector Ou, corresponding to a trajectory that
uses only original projects, simply by adding another
step after step 2 above: Replace the rows of remix
projects in matrix Pu with vectors of zeros:

!! = [!!,!!!!!!!,! !… !!!,! !… !!!,!"] (6)

where !!,! is the analogous to !!,! except that it is based
only on the original projects. We compute Ou for all 3,852
users to construct a matrix Tori that has 3,852 x 50
dimensions:

!!"# != !

!!
⋮
!!
⋮

!!,!"#

 (7)

The trajectory of vocabulary progress – Original & remix
or Original only – of a user u can be plotted using the
corresponding rows in Tall and Tori (Figures 8-11).

Identifying Trajectory Patterns
After inspecting many trajectory graphs, which represent
informal learning of blocks over the first 50 projects, we
recognized their shapes vary significantly. In order to
determine a small number of canonical trajectory patterns,
we applied a clustering algorithm on Tori since we were
initially interested in the trajectory patterns from original
projects. Using the trajectories in each cluster, we also
collected corresponding trajectories from Tall.

The trajectory graphs increase monotonically, and the
maximum value they reach in the first 50 projects is 402.94
(most trajectories reached a value under 150). Since we
were not concerned with outliers, we decided to use the K-
means++ algorithm [1] as opposed to the more robust
variant, K-medoids [26], which works well in the presence
of outliers. Regular K-means is sensitive to initial cluster
centroid seeds, which are randomly selected. K-means++
does a bit more intelligent selection by choosing the first
centroid seed randomly, the second seed to be the farthest
from the first, the third seed to be the farthest from the first
and second, and so on. Therefore, the only source of
randomness is the first choice of the first seed.

K-means-based algorithms require the number of clusters
(k) as an input. To find an appropriate k, we plotted the
total Within-Group Sum of Squared Error (SSE) [21] for
increasing k values, as shown in Figure 3. A red rectangle
box encloses the meaningful portion of the graph.
Increasing the value of k from 3 to 4 reduces considerably
the value of the total Within-Group SSE. However, further

0"
1"
2"
3"
4"
5"
6"

ch
an
ge
br
ig
ht
ne

ss
sh
i4

se
5i
sh
ey
et
o"

se
tw

hi
rlt
o"

jo
ke
o4

he
da
y"

sc
ra
tc
hr
in
fo
_f
or
us
er
"

ch
an
ge
co
st
um

ei
nd

ex
b

al
lm

ot
or
so
n"

se
ns
or
pr
es
se
d"

lis
t_
co
nt
ai
ns
"

ch
an
ge
vo
lu
m
eb

y"
ab
s"

m
ou

se
y"

he
ad
in
g"

hi
de

va
ria

bl
e"

co
st
um

ei
nd

ex
"

se
t_
xp
os
"

ad
d_

op
er
at
or
"

po
in
Do

w
ar
ds
"

no
t_
op

er
at
or
"

co
m
et
of
ro
nt
"

ke
yp
re
ss
ed

"
ch
an
ge
gr
ap
hi
ce
ffe

ct
by
"

pl
ay
so
un

d"
ev
en

th
at
m
or
ph

"
do

fo
re
ve
r"

w
ei
gh
t"(
ID
F)
"

increasing k affects the SSE values only minimally. Thus
we chose k = 4.

Figure 3. The total Within-Group SSE values by

different number of clusters (k). k = 4 was selected.

We ran K-means++ 50 times on our matrix Tori, and then
selected the model that had the least total Within-Group
SSE. Figure 4 illustrates the SSE values achieved at each
run of K-means++. Although the first seed centroid of K-
means++ is randomly selected at each run, we observed
that only a handful of different SSE values were reached.
All the multiple runs, which gave the same smallest SSE
value at convergence, corresponded to the same partition.

Figure 4. Total Within-Group SSE values for the 50

runs of K-means++.

Table 2 gives the sizes (number of users) of the resulting
clusters.

Cluster A Cluster B Cluster C Cluster D
1,304 1,250 941 357

Table 2. Size of clusters.

RESULTS
Figure 5 illustrates average trajectory patterns of users from
clusters A-D. For each cluster, we first plotted an Original
only graph (solid line) using the centroid vector of that
cluster since a centroid in K-means++ clustering represents
an average of all the members in that cluster. We then
plotted the corresponding Original & remix graph (dotted
line). We recognized interesting differences between
graphs in each cluster and across clusters. Since the first 10
projects and the second 10 projects in the graph showed
prominent characteristics, we attached regression lines and
their slopes for those learning segments.

Figure 5. Average trajectory graphs for clusters A-D.
Regression lines and slopes are shown for the first 10

and the following 10 projects (p-value << 2.2e-16).

Differences in Amount and Speed of Learning
Based on the value of the graphs at the 49th project, which
is the index of the last project, we can measure the average
‘amount’ of learning of blocks in each cluster (Figure 5).
The amount of learning in clusters A-D was proportionally
related to the ‘speed’ of learning occurring in the
corresponding clusters, as evidenced by the increasing
slopes (from A to D) for the first 10 projects and the
following 10. However, the amount and speed of learning
were inversely related to the size of clusters in Table 2,
which reflects the general trend in groups of learners.

The gap between the upper (Original & remix) and lower
(Original only) graphs at a specific project index represents
the corresponding cumulative vocabulary difference up to
that point. This gap is smaller in D than in A. Also, the
differences in slope between the two curves, measured
within the first 10 projects and the following 10 projects,
are smaller in D than in A. One reason for this might be
that users in cluster D used diverse vocabulary even in their

2 4 6 8 10

5.
0e
+0
7

1.
0e
+0
8

1.
5e
+0
8

Cluster Solutions against SSE

Cluster Solution

W
ith

in
 G

ro
up

s
S

S
E

Actual Data
20 Random Runs

Number'of'clusters'(k)'

To
ta
l'W

ith
in
6G
ro
up

'S
SE
'

20515000%

20520000%

20525000%

20530000%

20535000%

20540000%

1% 4% 7% 10%13%16%19%22%25%28%31%34%37%40%43%46%49%

To
ta
l&W

ith
in
&S
SE
&

Itera0on&Index&

Total%Within%SSE:%Kmeans++%

Itera&on)index)

To
ta
l)W

ith
in
1G
ro
up

)S
SE
)

0 10 20 30 40 50
0

20
60

10
0

Cluster C

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

3.8

3.1

1.9

1.7

0 10 20 30 40 50

0
20

60
10

0

Cluster B

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

2.4

1.8

1.4

1.0

0 10 20 30 40 50

0
20

60
10

0

Cluster A

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

1.3

0.6

0.9

0.4

0 10 20 30 40 50

0
20

60
10

0

Cluster D

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

5.4

4.9

2.2

2.2

Sequence of projects

Av
er

ag
e

cu
m

ul
at

iv
e

su
m

 o
f w

ei
gh

te
d

bl
oc

ks
 (I

D
F)

Cluster(C(

Original only
Regression line

Cluster(D(

Cluster(B(

Cluster(A(

Original & remix

Original only
Regression line

Original & remix

Original only
Regression line

Original & remix

Original only
Regression line

Original & remix

early original projects. This interpretation is supported by
the fact that the cumulative sum in the Original only graph
(cluster D graph in Figure 5) reached 70 at the project
index of 10, when the second-most-progressed group of
users (cluster C graph in Figure 5) reached the same value
at the project sequence of 35. Therefore, it might have been
hard to find remix projects with previously unused
vocabulary. Another possible explanation for the
discrepancy might be that users in cluster D typically
remixed projects similar to their original projects, leading
to only a small difference between the graphs.

Differences in Initial Vocabulary
Another observation from Figure 5 is that the ‘starting
value’ of the trajectory (Original only) at project sequence
0 is higher in cluster D (mean=17.0) than in A (mean=2.5).

Figure 6. Boxplots summarizing the starting value for
the first original projects in each cluster (count is 0 if a

trajectory starts with a remix project).

The boxplots in Figure 6 illustrate this further. The median
starting values of the trajectories from A to D are 1.4, 3.7,
7.3, and 15.4, showing an exponential increase. Even the
outliers of A have lower values than those of D. This may
be due to the differences in users’ background knowledge.
For example, users with prior programming experience
already know how to use various vocabulary blocks. Thus,
these users can apply a variety of blocks when creating
complex Scratch projects. Other factors such as age and
gender of users may contribute to this phenomenon as well.
We further discuss on this in Discussion and Limitations
section.

Characteristics of Block Use by Different Clusters
We computed the percentage of blocks used in the original
projects for each cluster to understand the block usage
trend among clusters (Figure 7). A total of 145,916 projects
(A: 47,097; B: 48,270; C: 36,421; and D: 14,128) were
analyzed and the percentages of block use were visualized
along with the block names, which were organized in
decreasing order of their IDF weights from left (higher
weight, rare blocks) to right (lower weight, common
blocks). 25 blocks with the highest weights were removed
from the computation because they were not used at all.

As we may expect from the definition of IDF weighting,
blocks with lower weights were more popular in general
than those with higher weights. An interesting tendency

was that the D graph (black solid line) was higher than the
A graph (red dotted line) until they reached the ‘doif’
block, where the two lines crossed. After the ‘doif’ block,
the A graph became higher than the D graph, indicating
that the users of cluster D used rare blocks more often
compared to the users of A. The B and C graphs were
located in between the A and D graphs.

Figure 7. Block use (%) for different clusters. The A

graph and the D graph cross at (a) ‘doif’ block.

Text Analysis of Project Descriptions and Comments
To get a glimpse of how the users in different clusters
describe their projects and what kind of comments are
posted for those projects, we extracted the 100 most
frequent words from the project descriptions and
comments. We then compared these 100 words across
clusters to uncover unique words (Table 3).

Cluster Unique Words Count

A
poor, story, kirby, movie, sad,
cookie, anime, car, baby, wolf,

shadow, drawing
12

B king, head, views, meow, dragon,
nice 6

C
nyan, spam, watch, astro,

darkraiworld, hill, battle, pizza,
stick

9

D

color, bros, radas, player, tagger,
darkb, mouse, liam, long, version,
online, turbo, adventure, survived,
scripts, ninja, projects, great, mhm,
magic, level, geometry, button, bob,

view, erk

26

Table 3. Unique words extracted from the project descriptions
and comments in each cluster.

Table 3 shows that the cluster D has the largest number of
unique words (26) by a considerable margin. In addition,

A
B

C
D

0 10 20 30 40 50 60

Initial Vocabulary Count − Original Projects

Vocabulary count of first project

C
lu

st
er

s

0"

2"

4"

6"

8"

10"

12"

14"

in
fo
_f
ro
m
zip

"
re
w
in
ds
ou

nd
"

se
tm

ot
or
di
re
c8
on

"
yo
ur
se
lf"

se
ns
or
pr
es
se
d"

se
tli
ne

_o
fli
st
_t
o"

se
<
em

po
to
"

re
st
_e
la
ps
ed

_f
ro
m
"

8m
er
"

ge
tli
ne

_o
f_
lis
t"

no
te
_o

n_
du

ra
8o

n_
el
ap
se
d_

fr
om

"
hi
de

va
ria

bl
e"

se
t_
yp
os
"

ge
ta
<
rib

ut
e_
of
"

m
ul
8p

ly
_o

pe
ra
to
r"

ch
an
ge
siz

eb
y"

an
d_

op
er
at
or
"

do
un

8l
"

co
m
et
of
ro
nt
"

ra
nd

om
fr
om

_t
o"

ch
an
ge
va
rb
y"

do
if"

do
re
pe

at
"

go
to
x_
y"

w
ai
te
la
ps
ed

fr
om

"

Pe
rc
en

ta
ge
"(%

)" A"

B"

C"

D"

Lower&weight&Higher&weight&

(a)$

the unique words from cluster D may have come from
games (e.g., player, mouse, adventure, survived, ninja,
level, button) and programming (e.g., version, scripts,
geometry). Users in cluster B and C create a large number
of projects that are related to cats (See the unique words
‘meow’ in cluster B and ‘nyan’ in cluster C in Table 3). In
fact, ‘cat’ was a popular topic in Scratch considering that
searching with ‘cat’ returned over 7 million results. The
popularity of ‘dragon’ in cluster B was probably due to
over 2.26 million projects about a famous animation
“Dragon Ball.” ‘battle’ in cluster C was usually associated
with games (e.g., RPG battle, Tank battle, battle training
game). The word ‘poor’ in cluster A was often used in titles
along with the name of animation characters (e.g., ‘poor
foxy’, ‘poor Pinkie Pie’, ‘poor snow man’). ‘poor’ was also
used to comment on the quality of projects (e.g., ‘poor
translation’). The frequent use of word ‘poor’ may indicate
that the users in cluster A are novices who frequently
acknowledge the low quality of their projects in relation to
those in other clusters.

 Emotion Project Type Other

A
cr

os
s A

-D

crazy,
awesome,
love, best,
funny, yay,

happy, good,
evil, cool,

rock(s), bad,
stupid, fun,

weird

art, cat,
pokemon,

click, contest,
music, sonic,
super, mario,

press, game(s),
remix, space,

sprites

wuz, random,
pie, cant, tag(s),

blue, song,
waffles, add,
stuff, scratch,

green, epic, red,
real, life, star,
big, time, day,

eat, man

Table 4. Common words extracted from clusters A-D (a total
of 56 words).

Table 4 shows common words across all clusters. They
might be divided into three groups: emotion, project type,
and other. Combined together, these word groups illustrate
a simplified snapshot of the Scratch community, where
people create arts, games, animations, and express their
emotions towards those content.

Example Trajectory Graphs
Cluster analysis provides us a macroscopic examination of
the patterns in the trajectory graphs. For microscopic
details of graph variations, we present two examples which
are randomly selected from each cluster.

Figure 8 depicts typical patterns of trajectories from the
least progress group in cluster A. In Figure 8 (a), the
Original only graph stayed under 25 cumulative sum of
vocabulary even though the user remixed many projects
over time. The user in Figure 8 (b) remixed only one
project later in the sequence. His/her cumulative sum of
vocabulary increased gradually during the first 10 projects,
then stabilized for another 30 or so. There was a small
vocabulary jump around the 43rd project, but overall
progress is slow.

Figure 8. Examples from cluster A (the least progress

group). Graphs in (a) and (b) stay under the cumulative
sum value of 50.

Figures 9 and 10 illustrate example trajectories from cluster
B and C respectively. In the first 10 projects, the two
figures show noticeable differences: corresponding portions
in Figure 9 (a) and (b) are rather flat; but those in Figures
10 (a) and (b) are increasing. The Original & remix graph
(dotted line) in Figure 9 (a) has a slight jump at the 21st
project due to new vocabulary in a remix project. However,
the last two remix projects at 36th and 37th do not contribute
to the vocabulary progress very much. Figure 9 (b) shows a
sharp jump at the 8th project caused by the vocabulary
increase in the original project, but then the progress slows
down even after multiple remixes.

Figure 9. Examples from cluster B. (a) and (b) reach
slightly over 50 cumulative sum of vocabulary in the

end.

(b)$

(a)$

C
um

ul
at

iv
e

su
m

 o
f v

oc
ab

ul
ar

y
(ID

F)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 25

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 26

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

Sequence of projects

X

Original & remix
Original only
Remix projects

X

Original & remix
Original only
Remix projects

(b)$

(a)$

C
um

ul
at

iv
e

su
m

 o
f v

oc
ab

ul
ar

y
(ID

F)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 27

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 87

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

Sequence of projects

X

Original & remix
Original only
Remix projects

X

Original & remix
Original only
Remix projects

Figure 10. Examples from cluster C. (a) and (b) reach
near 70-80 cumulative sum of vocabulary in the end.

The final cumulative values at project index 49 in Figures 9
(a) and (b) reach between 60 and 70. Figures 10 (a) and (b)
have similar patterns, but Figure 10 (b) has many more
remix projects which do not contribute much to the
vocabulary increase. The final cumulative values in Figure
10 (a) and (b) reach between 80 and 90.

Figure 11. Examples from cluster D (the most progress

group). (a) and (b) reach 110-140 cumulative sum of
vocabulary in the end.

Figure 11 shows example trajectories from the most
progressed group in cluster D. These trajectory graphs start
increasing from the beginning and reach over the
cumulative value of 50 before the 5th projects. This is a
steep increase compared to the corresponding portions in
Figures 5, 6, and 7. The graphs in Figure 11 (a) keep
increasing until they reach close to 140. Graphs in Figure

11 (b) show a slight jump at the 27th project due to
vocabulary increase in the original project. Another
observation to note is that four remix projects occur
consecutively right before this jump. They do not directly
contribute to the vocabulary increase; however, it’s
possible that those remix projects indirectly helped learning
new blocks and contributed to the vocabulary increase in
the Original only graph.

DISCUSSION AND LIMITATIONS
We found that our approach – modeling and clustering of
learning trajectories – was effective in answering our
research questions. We could quantitatively measure and
analyze the three aspects listed below, both at macroscopic
(Figure 5) and microscopic levels (Figures 8-11):

1. The amount of learning using the cumulative sum at the
end of a trajectory

2. The speed of learning using the slopes of regression lines
of a trajectory

3. Potential prior programming knowledge using the first
value of a trajectory

The clustering analysis unveiled four patterns of
trajectories and corresponding subpopulations in our
dataset – from the least progress (cluster A) to the most
progress (cluster D). We observed that the quantities listed
above in 1, 2, and 3 were positively correlated with each
other. Users in cluster A (least progress) had the smallest
amount of vocabulary learning, their learning speed was the
slowest, and their starting vocabulary sum was only 2.5 on
average (Figure 5 and 6). Referring to vocabulary weights
in Figure 2, the vocabulary sum of 2.5 means the projects
of users in A contained only one type of vocabulary (e.g.,
list_contains (IDF=2.5)), or two (e.g., set_xpos (1.5) and
keypressed (1)). The trajectory of learning in cluster A
shows slow increase in the first 10 (slope = 0.6) and the
following 10 projects (slope = 0.4), and then stabilizes after
the 20th project for the Original only graph. The larger gap
between the two trajectory graphs may indicate that the
users in A incorporated only a small number of new
vocabulary blocks from the remix projects into their
original projects.

Users in D showed characteristics of ‘expert’ learners –
fastest learning, largest amount of vocabulary use, and a
highest starting vocabulary sum of 17 (Figure 5-6). A
vocabulary sum of 17, for example, means that their first
projects contained several types of blocks:
‘changecostumeindexb (3.8)’, ‘allmotorson (3.2)’,
‘sensorpressed (2.8)’, ‘mousey (2)’, ‘hidevariable (1.8)’,
‘add_operator (1.4)’, ‘not_operator (1.2)’, and
‘changegraphiceffectby (0.8).’ If a vocabulary of smaller
weights were used, many more different types of blocks
might have been included in a project. The trajectory of
their vocabulary growth shows a steep increase in the first
10 projects, where the slope of 4.9 indicates fast learning.
At the 10th project, the trajectory reaches 70, and then it
keeps increasing even after the 20th project.

(b)$

(a)$

C
um

ul
at

iv
e

su
m

 o
f v

oc
ab

ul
ar

y
(ID

F)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 66

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 95

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

Sequence of projects

X

Original & remix
Original only
Remix projects

X

Original & remix
Original only
Remix projects

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 49

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

User 80

Project sequence

C
um

ul
at

ive
 v

oc
ab

ul
ar

y
co

un
t (

ID
F)

C
um

ul
at

iv
e

su
m

 o
f v

oc
ab

ul
ar

y
(ID

F)

Sequence of projects

X

Original & remix
Original only
Remix projects

(b)$

(a)$

X

Original & remix
Original only
Remix projects

Figure 7 and Table 3 also support that the users in D
showed characteristics of expert learners. In Figure 7,
users in D tend to use blocks with higher weight for their
projects compared to the users in A. It might be interpreted
in three ways: (1) users in D use blocks with higher weight
in general compared to those in A, (2) the proportion of
advanced users using blocks with higher weight was larger
in D than in A, or (3) a combination of these two cases.
From the unique words of users in D in Table 3, we can
also postulate that these users create unique and
sophisticated games which require advanced programming
skills.

Limitations
Although we identified patterns of learning trajectories, we
may not know the reasons behind the different levels of
learning outcomes for users with certainty. For example,
there can be several reasons for the use of only a small
number of vocabulary blocks by the users in cluster A: the
characteristics of their projects may not require a large list
of vocabulary. This might be the case in art projects, since
visualizing pictures only requires a single keystroke to
advance to the next picture. Another possibility is that of
very inexperienced or very young users who do not
understand the usage of more sophisticated blocks (e.g.,
blocks with high IDF values in Figure 2). We also do not
know the reasons for differences in starting values of the
first original projects (Figure 6). We were limited by the
lack of demographics and user profile data. In addition, the
nature of the Scratch platform is flexible and not goal-
directed; therefore, users are free to develop the projects
they wish over time without concern for vocabulary
acquisition.

In our dataset, we included only the long-term users who
created at least 50 original projects, and analyzed their first
50 projects. This selection criterion may have limited our
scope of analysis to focus on a phenomenon occurring only
in a small sub-community of Scratch online. Thus,
lowering the user selection/analysis criteria (e.g., original
projects < 50, analyzing all projects of a user) may have led
to more meaningful and generalizable results.

IMPLICATIONS
Uncovering patterns in trajectories of learning implies that
there exist subpopulations in the community, each of which
shares similar learning characteristics (i.e., amount, speed,
and, potentially, prior programming knowledge). It may
allow administrators and designers of online communities
to apply interventions and implement services to better
support underperforming subpopulations. More
importantly, our approach is based on automated modeling
and clustering, thus it is scalable and applicable to much
larger online communities than Scratch. Since it was
successful in quantifying learning in an informal setting,
applying this approach to formal settings (e.g., MOOCs)
may lead to more robust results and enable deeper analyses.
In addition, the patterns of learning trajectories might be
connected with the learner engagement patterns [11] to

acquire richer information about the users and
subpopulations.

CONCLUSION AND FUTURE WORK
In this study, we presented an approach to model informal
learning, which takes place in the Scratch online
community. We modeled a trajectory of learning by
analyzing the cumulative vocabulary block use over the
first 50 projects. The K-means++ algorithm was applied to
a total of 3,852 users and their learning trajectories to
uncover four canonical patterns and corresponding
subpopulations. Average trajectory graphs from each
cluster indicated the existence of ‘elite’ users, who learn
more vocabulary terms more quickly, and potentially have
more prior programming knowledge; whereas the least
progress users learn only a small number of vocabulary
terms at a slower pace than other groups, and they have
almost no prior programming knowledge. The text analysis
of the project descriptions and comments, as well as the
analysis of block usage by users from each cluster, further
evidenced the different characteristics of user groups in the
Scratch community. A few examples from each cluster
were also analyzed to account for the chance that average
graphs might oversimplify patterns of learning trajectories.

Our approach is meaningful in that the modeling and
clustering of trajectory patterns enabled us to quantitatively
analyze informal learning both at a single-user level
(microscopic) as well as at a cluster level (macroscopic). It
may also be applicable to much larger communities
regardless of whether they are structured (e.g., MOOCs) or
less structured (e.g., Q&A). A potential implication of our
work is the opportunity for targeted intervention and
support for a specific subpopulation, which may lead to an
improved experience for the community members.

We aim to extend our study in two ways. First, we will
apply our approach to other types of online communities
for learning (e.g., Q&A forums) and compare the results
with the one presented in this paper. Second, we plan to
design a recommender system based on a detailed analysis
of blocks and project themes in each cluster, in addition to
our approach in this paper. This system will promote
learning of users by suggesting programming blocks and
projects so that the learning trajectory of users can be
aligned with the trajectory pattern of more advanced users
within his/her own cluster, as well as from the most
advanced cluster.

ACKNOWLEDGMENTS
We appreciate the Lifelong Kindergarten group at MIT for
publicly sharing the Scratch datasets. This work is partly
based upon research supported by U.S. National Science
Foundation (NSF) Award#DUE-1444277 & EEC-1408674.
Any opinions, recommendations, findings, or conclusions
expressed in this material are those of the author(s) and do
not necessarily reflect the views of NSF.

REFERENCES
1. Arthur, D. and Vassilvitskii, S. 2007. K-means++: the

advantages of careful seeding. In Proc. SODA '07.
1027-1035.

2. Bell, P., Lewenstein, B., Shouse, A. W. and Feder, M.
A. (Eds.). 2009. Learning Science in Informal
Environments: People, Places, and Pursuits.
Washington, D.C.: The National Academies Press.
ISBN 978-0-309-11955-9.

3. Bransford, J. D. 2007. Preparing People for Rapidly
Changing Environments. Journal of Engineering
Education, 2007, 96(1), 1–3.

4. Brooks, M., Basu, S., Jacobs, C., and Vanderwende, L.
2014. Divide and correct: using clusters to grade short
answers at scale. In Proc. L@S 2014. 89-98.

5. Carliner, S. 2012. How to evaluate informal learning.
Newsletters published by the Association for Talent
Development. Article retrieved from
http://bit.ly/1tBwXUk.

6. Committee on the Engineer of 2020. (2005). Educating
the engineers of 2020: adapting engineering education
to the new century. Washington, D.C.: The National
Academies Press. ISBN 0-309-09649-9.

7. Darling-Hammond, L. 2010. The Flat World and
Education: How America’s Commitment to Equity Will
Determine Our Future. New York, NY: Teachers
College Press. ISBN 978-0-8077-4963-0.

8. Dutta, D. 2010. Lifelong Learning Imperative in
Engineering Workshop. Summary of workshop
conducted in June 17-18, 2009. Arlington, VA U.S.A.

9. Eraut, M. 2004. Informal learning in the workplace.
Studies in Continuing Education, 26(2), 247-273.

10. Khalid, S. and Naftel, A. 2005. Classifying
spatiotemporal object trajectories using unsupervised
learning of basis function coefficients. In Proc. VSSN
2005. 45-52.

11. Kizilcec, R. F., Piech, C. and Schneider, E. 2013.
Deconstructing disengagement: analyzing learner
subpopulations in massive open online courses. In Proc.
LAK 2013, Suthers, D., Verbert, K., Duval, E., and
Ochoa, X. (Eds.). 170-179.

12. Kulkarni, C., Wei, K. P., Le, H., Chia, D.,
Papadopoulos, K., Cheng, J., Koller, D., and Klemmer,
S. R. 2013. Peer and self-assessment in massive online
classes. ACM Transactions of Computer-Human
Interaction. 20 (6), Article 33, 31 pages.

13. Maloney, J., Peppler, K., Kafai, Y.B., Resnick, M.,
Rusk, N. 2008. Programming by Choice: Urban Youth
Learning Programming with Scratch. In Proc. SIGCSE
2008, 367-371. New York, NY: ACM Press.

14. Michalchik, V. and Gallagher, L. 2010. Naturalizing
Assessment. Curator: The Museum Journal, 53: 209–
219.

15. Monroy-Hernández, A. 2007. ScratchR: sharing user-
generated programmable media. In Proc. IDC 2007.
167-168.

16. Monroy-Hernández, A. 2009. Designing a website for
creative learning. In Proc. WebSci 2009: Society On-
Line.

17. MOOCs Directory. Retrieved from
http://www.moocs.co/.

18. Morris, B. and Trivedi, M. 2009. Learning trajectory
patterns by clustering: Experimental studies and
comparative evaluation. In Proc. CVPR 2009. Miami,
FL, USA, 312-319.

19. Rennie, L. J. 2007. Chapter 7: Learning Science Outside
of School. In Handbook of Research on Science
Education, S. K. Abell and N. G. Lederman. (Eds.).
125-167. Mawah, NJ: Lawrence Erlbaum Associates.

20. Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y.
2009. Scratch: Programming for All. Commun.
ACM 52, 11 (November 2009), 60-67.

21. R Script for K-means Clustering Analysis. Retrieved
from http://www.mattpeeples.net/kmeans.html.

22. Salton, G., & Buckley, C. 1988. Term-weighting
approaches in automatic text retrieval. Information
Processing and Management, 24(5), 513–523.

23. Scratch™ Online. Retrieved from http://scratch.mit.edu.
24. Scratch™ Online Statistics. Retrieved from

http://scratch.mit.edu/statistics/.
25. Scratch Research Data Sharing Agreement. Retrieved

from http://llk.media.mit.edu/scratch-data/.
26. Singh, S. and Chauhan, N. C. 2011. K-means v/s K-

medoids: A Comparative Study. National Conference
on Recent Trends in Engineering & Technology.

27. Sparck-Jones, K. 1972. A statistical interpretation of
term specificity and its application in retrieval. Journal
of Documentation. 28(1), 11-21.

28. StackExchange. Retrieved from
http://stackexchange.com/.

29. Sylvan, E. A. 2010. Predicting social influence and
project influence in Online Communities of Creators.
In Proc. ICLS 2010, Kimberly Gomez, Leilah Lyons,
and Joshua Radinsky (Eds.), International Society of the
Learning Sciences, 455-457.

30. Wilkowski, J., Russell, D. M., and Deutsch, A. 2014.
Self-evaluation in advanced power searching and
mapping with Google MOOCs. In Proc. L@S 2014.
109-116.

31. W3Schools. Retrieved from
http://www.w3schools.com/

