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Abstract Ensemble clustering has attracted increasing attention in recent years. Its goal is
to combine multiple base clusterings into a single consensus clustering of increased quality.
Most of the existing ensemble clustering methods treat each base clustering and each object as
equally important, while some approaches make use of weights associated with clusters, or to
clusterings, when assembling the different base clusterings. Boosting algorithms developed
for classification have led to the idea of considering weighted objects during the clustering
process. However, not much effort has been put toward incorporating weighted objects into
the consensus process. To fill this gap, in this paper, we propose a framework called Weighted-
Object Ensemble Clustering (WOEC). We first estimate how difficult it is to cluster an object
by constructing the co-association matrix that summarizes the base clustering results, and we
then embed the corresponding information as weights associated with objects. We propose
three different consensus techniques to leverage the weighted objects. All three reduce the
ensemble clustering problem to a graph partitioning one. We experimentally demonstrate the
gain in performance that our WOEC methodology achieves with respect to state-of-the-art
ensemble clustering methods, as well as its stability and robustness.
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1 Introduction

Clustering is a key step for many exploratory tasks in data mining. Clustering seeks to
partition data into groups, or clusters, according to a certain similarity measure. The overall
goal is to place data points that are similar to one another in the same cluster, and points
that are dissimilar in different clusters. It is well known that off-the-shelf clustering methods
may discover different patterns when applied to the same set of data. This is because each
algorithm has its own bias due to the optimization of different criteria. An additional challenge
with clustering is the absence of ground truth to validate the results.

In recent years, clustering ensembles have emerged as a technique to overcome some of
the challenges related to clustering [10,25]. A clustering ensemble technique is characterized
by two components: a mechanism to generate diverse partitions, and a consensus function
to combine the partitions into a final clustering. A clustering ensemble consists of different
clusterings, obtained from multiple applications of any single algorithm with different ini-
tializations, or on various bootstrap samples of the available data, or from the application of
different algorithms to the same data set. Clustering ensembles offer a solution to challenges
inherent to clustering arising from its ill-posed nature: They can provide more robust and
stable solutions by making use of the consensus across multiple clustering results, while
averaging out emergent spurious structures that arise due to the various biases to which each
participating algorithm is tuned, or to the variance induced by different data samples.

Some work has been done to investigate how to combine clustering ensembles with sub-
space clusterings, in an effort to address both the ill-posed nature of clustering and the
curse-of-dimensionality that affects data in high dimensional spaces [1,4]. A subspace clus-
tering can be seen as a collection of weighted clusters, where each cluster has a weight vector
representing the relevance of features for that cluster. In a subspace clustering ensemble,
the consensus function makes use of both the clusters and the weight vectors provided by
the base subspace clusterings. Work has also been done to evaluate the relevance of each
base clustering (and assign weights accordingly), in an effort to improve the final consensus
clustering [18]. To the best of our knowledge, our work [22] was the first that investigated
how to use weights associated with objects within the clustering ensemble framework.

Researchers have studied the benefits of weighting objects in iterative clustering methods
combined with boosting techniques [11,26,30]. Empirical observations suggest that large
weights should be assigned to the objects that are hard to be clustered. As a result, centroid-
based clustering methods move the centers toward the regions where the objects whose cluster
membership is hard to be determined are located. In boosting, the weights bias the data distri-
bution, thus making the region around the difficult points denser. With this interpretation of
the weights, shifting the centers of the clusters corresponds to moving them toward the modes
of the distribution modified by the weights. Nock and Nielsen [21] formulated clustering as a
constrained minimization using Bregman divergence, and recommended that the hard objects
should be given large weights. They analyzed the benefits of using boosting techniques in
clustering and introduced several weighted versions of classical clustering algorithms.

Inspired by this work, we propose a framework called Weighted-Object Ensemble Clus-
tering (WOEC). We first estimate how difficult it is to cluster an object by constructing the
co-association matrix that summarizes the base clustering results, and we then embed the
corresponding information as weights associated with objects. Different from boosting [23],
the weights are not subject to iterative changes. We propose three different consensus tech-
niques to leverage the weighted objects. All three reduce the ensemble clustering problem to
a graph partitioning one.
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This article is a major extension of our previous work [22]. As new material, this paper
provides motivations for our WOEC methodology; a variety of simulated experiments to gain
a deeper understanding of the conditions under which each of the three proposed consensus
techniques leads in performance; new experiments with real data; and an extensive analysis
of the results.

Specifically, the main contributions of this paper are summarized as follows:

(i) We formulate a framework called Weighted-Object Ensemble Clustering (WOEC),
which consists of a one-shot scheme to assign weights to objects based on the co-
association matrix. We introduce three consensus techniques that leverage the weight
information associated with objects, and a weighted version of the classic k-means
clustering algorithm.

(ii) Extensive experiments on three synthetic data sets and fifteen real data sets are conducted
to demonstrate the effectiveness, robustness, and stability of the WOEC approach. A
comprehensive comparison between the proposed weighted-object k-means algorithm
and k-means is also given.

(iii) An investigation of the conditions under which each of the proposed WOEC algorithms
is expected to work well is provided via the analysis of the results on simulated data.

2 Related work

Ensemble techniques were first developed for supervised settings. Empirical results have
shown that they are capable of improving the generalization performance of the base clas-
sifiers [31]. This result has inspired researchers to further investigate the development of
ensemble techniques for unsupervised problems, namely clustering.

Fred and Jain [7,8] captured the information provided by the base clusterings in a co-
association matrix, where each entry is the frequency according to which two objects are
clustered together. The co-association matrix was used as a similarity matrix to compute the
final clustering.

Strehl and Ghosh [25] proposed three graph-based methods, namely Cluster-based Sim-
ilarity Partitioning Algorithm (CSPA), HyperGraph Partitioning Algorithm (HGPA), and
Meta-CLustering Algorithm (MCLA). CSPA constructs a co-association matrix, which is
again viewed as a pairwise similarity matrix. A graph is then constructed, where each object
corresponds to a node, and each entry of the co-association matrix gives the weight of the
edge between two objects. The METIS [15] package is used to partition the objects into k
clusters. HGPA combines multiple clusterings by solving a hypergraph partitioning problem.
In the hypergraph, each hyperedge represents a cluster, and it connects all the objects that
belong to the corresponding cluster. The package HMETIS [14] is utilized to generate the
final clustering. MCLA considers each cluster as a node in a meta-graph, and sets the pairwise
similarity between two clusters as the ratio between the number of shared objects and the
number of total objects in the two clusters. In the meta-graph, each cluster is represented by
a hyperedge. MCLA groups and collapses related hyperedges, and it assigns an object to the
collapsed hyperedge to which it participates most strongly. MCLA also uses METIS [15] to
partition the meta-graph.

Fern and Brodley [6] introduced Hybrid Bipartite Graph Formulation (HBGF) to integrate
base clusterings. HBGF constructs a bipartite graph that models both objects and clusters
simultaneously as vertices. In the bipartite graph, an object is connected to several clusters,
whereas there is no edge between pairwise objects or pairwise clusters. HBGF applies two
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graph partitioning algorithms: spectral graph partitioning [20,24] and METIS to get the final
partitions. To handle missing values, Wang et al. [28] proposed Bayesian Cluster Ensem-
bles (BCE), which considers all base clustering results as feature vectors, and then learns a
Bayesian mixed-membership model from this feature representation.

Domeniconi and Al-Razgan [1,4] combined the clustering ensemble framework with
subspace clustering. A subspace clustering is a collection of weighted clusters, where each
cluster has a weight vector representing the relevance of features for that cluster. The input
to the consensus function is a collection of subspace clusterings. The subspace clustering
method used is Locally Adaptive Clustering (LAC) [5], and the resulting clustering techniques
are Weighted Similarity Partitioning Algorithm (WSPA) and Weighted Bipartite Partitioning
Algorithm (WBPA). Li and Ding [17] specified different weights for different clusterings and
proposed an approach called Weighted Consensus Clustering (WCC). The optimal weights
are sought iteratively through optimization and then used to compute the consensus result
within the framework of nonnegative matrix factorization (NMF) [18].

More recently, a method called Ensemble Clustering by Matrix Completion (ECMC) was
proposed [29]. ECMC uses the reliable pair of objects to construct a partially observed co-
association matrix, and exploits the matrix completion algorithm to replenish the missing
entries of the co-association matrix. Two objects are reliable if they are often clustered
together or seldom clustered together. ECMC then uses spectral clustering on the completed
matrix to get the final clustering. However, ECMC has two disadvantages: (i) the notion
of reliability between objects is hard to define, and (ii) the matrix completion process may
result in information loss. To reduce the time and space complexity of the existing ensemble
clustering methods, Liu et al. [19] proposed a spectral ensemble clustering approach, where
spectral clustering is applied on the obtained co-association matrix to compute the final
clustering result. For ensemble clustering of high dimensional data, the work in [13] first
partitions the features into groups, and then randomly selects several features from each
group to generate the component data sets.

All the methods mentioned above do not assign weights to objects. In contrast, our pro-
posed WOEC algorithms use the information provided by the base clusterings to define
objects’ weights which reflect how difficult it is to cluster them. The weights are then
embedded within the consensus function. Specifically, we propose three different WOEC
approaches: (i) Weighted-Object Meta Clustering (WOMC), (ii) Weighted-Object Similarity
Partition (WOSP) Clustering, and (iii) Weighted-Object Hybrid Bipartite (WOHB) Graph
Partition Clustering.

3 Weighted object ensemble clustering

This section introduces in detail our weighted-object ensemble clustering methodology.

3.1 Ensemble clustering problem formulation

An ensemble clustering process contains two steps. First, multiple base clusterings are gener-
ated; second, the base clusterings are consolidated into the final clustering result. We assume
here that the base clusterings have already been generated, and we only discuss hard clus-
tering. However, the methods proposed can be extended to solve soft clustering problems as
well.

Let X = {x1, x2, . . . , xn} denote the data set , where n is the number of objects and each
object xi = (xi1, xi2, . . . , xid)T ∈ "d .
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Lets consider a set of R clustering solutions C = {C1, C2, . . . , C R}, where each clustering
component Cr = {Cr

1, Cr
2, . . . , Cr

kr
}, r = 1, 2, . . . , R, partitions the data set X into kr

disjoint clusters, i.e., Cr
i ∩ Cr

j = ∅ (∀i &= j , i, j = 1, 2, . . . , kr ), and ∪kr
k=1Cr

k = X . The
ensemble clustering problem consists in defining a consensus function ! that maps the set
of base clusterings C into a single consolidated clustering C∗.

3.2 One-shot weight assignment

Boosting [23,31] is a supervised technique which seeks to create a strong learner based
on a set of weak learners. Adaboost [9] is the most commonly used boosting algorithm. It
iteratively generates a distribution over the data, which is then used to train the next weak
classifier. In each run, objects that are hard to be classified gain more weight, while easy-to-
classify objects lose weight. The newly trained classifier focuses on the points with larger
weights. At termination, Adaboost combines the weak classifiers into a strong one.

The effectiveness of boosting has been proven both theoretically and experimentally.
Boosting algorithms iteratively assign weights to objects using label information, which is
likely to be unknown in clustering applications. This makes difficult to apply boosting tech-
niques to clustering, and explains why little research has been performed in the context of
weighted-object ensemble clustering methods. This paper aims at reducing this gap. Our goal
is to enable difficult-to-cluster points to play a bigger role when producing the final consol-
idated clustering result. Following this objective, we propose a one-shot weight assignment
to objects using the results of all base clusterings, and then embed the weights into the
successive consensus clustering process. Similar to boosting, points that are hard-to-cluster
receive larger weights, while easy-to-cluster points are given smaller weights. The difference
is that boosting is an iterative process, while our weight assignment scheme is performed in
one-shot. The details are given below.

Let A be the n × n co-association matrix built from the clustering solutions C :

Ai j = Vi j

R
(1)

where Vi j is the number of times objects xi and x j co-occur in the same cluster, and R = |C | is
the ensemble size. Obviously, Ai j ∈ [0, 1]. We set Aii = 1, ∀i = 1, 2, . . . , n. Ai j ≈ 1 means
that xi and x j are often placed in the same cluster. Ai j ≈ 0 means that xi and x j are often
placed in different clusters. In both cases, the base clusterings show a high level of agreement.
When Ai j ≈ 0.5, roughly half of the clusterings group xi and x j together, and the other half
place them in different clusters. This scenario is the most uncertain one, since the clustering
components show no agreement on how to cluster points xi and x j . We can capture this trend
by mapping the Ai j values through a quadratic function: y(x) = x(1 − x), x ∈ [0, 1]. This
function achieves the peak at x = 0.5, and the minima at x = 0 and x = 1, as illustrated in
Fig. 1.1 Hence, we can measure the level of uncertainty in clustering two points xi and x j as
follows:

confusion(xi , x j ) = Ai j (1 − Ai j ) (2)

The confusion index reaches its maximum of 0.25 when Ai j = 0.5, and its minimum of 0
when Ai j = 0 or Ai j = 1. We use this confusion measure to define the weight associated
with each object as follows:

1 Other functions satisfying these properties can be used as well.
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Fig. 1 Quadratic function: y(x) = x(1 − x)

w′
i = 4

n

n∑

j=1

confusion(xi , x j ) (3)

The normalization factor 4
n is used to guarantee that w′

i ∈ [0, 1]. To avoid a value of 0 for a
weight, which can lead to instability, we add a smoothing term:

wi = w′
i + e

1 + e
(4)

where e is a small positive number (e = 0.01 in our experiments). As a result, wi ∈ (0, 1].
A large wi value means that confusion(xi , x j ) is large for different x j values. As such it
measures how hard it is to cluster xi . The assignment of large weights to points that are
hard-to-cluster is consistent with the way boosting techniques operate [23,31].

3.3 Algorithms

In this subsection, we introduce three different Weighted-Object Ensemble Clustering
(WOEC) algorithms. They all make use of the weights associated with objects (computed
as explained above) to determine the consensus clustering. The overall process is shown in
Fig. 2. As illustrated in the figure, the consensus functions of WOSP and WOHB make use
of the feature vectors, while WOMC does not.

3.3.1 Weighted-object meta-clustering algorithm (WOMC)

The first approach we introduce is a weighted version of the Meta-Clustering Algorithm
(MCLA) introduced in [25]. We call the resulting algorithm Weighted-Object Meta Clustering
(WOMC). The key step of meta-clustering algorithms is the clustering of clusters. When
measuring the similarity between two clusters, MCLA treats the points present in both clusters
equally. In contrast, the proposed WOMC technique distinguishes the contribution of hard-
to-cluster and easy-to-cluster points. Specifically, a point in the intersection of two clusters
contributes to the clusters’ similarity in a way that is proportional to its weight. The details
of the approach follow.
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Fig. 2 The process map of
Weighted-Object Ensemble
Clustering (WOEC)

We explicit the components of each Cr in C . This gives: C = {C1
1 , . . . , C1

k1
, C2

1 , . . . , C2
k2

,

. . . , C R
1 , . . . , C R

kR
}, where each component now corresponds to a cluster. The WOMC algo-

rithm groups the clusters in C . To this end, it proceeds as follows. It constructs an undirected
meta-graph G = (V, E) with |V | = nc = ∑R

r=1 kr vertices, each representing a cluster in
C . The edge Ei j connecting vertices Vi and Vj is assigned the weight value Si j defined as
follows:

Si j =
∑

xk∈Ci ∩C j
wk

∑
xk∈Ci ∪C j

wk
(5)

where wk is the weight associated with the k-th object and is defined in Eqs. (1–4). The
definition of the similarity between two feature sets has been discussed in [27] and was
adapted for the semantic web by [3]. Here, the approach is different in that Eq. (5) incorporates
the weight of each object into the similarity between the two sets.

Clearly, Si j ∈ [0, 1]. If Si j = 0, there is no edge between Ci and C j in G. Si j = 1 indicates
that Ci and C j contain the same points. WOMC partitions the meta-graph G into k∗ (number
of clusters in the final clustering result) meta-clusters, each representing a group of clusters,
by using the similarity measure Si j and by applying the well-known graph partitioning
algorithm METIS [15]. Similarly to MCLA, WOMC also assigns each point to the meta-
cluster in which it participates most strongly. Specifically, a data point may occur in different
meta-clusters, and it is associated with a given meta-cluster according to the ratio of clusters
it belongs to. A point is eventually assigned to the meta-cluster with the highest ratio for that
point. Ties are broken randomly. An illustration of this process can be found in Sect. 3.4 of
[25]. There might be a situation in which no object is assigned to a meta-cluster. Thus, the
final combined clustering C∗ may contain less than k∗ clusters. Algorithm 1 describes the
WOMC algorithm. Here k∗ is predefined by the user and METIS [15] is a software package
for graph partitioning.
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Input:
C ; METIS; k∗

Output:
The final consensus clustering C∗

1: Assign weights to objects using the one-shot weight assignment
2: Construct the meta-graph G = (V, E), where the weights associated with the edges are computed using

Eq. (5)
3: MetaClusters = METIS(G, k∗) [Partitions the meta-graph into k∗ meta-clusters]
4: C∗ = Assign(MetaClusters) [Assigns each object to the meta-cluster in which it participates most

strongly]
5: return C∗

Algorithm 1: Weighted-Object Meta-Clustering Algorithm (WOMC)

Fig. 3 Illustration of similarity
measures between clusters in
WOMC and in MCLA

Ci Cj
Ci ∩ Cj

0.8 0.8
0.8

0.6
0.2

0.2

0.4

0.2

0.2

0.8

SMCLA
ij = 5

10 = 0.5

SWOMC
ij = 3×0.8+0.2+0.6

4×(0.8+0.2)+0.4+0.6 = 3.2
5 = 0.64

The similarity measure defined in Eq. (5) computes the similarity of two clusters, not
only based on the fraction of the shared points, but also on the values of the weights
associated with the points. In contrast, the binary Jaccard measure |Ci ∩C j |

|Ci ∪C j | computes the
similarity as the proportion between the size of the intersection and the size of the union of
Ci and C j .

An example is shown in Fig. 3. Clusters Ci and C j share 5 out of 10 data points. The
number associated with each point represents the corresponding object’s weight. Accord-
ing to the MCLA algorithm, the similarity between Ci and C j is 5

10 = 0.5. At the same
time, we observe that the intersection of Ci and C j contains some of the points with
larger weights, i.e., three points with weight 0.8 and one with point 0.6. This means that
Ci and C j agree on most of the hard-to-cluster objects. The larger similarity score computed
by the WOMC algorithm (i.e., 0.64) is able to capture, unlike MCLA, this aspect of the
data.

Lets see how a change of the weights assigned to the points affects the value of Si j . Suppose
Ci and C j have fixed points assigned to them. Thus, their Jaccard similarity is also fixed.
Lets consider D = (Ci ∪ C j ) \ (Ci ∩ C j ), i.e., the set of points not in the intersection. Let
the weights assigned to the points in D be fixed. Then, increasing (decreasing) the weights
assigned to the points in (Ci ∩C j ) will cause an increase (decrease) of Si j . As such, the more
hard-to-cluster points Ci and C j share, the more similar they are. Lets now fix the weights
assigned to the points is (Ci ∩C j ). Increasing (decreasing) the weights assigned to the points
in D will cause a decrease (increase) of Si j . As a consequence, the more hard-to-cluster
points Ci and C j do not share, the smaller their similarity is.
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3.3.2 Weighted-object similarity partitioning algorithm (WOSP)

Previous work on clustering [11,26,30] suggested to assign large weights to objects that are
hard to be clustered, and iteratively move cluster centers toward areas that contain objects
with large weights. Inspired by this work, we proceed in a similar way while leveraging the
information provided by the ensemble to estimate the weights. The motivation stems from
boosting. The difference is that clustering methods combined with a boosting technique assign
weights to objects and move cluster centers iteratively, while we only move centers once for
each base clustering by making use of the original data and objects’ weight information.
Clustering with a boosting technique aims to generate a better single clustering result while
we seek to find a better consolidated consensus solution. To this end, for each cluster in the
base clusterings Cr (r = 1, 2, . . . , R), we compute the corresponding weighted center as
follows:

mr
l =

∑
xi ∈Cr

l
wi xi

∑
xi ∈Cr

l
wi

(6)

where l = 1, . . . , kr . The basic idea behind this step is to move the center of each cluster
toward the region consisting of the objects that are hard-to-cluster. We call it shifting center
technique. The experiments presented in Sect. 5 demonstrate the rationale and the improve-
ment achieved by such transformation. The similarity between a point xi and a weighted
center mr

l is calculated using the following exponential function:

d(xi , mr
l ) = exp

{

−‖xi − mr
l ‖2

t

}

(7)

where t > 0 is a parameter. The probability of cluster Cr
l , given xi , can then be defined as:

P(Cr
l |xi ) = d(xi , mr

l )∑kr
l ′=1 d(xi , mr

l ′)
(8)

The smaller ‖xi − mr
l ‖2 is, the larger P(Cr

l |xi ) will be. We can now define the vector Pr
i of

posterior probabilities associated with xi :

Pr
i =

(
P

(
Cr

1 |xi
)
, P

(
Cr

2 |xi
)
, . . . , P

(
Cr

kr
|xi

))
(9)

where
∑kr

l=1 P
(
Cr

l |xi
)

= 1. Pr
i provides a new representation of xi in a space of relative

coordinates with respect to cluster centroids, where each dimension corresponds to one
cluster. This new representation embeds information from both the original input data and
the clustering ensemble.

Figure 4 shows an example. Cr = {Cr
1, Cr

2, Cr
3} represents one base clustering with three

clusters, Cr
1, Cr

2, and Cr
3. The red points mr

l (l = 1, . . . , kr ) correspond to the weighted
centers. In Cr

2, the gray point denotes the original center of this cluster. xi is a data point
and its representation in the space of coordinates relative to the three cluster centroids is
Pr

i = (P(Cr
1 |xi ), P(Cr

2 |xi ), P(Cr
3 |xi )).

We use the cosine similarity to measure the similarity Sr
i j between xi and x j with respect

to the base clustering Cr :

Sr
i j =

Pr
i (Pr

j )
T

‖Pr
i ‖‖Pr

j ‖
(10)
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Input:
X ; C ; METIS; k∗

Output:
The final consensus clustering C∗

1: Assign weights to objects using the one-shot weight assignment
2: Construct the corresponding graph G = (V, E), with weights computed through Eqs. (6)-(11)
3: C∗ = METIS(G, k∗) [Partitions the graph into k∗ parts, each representing a final cluster]
4: return C∗

Algorithm 2: Weighted-Object Similarity Partitioning Algorithm (WOSP)

Fig. 4 Illustration of the
similarity measure used by
WOSP

P (Cr
1 |xi) P (Cr

2 |xi)

P (Cr
3 |xi)

mr
1 mr

2

mr
3

xi

Cr
1 Cr

2

Cr
3

Cr = {Cr
1 , Cr

2 , Cr
3}

P r
i = (P (Cr

1 |xi), P (Cr
2 |xi), P (Cr

3 |xi))

where T denotes the transpose of a vector. Each base clustering produces one similarity
matrix. Thus, given R base clusterings, we obtain R similarity matrices Sr (r = 1, . . . , R).
We combine these matrices into one final similarity matrix S:

S = 1
R

R∑

r=1

Sr (11)

S represents the average similarity between xi and x j (through vectors Pi and Pj ), across
the R contributing clusterings. Hence we can construct an undirected graph G = (V, E),
where |V | = n and each vertex represents an object in X . The edge Ei j connecting vertices
Vi and Vj is assigned the weight value Si j . A graph partitioning algorithm (METIS in our
experiments) can be applied to graph G to compute the partitioning of the n vertices that
minimizes the edge weight-cut. This gives the consensus clustering we seek. The WOSP
algorithm is illustrated in Algorithm 2.

3.3.3 Weighted-object hybrid bipartite graph partitioning algorithm (WOHB)

WOSP measures pairwise similarities which are solely instance-based, thus ignoring cluster
similarities. We now introduce our third technique, WOHB, which attempts to capture both
kinds of similarities. This approach reduces the clustering consensus problem to a bipar-
tite graph partitioning problem, which partitions both cluster vertices and instance vertices
simultaneously. Thus, it also accounts for similarities between clusters. As WOSP, WOHB
makes use of the shifting center technique and computes probabilities as in Eq. (8).

WOHB constructs an undirected hybrid bipartite graph G = (V, E), where V contains
nc + n vertices (nc = ∑R

r=1 kr ). The first nc vertices represent all the clusters in C and the
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Input:
X ; C ; METIS; k∗

Output:
The final consensus clustering C∗.

1: Assign weights to objects using the one-shot weight assignment
2: Construct the hybrid bipartite graph G = (V, E)
3: Chybrid = METIS(G, k∗) [Partitions the graph into k∗ parts]
4: return C∗ = the partition of objects in Chybrid

Algorithm 3: Weighted-Object Hybrid Bipartite Graph Partitioning Algorithm (WOHB)

last n vertices represent objects. The edge Ei j connecting the vertices Vi and Vj is assigned
the weight value Si j defined as follows:

Si j =






S ji = 0 if vertices i and j are
both clusters or objects

S ji = P
(
C j |xi

)
otherwise

(12)

where P(C j |xi ) is the probability of cluster C j given xi , and can be computed from Eq. (8).
The matrix S of elements Si j can be written as

S =
[

0 BT

B 0

]

where the n × nc matrix B is defined as

B =





P1
1 P2

1 · · · P R
1

P1
2 P2

2 · · · P R
1

· · · · · · · · · · · ·
P1

n P2
n · · · P R

n





where Pr
i is a row vector defined in Eq. (9).

A graph partitioning algorithm (METIS in our experiments) is then used to partition this
graph into k∗ hybrid parts (each containing objects and clusters), so that the edge weight-cut
is minimized. The partition of the objects provides the final clustering result. The WOHB
algorithm is given in Algorithm 3.

3.4 Weighted-object k-means

To verify the effect of moving the center of each cluster according to Eq. (6), we introduce
here a modified version of k-means that makes use of such weighted means. The resulting
technique is called Weighted-Object k-means (WOKmeans), and it’s illustrated in Algo-
rithm 4. WOKmeans computes the weighted centers after assigning objects to clusters in
each iteration, as shown in Eq. (13). The main idea is to move cluster centers toward regions
with larger weights iteratively. Compared to the weighted version of k-means in [21], WOK-
means computes all objects’ weights in advance using the co-association matrix provided by
the base clusterings, while [21] assigns weights to objects iteratively.

3.5 Computational complexity

The computational and storage complexities of the one-shot weight assignment technique
are O(n2) (where n is the total number of data points). In fact, the technique needs to
construct the n × n co-association matrix and measure the level of uncertainty between each
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Input:
X ; C ; k∗

Output:
The final clustering C∗

1: Assign weights to objects using the one-shot weight assignment
2: Randomly generate k∗ cluster centers c1, . . . , ck∗ , each corresponding to a cluster Ck = ∅ (k =

1, . . . , k∗)
3: repeat
4: [assigning each object to its closest weighted center] ∀i , Ck = Ck ∪xi , where k = arg mink ‖xi − ck‖

5: [generating new weighted centers]

ck =
∑

xi ∈Ck
wi xi∑

xi ∈Ck
wi

, k = 1, . . . , k∗ (13)

6: until All weighted centers do not change or the maximum number of iterations is reached
7: return C∗ = {C1, C2, . . . , Ck∗ }

Algorithm 4: Weighted-Object k-means (WOKmeans)

pair of objects. The objects’ weights are computed only once and can then be used in the
three proposed consensus clustering algorithms and in the weighted version of k-means.
The computational and storage complexities of CSPA are both quadratic in n, and those
of MCLA are near-linear in n [25]. Similarly to CSPA, WOSP also needs to construct a
n × n similarity matrix among the objects. Thus its complexity is O(n2). Once the objects’
weights are obtained, the computing complexity of WOMC is equal to MCLA, since the only
difference between the two is the way the meta-graph is constructed. WOHB constructs a
(nc + n)× (nc + n) (nc = ∑R

r=1 kr ) hybrid bipartite graph and then partitions it into several
hybrid parts. Typically nc << n, thus the computing complexity of WOHB is also O(n2). In
summary, the computational complexities of the three proposed ensemble clustering methods
are O(n2). Given the weight for each object, the complexity of WOKmeans is linear in n.

4 Experimental setup

4.1 Data sets

To compare the performance of our WOEC approach against the state-of-the-art techniques,
we conducted experiments on various kinds of data, including three toy examples and fifteen
real data sets. Table 1 gives the characteristics of all the data sets used in our experiments.

The toy examples are shown in Fig. 5 (after standardization). Toy example 1 (Toy1)
consists of three classes with 150 data points each. The three classes were all generated
according to multivariate Gaussian distributions and all share the same covariance matrix
[10 0; 0 10]. The mean vectors are (−10, 10), (10, 10) and (0, 0). Toy example 2 (Toy2)
contains three circle-shaped classes. Each class contains 300 points uniformly distributed
within the respective circle. The centers of the two upper circles are (−4, 6) and (4, 6); both
circles have a radius of 3. The center and radius of the third circle are (0, 0) and 4, respectively.
Toy example 3 (Toy3) consists of five classes with 300 points each. All five classes were
generated according to multivariate Gaussian distributions and all share the same covariance
matrix [5 0; 0 5]. The mean vectors are (−5.29, 0), (−8.559, 10.062), (0, 16.281), (8.559,
10.062), and (5.29, 0).
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Table 1 Data sets used in the experiments

Data sets #Objects #Features #Classes

Toy examples Toy1 450 2 3

Toy2 900 2 3

Toy3 1500 2 5

Real data AustralianCredit 690 14 2

BalanceScale 625 4 3

Beef 60 470 5

BreastTissue 106 9 6

Glass 214 9 6

HayesRoth 132 4 3

Iris 150 4 3

Leukemia 72 3571 2

Satimage 420 36 6

Semeion 1593 256 10

Sony 980 65 2

Spambase 500 57 2

Vowel 990 10 11

Wall 4302 2 2

Yeast 1136 8 3

Beef and Sony (SonyAIBORobotSurfaceII) are data sets taken from the UCR time series
repository.2 Leukemia is a gene expression data set.3 The other data sets are from the UCI
repository.4 In particular, Satimage originally contained 6435 objects; we randomly selected
420 images equally distributed among the six classes for our experiments. Spambase had
4601 objects; we randomly sampled 500 objects (250 for each class). The two largest classes
of Wall (Wall-Following Robot Navigation Data) and the three largest classes of Yeast were
used in the experiments. The other eight UCI data sets were used in their original form. For
each toy example and each real data set, features are standardized to have zero mean and unit
variance.

4.2 Evaluation measures

Various metrics exist to evaluate clustering results [2,16]. Since the labels of the data are
known, we use Rand Index (RI) [12], Adjusted Rand Index (ARI) [12], and Normalized
Mutual Information (NMI) [25] as validity indices. Both RI and NMI ranges between 0 and
1, while ARI values belong to the interval [−1, 1]. A larger value of RI (ARI or NMI) is
indicative of a better clustering result.

2 http://www.cs.ucr.edu/~eamonn/time_series_data/.
3 http://stat.ethz.ch/~dettling/bagboost.html.
4 http://archive.ics.uci.edu/ml/index.html.
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Fig. 5 Toy examples

4.3 Base clusterings

To generate diverse base clusterings, we used k-means combined with random sampling
of data and features. Specifically, for the first half of the base clusterings, in each run we
randomly selected 70 % of the objects and performed k-means on this subset of the data.
Each remaining object was assigned to the cluster with the closest center (based on Euclidean
distance). For the second half of the base clusterings, in each run, we selected 70 % of the
features and conducted k-means in the corresponding subspace. Each run of k-means was
initialized with randomly selected centers.

5 Results and analysis

For a fair comparison, we used the METIS package [15] for all the clustering ensemble
methods that need to partition a graph. The number of clusters k∗ in the consensus clustering
is set equal to the number of classes, for all data sets and all methods.5 In our experiments,
the value of t [see Eq. (7)], for each base clustering, is set to the average of the squared

5 In real applications, classes may be multimodal, and thus k∗ should be larger than the number of classes. In
other cases, there may be less clusters than classes. These scenarios are not considered in this paper, and we
simply set k∗ equal to the number of classes.
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Euclidean distances between the data and the weighted means. All the experimental results
are the average of 100 independent runs. We also performed a paired t-test to assess the sta-
tistical significance of the results; the significance level was always set to 0.05. We compared
the proposed WOEC methods against eight state-of-the-art ensemble clustering algorithms,
namely: CSPA [25], MCLA [25], HBGF [6], BCE [28], WCC [17], ECMC [29], WSPA[1,4]
and WBPA[1,4]. (HGPA [25] was not included in our experiments since it typically performs
worse than CSPA and MCLA.)

5.1 Results on toy examples

To illustrate the effectiveness of the proposed three WOEC algorithms and of WOKmeans, we
first conducted experiments on the three toy examples. We set the ensemble size R = 40. RI,
ARI, and NMI are used to evaluate the performance of all algorithms. For each independent
run, we record the minimum (min), maximum (max), and mean value (of RI, ARI and NMI)
for all the base clusterings. The corresponding averages of 100 runs are also reported. The
results are shown in Table 2. Best performances that are statistically significant are highlighted
in boldface.

WOSP and WOHB outperform the other ensemble methods and exceed the max index on
Toy1 and Toy2. On Toy3, WOMC (along with some of the competitive techniques) gives the
best performance. In the following, we analyze this resulting behavior.

To investigate the effectiveness of the shifting center technique used by the WOSP and
WOHB methods, we recorded the status of one of the base clusterings in one of the indepen-
dent runs. Figure 6 shows our findings for each of the Toy examples. In each subfigure, the
hollow circles denote the centers and the solid circles are the weighted centers [see Eq. (6)]
of clusters. Points that receive the largest weights are highlighted with squares. As expected,
between cluster points tend to gain large weights and thus have larger contributions to the
shifting centers’ procedure. As Fig. 6a shows, the shifting center technique forces all the
centers to move toward between cluster areas. As such, the influence of the pseudo-outliers6

is reduced, thereby leading to more robust ensemble clustering results. In Fig. 6b, the center
of the lower cluster moves by a big step toward the region with hard-to-cluster points. We
observe that the three clusters contain the same number of points, but the lower cluster has
a bigger radius and is therefore sparser. The shift of its center reduces the negative influence
that clusters with different densities can cause.

For Toy3 (see Fig. 6c), each of the five clusters has a boundary in common with other
two clusters. In this scenario, the size of the centers’ shifting is small and the benefit of this
procedure is therefore limited. Although WOSP and WOHB are still effective as an ensemble
strategy, WOMC, along with MCLA, BCE, and WCC, give the best performance on Toy3
(see Table 2).

We also compared the performance of k-means and WOKmeans on the synthetic data sets.
Results in Table 3 show that WOKmeans significantly outperforms k-means on Toy2 and
Toy3. On Toy1, WOKmeans works significantly better w.r.t. NMI, and the average values
of RI and ARI of WOKmeans are still larger than those of k-means. k-means is negatively
affected by the pseudo-outliers. Although WOKmeans improves upon k-means, its perfor-

6 As shown in Fig. 5a, the circled points are far away from the mean points of the classes and their density
is considerably lower than that of the other points. These points can bias the computation of the mean vector.
They are generated from the same distribution as the other points in the same class, and should be grouped
in the same cluster, but behave like outliers for the purpose of this discussion. For this reason, we call them
“pseudo-outliers”.
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Fig. 6 Illustration of the shifting center technique used by WOSP and WOHB

Table 3 k-means versus
WOKmeans on toy examples

Data Index k-means WOKmeans

Toy1 RI 0.9598±0.0255 0.9628±0.0029

ARI 0.9100±0.0515 0.9161±0.0065

NMI 0.8711±0.0357 0.8807±0.0074

Toy2 RI 0.9753±0.0000 0.9780±0.0102

ARI 0.9444±0.0000 0.9504±0.0220

NMI 0.9219±0.0000 0.9313±0.0269

Toy3 RI 0.9633±0.1207 0.9734±0.0297

ARI 0.8903±0.0727 0.9191±0.0852

NMI 0.8945±0.0721 0.9109±0.0515

mance is generally worse than that of the WOEC methods, demonstrating the effectiveness
of ensemble techniques.

In Fig. 7, we visualize the final clustering results of k-means and WOKmeans, and the
final consensus clusterings of the three WOEC methods (in a given run) for Toy2. This data
set presents a challenge due to the larger radius and sparsity of the lower cluster. It’s easy to
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Fig. 7 Toy2: Final (or final consensus) clustering results of a k-means; b WOKmeans; c WOMC; d WOSP;
and e WOHB

see that WOKmeans incorrectly clusters fewer points (located in between-cluster areas) than
k-means. Furthermore, comparing the clusterings provided by the three WOEC methods,
one can see that WOMC assigns some of the boundary points to the incorrect cluster, while
WOSP and WOHB benefit from the effect of the shifting center technique and almost achieve
a perfect clustering.

From Tables 2 and 3, we can see that in general a better RI value corresponds to a better
ARI and NMI values. Therefore, we only report ARI values for the experiments on real data.
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Fig. 8 a Wall data; b clustering result of WOMC; c illustration of the shifting center technique; and d
clustering result of WOSP

5.2 Results on real data

Extensive experiments were conducted on fifteen real data sets to evaluate the effectiveness
of the proposed WOEC methods. In the experiments, we chose three different ensemble
sizes R: 20, 40, and 60. The results in terms of ARI are shown in Table 4. Each ARI value
reported is the average of 100 independent runs. In each row, statistically significant values
are highlighted in boldface. We also run k-means 100 times for baseline comparisons; its
average ARI is given in Table 4 in parenthesis, following the name of each data set. For
each independent run, we record the minimum, maximum, and mean ARI for all the base
clusterings. The corresponding averages are also reported in the Table. We can see that
the mean ARI of the base clusterings is very close to the baseline for each data set. Small
fluctuations in performance are generally observed for the WOEC methods for different
values of R. In some cases, a steady improvement is observed with an increase in ensemble
size.

For each data set, at least one of the WOEC methods achieves the best performance, with
the only exception of the Breast data for which CSPA outperforms the other methods. As
expected, the ensemble clustering techniques achieve superior performance with respect to
the baseline for most of the problems. On Iris, Leukemia, Sony, Spambase, and Wall, both
WOSP and WOHB provide a considerable improvement compared to all the other ensemble
clustering methods, indicating that the shifting center technique works well on real data sets
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as well. In particular, the performance of WOSP and WOHB is superior to the max index
on Sony and Wall. Compared to all the competitive methods, WOSP and WOHB achieve an
outstanding improvement on Wall. To investigate this behavior, in Fig. 8a, b we plotted the
ground truth labels of the Wall data and the clustering result of WOMC, respectively. The
WOMC technique, along with all the other comparing methods, performs poorly on this data
set. Figure 8c shows the status of one base clustering in one independent run. Here, we focus
on the x and y values in the range [−2, 4]. Points that obtain the largest weight values are also
highlighted with squares. We can see that the shifting center technique causes the right center
(hollow red circle) to move by a big step toward the hard-to-cluster area. As a consequence,
the final boundary generated by WOSP also shifts to the left, closer to the ground truth
boundary, as shown in Fig. 8d, thereby giving the observed improved performance. A similar
behavior was observed for WOHB as well.

As pointed out earlier, our WOMC technique is a variation of MCLA. Compared to MCLA,
WOMC achieves a superior performance on Balance, Beef, Breast, Iris, Satimage, Semeion,
and Vowel. On the remaining data sets, MCLA and WOMC have a comparable performance.
This shows the benefits of considering objects’ weights when measuring the similarity of two
clusters in a meta-clustering algorithm. With respect to the most recent ECMC technique, the
WOEC methods can achieve better results in general. The main reason is that ECMC assigns
a value of one to the entries of the co-association matrix that are larger than a threshold d1,
and a value of zero to the entries that are smaller than a threshold value d0. This leads to
information loss regarding the hard-to-cluster objects. In addition, the setting of thresholds
like d0 and d1 is always problematic. In our experiments, we set d0 = 0.2 and d1 = 0.8 as
suggested in [29]. Furthermore, ECMC also needs to find a suitable value for a parameter C
that minimizes 1T M1, where M is a pairwise similarity matrix (details are in [29]), which is
time consuming. In contrast, WOMC does not need to perform any parameter selection, while
WOSP and WOHB are robust to the setting of the parameter t , as the analysis in Sect. 5.5
shows.

5.3 Comparison against WSPA and WBPA

WSPA and WBPA are two weighted ensemble clustering methods which make use of
weights associated with clusters. To perform comparisons against them, we generated the
base clusterings using the LAC algorithm, as described in [1,4]. LAC assigns weights to
features, locally at each cluster. Both WSPA and WBPA require such weights, while our
WOEC techniques have a wider applicability. The weight vectors computed by the LAC
algorithm are discarded when combined with the WOEC approaches. Results are shown in
Table 5. As before, statistically significant results are given in boldface. At least one of the
WOEC methods gives the best performance in each data set, except for Beef; WSPA is the
winner in this case. Again, WOSP and WOHB offer an outstanding improvement on the Wall
data set.

5.4 Evaluation of WOKmeans

In Sect. 5.1, we have discussed the superiority of WOKmeans with respect to k-means on the
simulated data. To further investigate the behavior of WOKmeans, in this section we perform
more comparisons using the real data sets. In each run, the maximum number of iterations
for both methods is set to 100. The number of clusters is set to the number of classes given
by the ground truth labels. The ensemble size is always 40. Note that only WOKmeans is
affected by the ensemble size. Figure 9 gives the results. We observe that the average ARI
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Table 5 Comparison against WSPA and WBPA (ARI)

Data R WSPA WBPA WOEC

WOMC WOSP WOHB

Australian 20 0.4196 0.4172 0.4662 0.4015 0.4036

40 0.4238 0.4203 0.4666 0.4220 0.4234

60 0.4228 0.4202 0.4667 0.4286 0.4310

Balance 20 0.1213 0.1272 0.1193 0.1215 0.1454

40 0.1270 0.0392 0.1427 0.1185 0.1203

60 0.1241 0.1058 0.1331 0.1199 0.1177

Beef 20 0.2656 0.2233 0.2379 0.2538 0.2319

40 0.2656 0.2096 0.2420 0.2564 0.2295

60 0.2656 0.2051 0.2435 0.2551 0.2298

Breast 20 0.2941 0.3275 0.3377 0.3273 0.3187

40 0.2931 0.2936 0.3276 0.3266 0.3029

60 0.2940 0.2628 0.3272 0.3259 0.3102

Glass 20 0.1762 0.1508 0.1445 0.1854 0.1357

40 0.1788 0.1341 0.1433 0.1836 0.1386

60 0.1807 0.1481 0.1471 0.1808 0.1435

HayesRoth 20 0.0286 0.0276 0.0422 0.1121 0.0311

40 0.0244 0.0371 0.0352 0.1210 0.0372

60 0.0303 0.0515 0.0315 0.1467 0.0505

Iris 20 0.6385 0.6368 0.6183 0.6430 0.6305

40 0.6372 0.6197 0.6134 0.6440 0.6163

60 0.6372 0.6163 0.6104 0.6496 0.6129

Leukemia 20 0.1924 0.2111 0.2159 0.1898 0.2113

40 0.1951 0.1961 0.2013 0.1871 0.2000

60 0.2004 0.1897 0.2026 0.1871 0.1922

Satimage 20 0.6456 0.5979 0.6578 0.6606 0.6164

40 0.6447 0.6375 0.6677 0.6608 0.6139

60 0.6465 0.6454 0.6740 0.6495 0.6179

Semeion 20 0.2476 0.1429 0.3964 0.2784 0.2198

40 0.2475 0.2544 0.3940 0.2936 0.3052

60 0.2494 0.3098 0.4083 0.2807 0.3211

Sony 20 0.3714 0.3700 0.3090 0.3602 0.3578

40 0.3716 0.3704 0.3156 0.3875 0.3849

60 0.3767 0.3764 0.3182 0.3934 0.3937

Spambase 20 0.5362 0.5248 0.5006 0.5436 0.5500

40 0.5341 0.5181 0.5204 0.5600 0.5666

60 0.5349 0.5062 0.5107 0.5629 0.5736

Vowel 20 0.1192 0.1169 0.1679 0.1465 0.1426

40 0.1168 0.1418 0.1733 0.1507 0.1443

60 0.1177 0.1423 0.1664 0.1477 0.1433
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Table 5 continued

Data R WSPA WBPA WOEC

WOMC WOSP WOHB

Wall 20 0.3226 0.3221 0.0561 0.8449 0.8448

40 0.3257 0.3252 0.0544 0.8361 0.8311

60 0.3255 0.3248 0.0541 0.8150 0.8105

Yeast 20 0.0826 0.0286 0.0653 0.0839 0.0321

40 0.0843 0.0513 0.0589 0.0868 0.0980

60 0.0863 0.0344 0.0604 0.0841 0.0964

Fig. 9 Comparisons between k-means and WOKmeans (ARI)

values of WOKmeans are always higher than those of k-means except for Satimage, Sony,
and Wall. In particular, WOKmeans improves significantly upon k-means on Beef, Breast,
Glass, and Iris. This result confirms again the benefit of the shifting center technique. As
suggested by previous analysis [11,26,30], moving the centers toward the hard-to-cluster
data can improve the clustering of the same. However, WOKmeans is a variation of k-means,
and as such it’s still sensitive to the initial setting (i.e., the choice of initial cluster centers)
and likely to converge to local minima. As a consequence, the difference in performance
between WOKmeans and k-means is not significant on some data sets. In comparison with
the WOEC methods, typically WOKmeans’ performance is lower, demonstrating again the
effectiveness of ensemble techniques.

5.5 Sensitivity analysis of parameters

From Fig. 9, we can see that the performance of k-means is unstable (i.e., large standard
derivation values) on Australian, Leukemia, and Spambase. In this subsection, we test how
sensitive the WOEC methods are with respect to parameters on these three data sets.

We analyzed first the sensitivity on the t parameter used in Eq. (7). We set the ensemble
size R = 40 and change the parameter t from 1 to 100. Figure 10 shows the results. We
can see that both WOSP and WOHB are stable when t > 20 for Leukemia and when t > 5
for Spambase. The performance is stable for the entire range of tested values for Australian.
The probability of a cluster Cr

k given an object xi , computed as in Eq. (8), is essentially
determined by the Euclidean distances between xi and all the cluster centers in clustering
Cr . Different values of t will not affect the sequence of probability values. This explains
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(a) (b)

(c)

Fig. 10 Sensitivity analysis of parameter t (ARI)

(a) (b)

(c)

Fig. 11 Sensitivity analysis of ensemble size R (ARI)

why both WOSP and WOHB are robust with respect to different values of the parameter t .
Nevertheless, we should avoid setting t to values that are too small or too large. In these two
cases, in fact, ∀k, d(xi , mr

k) → 0 and d(xi , mr
k) → 1, respectively, in Eq. (7), and this will
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influence the consensus clustering process of WOSP and WOHB. Therefore, the average of
the squared Euclidean distances between the data and the weighted means is a reasonable
default value of t for each base clustering.

Second, we investigated the sensitivity of the three WOEC methods with respect to the
ensemble size R. We change R from 5 to 100, and Fig. 11 gives the results. In general,
with an increase of the ensemble size, the performance of each WOEC method improves.
WOEC tends to be stable when R is larger than 10, 10, and 30 on Australian, Leukemia, and
Spambase, respectively. On Australian and Leukemia, all three WOEC methods can achieve
a good performance when R = 5. WOSP and WOHB achieve a stable performance also on
Spambase in correspondence of a small ensemble size.

In terms of stability, we can see from Fig. 10 that WOSP and WOHB consistently achieve
a stable performance on the three data sets. Figure 11 shows that the standard derivations of
the WOEC methods reduce in value when R > 20 on Spambase, and they are consistently
small on Australian and Leukemia. This indicate that although the base clustering method
(k-means in our experiments) is unstable, the WOEC methods are still able to provide stable
and good clustering results.

6 Conclusions and future work

This paper introduces a framework to perform Weighted-Object Ensemble Clustering
(WOEC) which performs a one-shot weight assignment to objects. We discussed three vari-
ants of WOEC and one weighted version of k-means. All three WOEC algorithms reduce the
ensemble clustering problem to a graph partitioning one. We conducted extensive experiments
to investigate the effectiveness and stability of the WOEC approach, and further analyzed
the conditions under which the three different consensus techniques are most effective. Like
most existing ensemble techniques, the time complexity of the WOEC methods is quadratic
in the number of points. This makes it difficult to use them for clustering large scale data.
Our next step is to design a novel ensemble clustering approach which takes into account
both the weight information of objects and efficiency.
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