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Abstract

Automated identification of fingerprints is a difficult problem with many impor-
tant applications. For the purpose of automation, a suitable representation (feature
extraction) of fingerprints is essential. Most fingerprint recognition algorithms are
typically based on extraction of certain feature points called minutiae points.

Several approaches have been proposed in the literature; although rather dif-
ferent from each other, all these methods transform fingerprint images into binary
images. Nevertheless, all attempts to address feature extraction from fingerprint im-
ages through binarization seem to perform poorly on noisy images with low-contrast.
This difficulty is strictly related to the binarization process itself: it causes a loss
of a significant amount of information, which becomes crucial when the image has
low-contrast. Moreover, the binarization phase is computationally expensive, it in-
volves critical thresholds whose values are difficult to be set, and critically rely on a
pre-processing phase.

In order to achieve more accurate results we perform an original technique which
avoids binarization and thinning processes. Referring to the tools of differential ge-
ometry, we elaborate a fingerprint representation performing ridge point detection
directly on gray scale images. Our basic idea is to view ridge lines as a sequence of
maximum and saddle points.

The approach we describe does not make any use of critical threshold values and
it does not critically rely on a pre-processing phase. The ridge point detection tech-

nique, together with the ridge reconstruction algorithm we implement, result in a



robust method which performs well on noisy ink detected images. It deals nicely,
in fact, with over-inked areas and with breaks in ridges created by under-inked ar-
eas. The overall method is efficient, easily computable, and therefore amenable to
automated matching algorithms. The multistage and computationally expensive ap-
proaches which perform binarization of the gray scale images, involving both segmen-
tation and local thresholding phases, are avoided. Each step of our method can be
hardware implemented, allowing a relevant speed up of the whole feature extraction

process.
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Chapter 1

Introduction

1.1 Introduction to Fingerprints

The term print or fingerprint refers to the impression of a finger retained on a surface
after the finger is removed. The inner surface of a finger is covered with a pattern
of friction ridges whose complexity renders each fingerprint unique. Impressions of
these patterns can be recorded by applying a thin layer of ink to each finger and then
pressing each finger onto a piece of paper. Even without ink, sweat pores along the top
of the friction ridges may result in the inadvertent transfer of body oils to a receptive
surface, creating an invisible impression of the fingerprint pattern. These invisible
impressions are referred to as latent (meaning hidden) prints and can sometimes be
made visible by the application of chemicals or powders that react with the deposits

from the sweat pores in a different way than with the surrounding material.
Most fingerprint recognition algorithms are typically based on extraction of certain

feature points called minutiae points [7]. As shown in Figure 1.1, a minutiae point is

defined as the location where a single ridge bifurcates (splits) into two ridges or where
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a ridge ends. The term matching, when used in the context of court evidence, includes
such considerations as having identical minutiae point relative locations within the
ridge structure, the ridge flow at corresponding minutiae being similar, the minutiae
being of the same type (bifurcation or ridge ending), and the relative uniqueness of
the features and their relationships. In U.S. courts of law, the matching of 12 minutiae

is routinely accepted as evidence of identification.

Figure 1.1: Example of minutiae points: bifurcation and end points are highlighted.

Other features besides minutiae points are frequently used to classify fingerprints
so they can be filed for future retrieval [13]. The most important of these additional
features are the type lines (which enclose the area of a fingerprint used to determine
its classification), the delta(s), and the core. Type lines are the two innermost ridges
which start parallel, diverge, and surround or tend to surround the pattern area.

The delta is the point on a ridge at or in front of and nearest to the center of
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the divergence of the type lines. The core is the approximate center of the finger
impression, and is always placed on or within the innermost ridge with sufficient
recurve. A greatly oversimplified definition of a ridge with sufficient recurve is that
the ridge doubles back on itself and does not intersect any other ridges near the loop. If
these definitions of type lines, deltas, and cores sound imprecise or difficult to apply, it
is because in many cases they are. The Department of Justice handbook, The Science
of Fingerprints, presents dozens of rules and examples for determining these features
in a variety of situations [7]. Therefore, automated classification of fingerprint types
based on these rules is difficult to achieve. Using the above features, fingerprints can
be categorized into three general classes, each of which can be further partitioned into
a total of eight classes/subclasses, as shown in Figure 1.2. Further class subdivisions
are also possible. As with the underlying feature data (e.g. minutiae, core, delta),
fingerprint classification patterns are defined by a lengthy series of rules: the Science of
Fingerprints devotes over 100 pages (half of the handbook) to the topic of fingerprint
classification. Fingerprint classification is not a straightforward task, even for humans:
some prints exhibit transitional behavior (i.e., they have characteristics of two or more
patterns) and an element of subjective interpretation comes into play. Information
may be missing from the fingerprint due to incomplete or imperfect recording of the
friction ridge area. In this case fingerprint technicians must have allowances for all

pattern types which might apply.

The motivation for partitioning and organizing fingerprint data into classes and
subclasses is to avoid, where possible, having to search the entire database to deter-
mine if it contains a match to the inquiry print. The trade-off for this reduced search
time is increased complexity, higher labor costs, and an increased possibility of errors

related to misclassification of fingerprints.



Arch (5%) Whorl (30%) Loop (65%)

Figure 1.2: Major fingerprint classes. Arches can be further partitioned in Plain
Arches and Tented Arches. Whorls can be partitioned in Plain Whorls, Acciden-
tal Whorls, Double Loop Whorls, and Central Pocket Loop Whorls. Loops can be
partitioned in Ulnar and Radial.

Automated classification of fingerprints into four or five high-level pattern classes
can achieve an accuracy of 95 to 99%. This accuracy can be achieved only if rejection
of as many as 10 to 20% of the input prints is allowed which then must be treated as
unknown or classified by a human. A second level of automated classification takes
into account information such as the ridge counts between cores and deltas and is both
time consuming and prone to errors. At the third level, features such as minutiae
locations, types, and orientations are extracted. Then, all fingerprints with the same
classification are searched for a match with the input fingerprint. This step is called
the print-to-print search, i.e., search for a matching of fingerprints to determine if
they come from the same finger of an individual. The print-to-print search compares
features extracted from the input fingerprint image with features extracted from fin-
gerprint images in the database. A typical fingerprint may contain between 70 to 100
minutiae points, and it may be positioned, rotated, and distorted differently than a

matching database fingerprint, making print-to-print match a difficult and time con-
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suming task. In the current state of the art of Automatic Fingerprint Identification
System (AFIS), the matching algorithm must compute alternative matching scores
for an extremely large number of relative orientations and correspondence between
minutiae. A fingerprint image is rotated in small increment, say 0.5 degree, over a
wide range, and matched to fingerprint images in the database. This is a very time
consuming process; therefore further research to improve the print-to-print search

response time and accuracy of AFIS is needed.

1.2 The History and Development of Fingerprint-
ing

It is worth introducing at this point the major phases which belong to the interesting
history and development of fingerprinting [15]. The story of the development and use
of fingerprints in the last hundred years will only be properly appreciated with some
knowledge of dactyloscopy, the science which studies patterns of ridges present on
surfaces of the hands and of the feet. Therefore I will first briefly outline the basic
details of this science.

The inside surfaces of the hands from fingertips to wrist and the bottom surfaces
of the feet from the tip of the big toe to the rear of the heel contain minute ridges of
skin, with valleys between each ridge. A cross section of a finger would look exactly
like the cross section of a plowed field. Whereas on a plowed field the ridges and
valleys run in straight parallel lines, on the hands and feet the ridges and valleys
frequently curve and, especially on the fingertips and toe ends, the ridges and valleys
form complicated patterns. The ridges have pores along their entire length that

exude perspiration; hence, when an article is picked up, the perspiration runs along
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the ridges and leaves an exact impression of them, just as an inked rubber stamp

leaves its impression on a blank sheet of paper.

Ridges and valleys have evolved on the hands and feet to fulfill three specific
functions:
1. Exudation of perspiration
2. Tactile facility
3. Provision of a gripping surface
The ridges and valleys form some basic characteristics. As already mentioned, some
authorities consider that only two types of characteristics are present, a ridge ending

and a bifurcation, all other characteristics being variations of the two basic forms.

The ridges and valleys form patterns on the last joint of the fingers and toes,
forming three basic types: arches, loops, and whorls. There are variations of these
patterns, especially with whorls. Every person in the world shares these patterns - a
person can have all of one type, or even a mixture of all of them. The everyday use
of fingers as an identification method and the production of finger and palm evidence
in courts of law are based on one magnificent premise: no one has ever been found
who has a sequence of ridge detail on the hands and feet that is identical to the ridge

detail of any other person.

One of the earliest evidence of ridge detail on the hands and feet of humans was
seen in the 4,000-year-old mummies of ancient Egypt. The hands and feet of mum-
mies have been examined on numerous occasions, and the presence of ridge details
on the mummies’ digits is confirmed. In 1977, the mummy Asru, from the Temple
of Karnak, was fingerprinted by experts in Manchester under the direction of Detec-
tive Chief Inspector Thomas Fletcher, head of the Fingerprint Bureau of the Greater

Manchester Police. Mr. Fletcher used his experience as a detective to discover the
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occupation of Asru in the Temple of Karnak; she was either a dancer or a chantress:

Three thousand years ago Eqyptian temple dancers performed their ritual dances bare-
foot, the foot being used as part of the body’s expression. The sole was in constant
contact with the ground and even on the smoothest of flooring there would be friction
and consequent wearing of the ridges on the underside of the toes and balls of the feet.
Asru’s feet did not show any traces of this constant contact with the floor, the depth of
the furrows and the clarity of the characteristics were not consistent with her having

been a dancer, and the alternative of her being a chantress was much more acceptable.

Another evidence reported was the presence of a small portion of palm imprint on
hardened mud found in Egypt on a paleolithic site at the Sebekian deposit, Kom
Ombo plain, on the east bank of the river Nile, dated around 10,000 years ago. The
fact that primates have ridge detail was announced for the first time by Jan Evange-

lista Purkinje in his thesis published on December 22, 1823. He wrote:

In the hands of the monkeys, as well as in their prehensile tails, similar lines oc-
cur the distinction of which adds to the knowledge of the characteristics of all species.

Zoologist, unless they consider them unimportant, will add further details.

In 1975-76, John Berry and his colleagues in the Fingerprint Office in Hertford-
shire, U.K., commenced protracted research to confirm that all species of primates
have ridges detail on their hands and feet in patterns and toe ends that conform to hu-
man patterns. They found out that, although Madagascan primates differ physically
from African primates, they both bore ridge detail on their hands and feet. The most

accredited theory which can account for this phenomenon states that ridge details
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appeared on the hands and feet of our subprimate ancestors over 100,000,000 years
ago, before the separation of Madagascar from the East African coast, and that our
subprimate ancestors developed ridge detail on their hands and feet to facilitate the

evolutionary requirement for grip, tactile facility, and the exudation of perspiration.

The earliest trace of finger imprints being purposely impressed occured in Mesopotamia
and dates from circa 3,000 B.C. where an authority asserts that a ”digital impres-
sion” was placed on each brick used in the construction of the king’s storehouse. This
method of making identifying marks is also found on bricks used in the construction
of the "royal buildings” in Ancient Egypt. It is pertinent to note that in these two
examples the buildings were for kings or pharaohs, suggesting the importance placed

in the craftsmanship which was confirmed by the finger impressions of the masons.

A Chinese clay seal, dated before the third century B.C., has been the focus of
considerable research and speculation for many years. A left thumb imprint is deeply
embedded in the seal, and on the reverse side is ancient Chinese script representing
the name of the person who made the thumb imprint. The mark is so specific in
pressure and placing that there can be no doubt that it was meant as an identifying
mark. If this is so, there is the strong inference that the Chinese were aware of
the individuality of fingerprints well over 5,000 years ago. There is no evidence to
conclude that the ancient Chinese were aware of the individuality of fingerprints on a
universal basis. But the care taken to impress the clay seals suggests that the persons
utilizing this form of signature were aware that the design on their fingers or thumbs
so applied constituted individuality. This must represent, even at its crudest level,
the local recognition that the person who impressed a digit on a seal was permanently

bound to the contents of the documents so certified.

The first person to study and describe ridges, valleys, and pores on the hand and
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foot surfaces was English plant morphologist Nehemiah Grew, born in Warwickshire
in 1641. He was the first fingerprint pioneer; besides writing on the subject, he also

published extremely accurate drawings of finger patterns and areas of the palm.

Grew’s contemporary, Marcello Malpighi (1628-94), also a plant morphologist,
researched the functions of the human skin, and the ” Malpighian layers” were named
after him. He worked at the University of Bologna, Italy, and in his publication
he mainly dealt with the skin, although he did briefly mentioned ridge detail. It is
believed that Grew and Malpighi corresponded to a degree, but the differences in
language were a frustration, strangely because Graw was more adept at Latin than

the Italian.

Joannes Evangelista Purkinje was a Bohemian and part of his thesis, quoted ear-
lier, dealt in considerable detail with the functions of ridges, furrows, and pores;
additionally, he illustrated and described nine fingerprint patterns: one arch, one

tented arch, two loops, and five types of whorl.

The major step forward in the use of fingerprints was a method of classification
that enabled fingerprint forms bearing differing patterns to be placed in a certain
order, thus enabling the search area to be minimized. If a classification system did
not exist, and a person gave a wrong name, each set of fingerprint forms would have
to be examined to discover the correct identity of the offender. Many countries in the
world now use the ”Henry System”, named after Edward Henry. His system became
operational at Scotland Yard in 1901. The FBI, with its huge collection of fingerprint

forms uses the basic Henry system, amended to the FBI’s requirements.

Francis Galton and William Herschel also worked out classification systems. Her-
schel was an important figure in fingerprint pioneering because he was the first person

to confirm ridge persistency, which states that the formation of ridge detail that de-
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velops on the hands and feet in the womb does not change, except as a result of serious
injury to the digits or decomposition after death. This is the major requirement for

a fingerprint system.

Dr. Henry Faulds (1843-1930), a medical missionary, became extremely interested
in fingerprints during his mission in Japan, performing experiments which proved that
ridges details are immutable. In one classical experiment, he removed the skin from
the fingers of his patients after fingerprinting them; when the skin regrew on the
fingertips he fingerprinted them once more, noting that the ridge detail was exactly
the same as it was before the skin was removed. It is believed that Faulds was the
first person to identify finger imprints at crime scenes. It is worth mentioning the
amazing letter that Faulds sent to Charles Darwin on February 15, 1880, requesting
his aid in obtaining the finger impressions of lemurs, anthropoids, etc., with a view to

throw light on human ancestry. On April 7, 1880, Darwin replied to Faulds:

Dear Sir,

The subject to which you refer in your letter of February 15th seems to me a curious
one, which may turn out interesting, but I am sorry to say that I am most unfortu-
nately situated for offering you any assistance. I live in the country, and from weak
health seldom see anyone. I will, however, forward your letter to Mr. F. Galton, who
15 the man most likely that I can think of to take up the subject and make further

NquiTies.

The letter was passed to Galton as promised, but he reposited it in the Anthro-
pological Institute where it stayed until 1894. It was in 1888 that Galton commenced

his enthusiastic foray into dactyloscopy. Initially he collected only thumb impressions,
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but in 1890 he commenced to collect full sets of finger impressions. He worked out,
as mentioned earlier, a fingerprint classification system. Francis Galton was a great
fingerprint pioneer as well as a man of considerable talent in many other areas. How-
ever, British fingerprint experts do not use the expression ”Galton Ridges”, which is

much in vogue in the United States.

1.3 Automatic Fingerprint Identification System
(AFIS)

Automated identification of fingerprints is a difficult problem with many important
applications. Many AFIS are already in use in law enforcement applications. How-
ever, the technology is still developing and there are still many unsolved research
problems [14]. The Federal Bureau of Investigation (FBI) has invested hundreds of
million dollars to develop the world largest AFIS with a goal of up to 63 million
criminal fingerprint records stored on-line and up to 11 million civilian records stored
off-line.

An even larger market for AFIS that is emerging regards the verification of identity
in cases such as bank ATM machine access, building access, credit card verification,
welfare payment, voter registration, and employee background check. Identification
methods based on memory data such as personal identification numbers and pass-
words, and methods based on possession of personal magnetic cards are widely used
at present. However, none of these methods offers a high level of security. There is
always the risk of another person obtaining one’s personal identification number or
using one’s card. AFIS offer a solution to this problem, since fingerprints uniquely

identify a person and their features remain invariant with age.
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An AFIS consists of various processing stages as shown in Figure 1.3. For the
purpose of automation, a suitable representation (feature extraction) of fingerprints

is essential. This representation should have the following desirable properties:

Retain the discriminating power (uniquiness) of each fingerprint at several levels

of resolution (detail).

Easily computable.

Amenable to automated matching algorithms.

Stable and invariant to noise and distorsions.

Efficient and compact representation.

The compactness property of representation often constrains its discriminating power.
Clearly, the raw digital image of a fingerprint itself does not meet these representa-
tional requirements. Hence, high-level structural features are extracted from the
image for the purpose of representation and matching.

Commercially available fingerprint identification systems typically use ridge bi-
furcations and ridge endings as features. Because of the large size of the fingerprint
database and the noisy fingerprints encountered in practice, it is very difficult to
achieve a reliable one-to-one matching in all the test cases. Therefore, the commer-
cial systems provide a ranked list of possible matches (usually the top ten matches)
which are then verified by a human expert. Details of commercial fingerprint recog-
nition systems from NEC, PRINTAK and MORPHO are in [15].

One of the main problems in extracting structural features is due to the presence

of noise in the fingerprint image. Commonly used methods for taking fingerprint
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impressions involve applying a uniform layer of ink on the finger and rolling the

finger on paper. This cause the following types of problems:
e Over-inked areas of the finger create smudgy areas in the image.
e Breaks in ridges are created by under-inked areas.

e The skin being elastic in nature can change the positional characteristics of the

fingerprint features depending upon the pressure being applied on the fingers.

Although inkless methods for taking fingerprint impressions are now available, these
methods still suffer from the positional shifting caused by the skin elasticity. The
noncooperative attitude of suspects or criminals also leads to smearing in parts of
the fingerprint impressions. Thus a substantial amount of research reported in the

literature on fingerprint identification is devoted to image enhancement techniques.

1.4 Fingerprint Representation

This work focuses on the fingerprint representation problem. The task is to achieve
a suitable representation of fingerprints in order to efficiently solve the print-to-print
matching problem. Each fingerprint is coded into a set of ridges structures, which re-
tain the discriminating power of each fingerprint. We use an original technique based
on ridge point detection directly from gray scale fingerprint images. Our method uses
the tools of differential geometry [10, 16] and it is based on properties of the intensity
surfaces of the gray scale fingerprint images, which are direct consequences of the
nature of the fingerprint images themselves. The overall technique results in a robust

and efficient algorithm.
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Figure 1.3: Stages in an AFIS.

The approach we describe does not make any use of critical threshold values, which

are in general hard to be properly set. It does not critically rely on a pre-processing

phase. We do perform a smoothing process prior to ridge point extraction but, since

we do not attempt to perform binarization, degree of smoothing is not critical for

our approach. Moreover, the ridge point detection technique, together with the ridge

reconstruction algorithm we implement, result in a robust method which performs

well on noisy ink detected images. It deals nicely, in fact, with over-inked areas and

with breaks in ridges created by under-inked areas.

The overall method is efficient, easily computable, and therefore amenable to
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automated matching algorithms. The multistage and computationally expensive ap-
proaches which perform binarization of the gray scale images, involving both segmen-
tation and local thresholding phases, are avoided. Each step of our method can be
hardware implemented, allowing a relevant speed up of the whole feature extraction

process.

1.5 Organization of the Thesis

This thesis is divided into five chapters. Chapter 1 describes the features which make
each fingerprint unique and distinguishable from each other, introduces Automatic
Fingerprint Identification Systems, and in particular the feature extraction phase.
Our approach to provide an adequate fingerprint representation is introduced and its
advantages are highlighted. Next chapter briefly describes the techniques proposed
in the literature. We point out how our method intends to overcome some limits
and problems from which the techniques in the literature suffer. Information on data
and experiments is also provided. Chapter 3 presents the ridge point detection tech-
nique. Concepts coming from differential geometry are described. Implementation
and results are also discussed. Chapter 4 describes the ridge reconstruction algorithm.
Enphasis is put on the purpose of the algorithm and on the strategies used to avoid
the main problems algorithms which perform binarization have. Results are shown.

Finally, chapter 5 discusses conclusions and future work.
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Chapter 2

Background and Related Works

2.1 The Classical Approach

As already mentioned in chapter 1, automatic minutiae detection is an extremely
critical process, especially in low-quality fingerprints where noise and low-contrast

can originate pixel configurations similar to minutiae or hide real ones.

Several approaches have been proposed in the literature; although rather different
from each other, all these methods transform fingerprint images into binary images
[22, 21, 5, 19, 26, 17, 24]. Several intermediate steps are required. The overall process
can be divided into three main operations: pre-processing and segmentation, binariza-
tion and thinning. The purpose of pre-processing is to apply a smoothing operation,
which is quite critical since binarization is going to be performed. Segmentation is
then applied to detect ridges. Usually some techniques for foreground and background
contrast enhancement are then applied. Local thresholding is therefore performed in
order to obtain a binary image, e.g. an image where the ridges have the value “1”

(black) and the valleys have the value “0” (white) or vice versa. A thinning process

17
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is applied on the binary image to obtain one pixel thick lines. Finally, a scan of the
last image is able to detect the feature points.

The binarization phase is computationally expensive and it involves critical thresh-
olds, whose values are difficult to be set. It may cause a loss of a significant amount
of information, as it happens when a gray scale image is transformed into a binary
image. As a consequence, when the gray scale fingerprint image is a low-quality
image, the binary image presents configurations due to noise, which will cause false
minutiae detection. Once the binary image is obtained, is very difficult to get rid of
such configurations.

Also thinning the binary image is not an easy or trivial task. Many thinning algo-
rithms have been proposed in the literature [2, 25, 12]. Various authors perform line
thinning using line following [4], which seems to provide good results on fingerprints.

It preserves, though, the noisy configurations of the binary image.

2.2 Our Attempt to Perform Binarization

We first addressed the feature extraction problem performing binarization and thin-
ning processes on the fingerprint images. The results obtained, although compara-
ble and sometimes of a better quality than the results published in the literature
[19, 26, 17, 24], are still unsatisfactory for our purpose of solving the print-to-print
matching problem.

We first applied a selective smoothing process which allows to preserve the ridges.
We then performed edge detection using the Marr-Hildreth operator [11, 3]. Median
filters are applied to the original gray scale image with boundaries superimposed,

in order to enhance the background-foreground contrast. At this point, a sophisti-
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cated local thresholding algorithm is applied to the enhanced image with boundaries
superimposed. The image is scanned twice, both by rows and columns. A local
thresholding technique, based on the comparison between averaged gray levels of ad-
jacent areas separated by boundaries, is applied. Two binary images are the result of
the horizontal and vertical scanning procedures. Combining these two binary images
with the logical AND operator allows to erase some of the noise caused by lack of
contrast in the gray scale image. We used the thinning procedure implemented in
Matlab Version 5.1.0, and also implemented the skeletonization algorithm presented

in [11] for a comparison.

2.3 A Different Point of View

The overall binarization procedure we implemented gives good results on fingerprint
images with enough contrast. Noisy areas give rise to noisy skeleton areas, with
pixel configurations which cause false minutiae detection (two obtained skeletons
are shown in §4.3). An attempt to erase such configurations has been performed.
Although cross-ridge noise causes pixel configurations which are visually distinctive,
it is practically impossible to erase them performing local analysis, unless introducing
false possible breaks.

All attempts to address feature extraction from fingerprint images through bina-
rization seem to perform poorly on noisy images with low-constrast. This difficulty
is strictly related to the binarization process itself: it causes a loss of a significant
amount of information, which becomes crucial when the image has low-contrast.

In order to achieve more accurate results we perform a different technique which

avoids binarization and thinning processes. Referring to the tools of differential ge-
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ometry, we elaborate a fingerprint representation performing an analysis directly on
gray scale fingerprint images. Our basic idea is to view ridge lines as a sequence
of maximum and saddle points. The overall analysis results in a robust algorithm,
since all mathematical properties used are direct consequences of the nature of the

fingerprint images. Details of the techniques are described in chapters 3 and 4.

2.4 Data and Experiments

The National Institute of Standard and Technology makes available three databases
of fingerprint images: NIST Special Database 4, NIST Special Database 9, and NIST
Special Database 14 [27, 28, 29]. Nist Special Database 4 contains 2000 couples of 8-
bit gray scale fingerprint images. Each couple corresponds to two different images, in
terms of possible scales and orientations, of the same finger. Each image is 512 x 512
pixels with 32 rows of white space at the bottom of the print. The fingerprints are
classified into one of five categories (L = left loop, W = whirl, R = right loop, T =
tented arch, A = arch) with an equal number of prints from each class. The images
have a NIST IHEAD raster format. Included with the images is a software to convert
the images into sun raster format. We converted into sun raster format 50 sample
images which belong to NIST Special Database 4. The images were then converted
into TIF format. These images are used to test our algorithms. All experiments
are implemented using Matlab Version 5.1.0. This work has been done at the Neu-
ral Networks and Pattern Recognition Research Laboratory, Electrical Engineering

Department, University of California, Riverside, using a Ultral Sun Sparcstation.



Chapter 3

Detection of Ridge Points

3.1 Introduction

In this chapter we describe in details our technique for detecting ridge points di-
rectly from gray scale fingerprint images, and the correlated concepts of differential
geometry.

Since fingerprint images may be very noisy, especially those acquired by ink tech-
nique like the ones we use in our experiments, it is appropriate to smooth the images
prior to ridge point extraction. We smooth the image using geometric heat equation,

by applying gradient descent to the functional [1, 23, 18]:

// IV T|dady.

Since we do not attempt to perform binarization, degree of smoothing is not
extremely critical. Still we avoid using smoothing tools such as convolution with a
Gaussian kernel which is equivalent to isotropic diffusion equation. Such non-selective

smoothing tends to smear out the ridges. Geometric heat equation provides a good

21



22 CHAPTER 3. DETECTION OF RIDGE POINTS

enough smoothing while preserving the ridges, and it is invariant with respect to

contrast.

3.2 Stationary Points

Let I be a m x n gray scale image with g gray levels, and gray(i,j) be the gray
level of pixel (i,7) of I, with i = 1,....,m, j = 1,...,n. Let z = S(i,j) be the surface
corresponding to the image I : S(i,5) = gray(i,j), i = 1,....,m, j = 1,..,n. By
associating bright pixels with gray levels near zero and dark pixels with gray levels
near one, fingerprint ridge lines (appearing dark in I) correspond to intensity ridges,
and spaces between ridge lines (appearing bright in I') correspond to intensity valleys
(see Figure 3.1). From a mathematical point of view, ridge points are local maxima
along the direction of one of the principal curvature and they are points where the

other principal curvature is zero. An obvious way to detect ridge points is to examine

the second derivatives. Let H denote the hessian matrix at a stationary point p. Let
A1 and Mg , such that |[A;| > |As|, be the characteristic values of H, e.g. the roots
of the characteristic polynomial det(H — AI) where the determinant is zero. Since
the eigenvalue with the maximum absolute value corresponds to the direction along

which intensities have maximum change, if p is a ridge point then
)\1 < )\2 =0. (31)

In real cases, detection of ridge points is not stable. Slight perturbations due to
various factors (e.g. noise, discretization grid size) may change zero eigenvalues to
non-zero values. A point which satisfies conditions (3.1) at a given resolution, may
not satisfy the same conditions at a higher resolution. As a consequence, in general,

our ”ideal” ridges will change into a sequence of local maxima and saddle points (see
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Figure 3.1: Ideal ridge surface.

Figure 3.2). Hence it is appropriate to search for such a general pattern rather than
the idealized ridges of Figure 3.1.

A stationary point p is a local maximum iff
A< A <0. (3.2)
A stationary point p is a saddle point iff
A1Ag < 0.

To distinguish saddle points which are on a ridge from the ones which are on a
valley, we consider only the saddle points which are local maxima in the direction of
maximum change and local minima in the direction of minimum change. Thus we

establish that a stationary point p is a saddle point (on a ridge) iff

A <O
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Ao > 0. (3.3)
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Figure 3.2: Surface corresponding to a small area of a fingerprint. It shows how our
“ideal” ridges change into a sequence of local maxima and saddle points.
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3.3 Implementation and First Results

Let I, = & and [, = g—i be the differences in intensity values in the z (column)

direction and in the y (row) direction respectively. We detect the stationary points
as the simultaneos zero-crossings of I, and I,. The zeros of I, and I, are located by
scanning the two images I, and I, from top to bottom and from left to right to detect
sign changes. For each pixel, if sign changes are detected during both scanning,
the correspondent pixels are marked as stationary points in an output image. It
is important do underline that detection of stationary points does not rely on the
condition for the absolute value of the gradient vector (I, I,) to be zero. Due to
discretization factors and numerical gradient computation, in fact, the absolute value
of the gradient vector may always have a positive value, and the use of a threshold on
this value is not a robust and reliable technique. The hessian matrix H is computed

at each stationary point using central differences. H is a 2 x 2 real symmetric matrix
o (T.m Tmy)
Ioy Iy

The roots of the characteristic polynomial det(H — AI'), which is a second degree
polynomial, give the eigenvalues. Once the eigenvalues are computed, maximum and
saddle points are easily determined using (3.2) and (3.3).

Figure 3.3 and Figure 3.4 show the maximum and saddle points detected for
two subimages of a fingerprint image (s02) belonging to NIST Special Database 4.
Figure 3.5 shows the whole original fingerprint image. The two areas considered are
highlighted. Figure 3.3 belongs to a rather clean area of the image in Figure 3.5; its

resolution is 71 x 71 pixels. Figure 3.4 belongs instead to a very noisy area of the same

image; its resolution is 130 x 110 pixels. Smoothing process has been applied prior
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to ridge point detection in both cases. We do not distinguish between maximum and

saddle points since for our ridge reconstruction purpose they have the same meaning.

Figure 3.3: Results of maximum and saddle point detection on a clean area of a
fingerprint image. Both maximum and saddle points are shown as back dots.
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Figure 3.4: Results of maximum and saddle point detection on a noisy area of a
fingerprint image. Both maximum and saddle points are shown as back dots.
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Figure 3.5: Original fingerprint image. The two areas considered are highlighted with
circles.
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3.4 Gaps Between Stationary Points

Even though the maximum and saddle points shown in Figure 3.3 and in Figure 3.4
reliably belong to fingerprint ridges, there exist consistent gaps between them. Figure
3.2 explains why this phenomenon happens. Fingerprint ridge pixels may gradually
change their intensity values along the ridge direction, causing branches of the ridge
surface to have positive or negative slope. This phenomenon is evident near the ridges
endings, as Figure 3.2 shows. Figure 3.6 shows the same phenomenon in the vicinity
of a ridge along the ridge direction. Ridge’s branches with positive or negative slope
have no stationary points. Figure 3.7 shows the zero-crossings of the z and y gradient
components [, and I, of the image in Figure 3.3. The intersection points between
the two zero levels correspond to the simultaneous zero-crossings of I, and I, hence
to the stationary points. Some ridges show a behavior close to an “ideal” ridge; for
those ridges the two curves run close to each other and often intersect. For some
ridges, instead, the two curves present significant branches with no intersections;
these branches correspond to the gaps between maximum and saddle points in Figure
3.3. Pixels on those ridge’s branches are still maximum points along the orthogonal
direction. Figure 3.8 shows the plot of the gradient vectors which correspond to the
portion of the ridge shown in Figure 3.6. The branch of the ridge with no zero-crossing

points is highlighted with a circle.
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Figure 3.6: Surface of a portion of a fingerprint ridge.
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Figure 3.7: Zero-crossings of the x and y components of the gradient.

31
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sponding to a portion of a ridge.

Figure 3.8: Gradient vectors corre
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3.5 Non Stationary Points

Let p be a point on a ridge which is not a stationary point. Let p; and p, be the two
neighbors of p along the direction orthogonal to the ridge. Let 7i; and 7y denote the
gradient vectors at pixels p; and py. Since p is a maximum point along the orthogonal

direction, the gradient vectors 7i; and 75 point at opposite directions:
—L 2 = cos(n) = —1 (3.4)

This pattern is searched for non stationary points. For each non stationary point
p, the four neighbor couples in the horizontal, vertical, and two diagonal directions
are considered. A test is made to verify if condition (3.4) is satisfied for any of the
neighbor couples in the four directions. If condition (3.4) is satisfied for at least
one neighbor couple, the second derivatives at point p are investigated, in order to
establish if it belongs to ridges or it belongs to valleys. Same criteria as in (3.2) and
(3.3) are applied. A point p whose neighbors satisfy condition (3.4) is a ridge point
situated on a negative slope iff condition (3.2) applies. A point p whose neighbors
satisfy condition (3.4) is a ridge point situated on a positive slope iff condition (3.3)
applies. In real cases equation (3.4) may never be satysfied due to the presence of
noise. As a consequence, vectors 7; and 7y will have directions which are “almost”
opposite.

It is important to underline that using the gradient direction for ridge detection
is quite stable, whereas selecting ridge points by setting a threshold on the absolute
value of the gradient is not a robust condition. This is because the appropriate
threshold may change from image to image, or even from area to area within the
same image. All our conditions are based on properties of the intensity surfaces of

the gray scale images. Those properties are direct consequences of the nature of the
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fingerprint images.

3.6 Results of Ridge Point Detection

Figure 3.9 and 3.10 show the stationary and non stationary points detected on the
same images shown in Figure 3.3 and in Figure 3.4. In our experiments we use the
value gw for the angle between 7i; and 7i,. Different values belonging to the interval
(% %71’] were tested. The results obtained have shown to be not particularly sensitive
to the specific value used within the range considered.

Most of the gaps between stationary points shown in Figure 3.3 and Figure 3.4
are now recovered. A comparison between Figure 3.9 and Figure 3.3 clearly show

how the detected non stationary points can trace with high precision the endings of

ridges.
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Figure 3.9: Results of stationary and non stationary points detection on a clean area
of a fingerprint image. Both stationary and non stationary points are shown as black
dots.
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Figure 3.10: Results of stationary and non stationary points detection on a noisy area
of a fingerprint image. Both stationary and non stationary points are shown as black
dots.



Chapter 4

Reconstruction of Ridges

4.1 Purpose of Ridge Reconstruction

In chapter 3 an easy and robust technique for finding ridge points was presented.
In this chapter we address how to use the ridge points to perform ridge reconstruc-
tion. The purpose of our ridge reconstruction algorithm is to collect and organize, in
meaningful structures, the detected ridge points which are connected and to properly
recover, if present, the gaps between them. The resulting structures correspond to
our representation of fingerprint images which can be directly used to address the
print-to-print matching problem. Our ridge reconstruction algorithm is completely
driven by the points already detected. No ridge following algorithm based on gradient

information is performed, since ridge points are available.

4.2 Ridge Reconstruction Algorithm

Each branch of connected points is traced only once starting from one of its end point.

Once the opposite end point is reached, minimum squared error (mse) line fitting is

37
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performed at both endings, to determine the directions along which move forward to
look for other nearby branches. If a branch not traced yet is found, gap is filled with
points and tracing of connected points continues; if a branch of a ridge already traced
is encountered the gap is filled with points and the two branches are merged. When
all branches of connected points are traced the algorithm stops. All merged branches
belong to the same data structure which is stored in memory.

The pseudo-inverse approach is performed to implement mse line fitting [9]. Two
parameters are involved in the mse line fitting procedure: the number of points to
be used for computing the line equation and the number of pixels to move forward
to look for a nearby branch. The first parameter has to have a value of at least
four points. We do not allow gap filling, in fact, if the branch of connected points
which has been traced is too short (less than four pixels in our experiments). A
short ridge is kept isolated unless a merging with it takes place starting from a long
enough branch. This technique allows to avoid false connections which can arise on
account of the presence of noise across ridges. False connections due to the presence
of noise across ridges are a serious problem of algorithms which perform binarization
of fingerprint images. The specific value of the first parameter, as long as it is bigger
than a minimum number of pixels, does not affect the results. In our experiments
we use values of 10 and 20 pixels. The second parameter should not be bigger than
the average distance between ridges in the image. Hence, appropriate values for both

parameters can easily be found.
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4.3 Results

The result of the ridge reconstruction algorithm applied on points shown in Figure
3.9 is shown in Figure 4.1. In this case 20 points or at least 4 points (if 20 points are
not available on the branch which is currently traced) are used, when performing mse
line fitting, and 4 pixels is the distance recovered along the tangent direction given
by the mse line fitting. The result of ridge reconstruction for points shown in Figure
3.10 is shown in Figure 4.2. For this image 10 points are used when performing mse
line fitting, and 6 pixels is the distance recovered along the tangent direction. The
algorithm is able to recover most of the breaks between branches belonging to the same
ridge. Moreover, the algorithm is able, almost always, to avoid false connections which
can arise on account of the presence of noise across ridges. This result is particularly
evident in Figure 4.2, which correspond to a noisy area of a fingerprint image. Most
of the noise across ridges is kept isolated and false connections are avoided. Noise
across ridges gives rise to short ridges of few pixels (two or three) which are stored in
memory. These branches can be easily removed during a post processing phase. The
improvement achieved performing ridge reconstruction directly from gray scale images
can be easily appreciated comparing the result shown in Figure 4.2 with the skeleton
obtained performing binarization of the same fingerprint image (see Figure 4.3). The
local thresholding algorithm explained in §2.2 has been applied in order to obtain
the skeleton showed. The area we performed ridge reconstruction on is highlighted
with a circle. Many false connections are present within the circled area, due to
the noise present in the original image. These false connections give rise to visually
distinctive “H” shapes. Real fingerprints do not have such patterns. Although these
configurations are visually distinctive, it is impossibile in practice to automatically

erase them performing local analysis, unless introducing other false possible breaks.
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Almost all these false connections are avoided in Figure 4.2.

Finally we want to show the result on a sample fingerprint image classified as a
poor quality image [8]. The original fingerprint image, which belongs to NIST Special
Database 4, is shown in Figure 4.4. Resolution is 271 x 271 pixels. The result of ridge
point detection is shown in Figure 4.5. The result of ridge reconstruction is shown
in Figure 4.6. In this case 20 points are used when performing mse line fitting, and
6 pixels is the distance recovered along the direction given by the mse line fitting.
Once again the skeleton obtained performing binarization is shown in Figure 4.7 for
a comparison. Again the false connections present in the skeleton are avoided when
performing ridge point detection and ridge reconstruction directly from the gray scale

image.
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Figure 4.1: Ridge reconstruction result on a clean fingerprint area. 20 points are
used, when performing mse line fitting, and 4 pixels is the distance recovered along
the tangent direction given by the mse line fitting.
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Figure 4.2: Ridge reconstruction result on a noisy fingerprint area. 10 points are
used, when performing mse line fitting, and 6 pixels is the distance recovered along
the tangent direction given by the mse line fitting.
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Figure 4.4: Original fingerprint image classified as poor quality image.
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Figure 4.5: Result of ridge point detection on a whole fingerprint image. All points
are shown as black dots.
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Figure 4.6: Result of ridge reconstruction on a whole fingerprint image.
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Figure 4.7: Skeleton of image shown in Figure 4.4, obtained performing binarization
as explained in §2.2.
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Chapter 5

Conclusions and Future Work

The ridge point detection technique and the ridge reconstruction algorithm we dis-
cussed allow us to obtain a compact fingerprint representation which retains the
discriminating features of each fingerprint. The resulting structures can be directly
used to address the print-to-print matching problem. In this chapter we discuss two
possible alternatives to solve this problem. We also discuss a different technique
to detect non stationary points on ridges, based on detection of curvature extrema
points of the level curves of the gray scale images [10]. The resulting vertex curves
should mark the branches of ridges with positive and negative slope, allowing us to
fill the gaps between maximum and saddle points, without need of investigating on

the angles between neighbor gradient vectors.
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5.1 How to Address the Print-to-Print Matching

Problem

5.1.1 Detection of Minutiae Points

For the print-to-print matching problem, bifurcation and end points extraction can
easily be automatically performed directly on the image resulting from our ridge re-
construction algorithm. End points are points which have only one neighbor, whereas

bifurcation points are points which have three neighbors.

A post processing stage can eliminate spurious feature points, which may be still
present, based on the structural and spatial relationships of the minutiae. For in-
stance, two minutiae in a real fingerprint cannot occur within a distance of few pixels
from each other. Proper heuristics can be implemented to perform ridge break and
spike elimination [21]. Two end points with the same orientation and within a dis-
tance threshold can be eliminated; an end point which is connected to a bifurcation

point and is also within a distance threshold can be eliminated.

5.1.2 Template Matching

The resulting ridge structures form a template which carries information, such as
curvature of ridges, length of ridges, spatial frequencies, orientation, which may be
used to address the print-to-print matching problem, directly without performing

feature point extraction.

The detected ridge points themselves form a template, which may be directly used

to perform matching of latent fingerprints.
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5.1.3 Other Extensions

One interesting direction for future research is to generate fingerprint representations
which are normalized with respect to scale and rotation, using Gabor wavelets [20, 6].
Such representations would allow to avoid rotating the fingerprint images and trying
to matching among all possible orientations in print-to-print match. They should
significantly speed up the print-to-print matching process. The cost is more com-
putation to generate representations that are normalized with respect to scale and
rotation. However, these computations are affordable since they are off-line.

Future work will investigate if wavelet analysis can be directly applied on the repre-
sentation we get from ridge point detection and ridge reconstruction, or it should be

performed after minutiae point extraction.

5.2 Curvature Extrema Points

In §3.5 we describe a technique to detect non stationary points on ridges. An alter-
native approach to find points at the top of ridges with negative or positive slope is
to identify the curvature extrema of the level curves of the image.

A gray scale fingerprint image can be seen as a smooth collection of level curves.
Curvature extrema points, also called vertexr points, are adjacent from level to level
and form continuous curves on the image surface, called verter curves, that mark the
tops of ridges (as well as bottoms of valleys). Locating vertex curves at the top of
ridges should allow us to identify fingerprint ridges towards endings and, in general,
branches with positive or negative slope.

One way to calculate the exact locations of the curvature extrema is to find the

zeros of the directional derivatives of level curve curvature, whose expression is given
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by:
Ok

95 = (Ka, ky) 5, y)' =0

where k(z,y) is the level curve curvature at point (z,y) and §(x,y) is the level curve
tangent vector, e.g. the unit vector that is orthogonal to the level curve normal (I is

the gray scale image):
§@,y) = (=1, y), L(z,9))/||(Lo(2, y), I(z, y))-
The expression for the level curve curvature is:
k(z,y) = —3(x,y)[Hessian(I)]5(z, y)".

The zeros of the curvature derivative function also identify vertex curves of negative
curvature maxima and positive curvature minima which do not correspond to ridge
tops or valley bottoms. Development of robust criteria to properly select the vertex

curves which identify ridge tops will be investigated.



Bibliography

1]

7]

Alvarez, L., Lions, P.L., and Morel J.M., 1991, "Image Selective Smoothing and
Edge Detection by Nonlinear Diffusion”, STAM J. on Num. Anal..

Arumugam, A., Radhakrishnan, T., Suen, C.Y., and Wang, P.S.P., 1993, “A
Thinning Algorithm Based on the Force Between Charged Particles”, Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, Vol.7, No.5,
pp. 987-1008.

Ballard, D.H., and Brown, C.M., 1982, ” Computer Vision”, Prentice-Hall, Inc..

Baruch, O., October 1988, ”Line Thinning by Line Following”, Pattern Recog-
nition Letters, Vol.8, No. 4, pp.271-276.

Coetzee, L., and Botha, E.C., 1993, “Fingerprint Recognition in Low Quality
Images”, Pattern Recognition, Vol. 26, No. 10, pp. 1441-1460.

Daugman, J.G., July 1988, “Complete Discrete 2-D Gabor Transforms by Neu-
ral Networks for Image Analysis and Compression”, IEEE Trans. on Acoustics,
Speech, and Signal Processing, Vol. 36, No. 7, pp. 1169-1179.

U.S. Dept. of Justice, The Science of Fingerprint, 1984, Washington D.C..

93



54

8]

9]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

Donahue, M.J., and Rokhlin, S.I., 1993, “On the Use of Level Curves in Image
Analysis”, Image Understanding, Vol. 57, No. 2, pp. 185-203.

Duda, R.O., and Hart P.E., 1973, ”"Pattern Classification and Scene Analysis”,

Wiley-Interscience Publication.

Gauch, J.M., and Pizer, S.M., 1993, “Multiresolution Analysis of Ridges and
Valleys in Grey-Scale Images”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 15, No. 6, pp. 635-646.

Gonzalez, R.C., and Woods R.E., 1992, "Digital Image Processing”, Addison-

Wesley Publishing Company.

Hu, G., and Li, Z.N., 1993, “An X-Crossing Preserving Skeletonization Algo-
rithm”, International Journal of Pattern Recognition and Artificial Intelligence,

Vol. 7, No. 5, pp. 1031-1053.

Karu, K., and Jain, A.K., 1996, “Fingerprint Classification”, Pattern Recogni-
tion, Vol. 29, No. 3, pp. 389-404.

Langley, R.J., 1995, ” An Introduction to Automated Fingerprint Identification
Systems”, Technology Review, TRW Systems Integration Group, Vol.3, No. 2,
pp. 3-27.

Lee, H.C., and Gaensslen, R.E., 1991, ” Advances in Fingerprint Technology”,

Elsevier.

Maintz, J.B.A., van den Elsen, P.A., and Viergever, M.A., 1996, “Evaluation
of ridge Seeking Operators for Multimodality Medical Image Matching”, IEEE



BIBLIOGRAPHY %)

[17]

18]

[20]

[21]

22]

23]

Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No. 4, pp. 353—
364.

Moayer, B., and Fu, K., 1986, “A Tree System Approach for Fingerprint Pat-
tern Recognition”, IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. 8, No. 3, pp. 376-388.

Morel, J.M., and Solimini, S., 1995, ” Variational Methods in Image Segmenta-

tion”, Birkhauser.

O’Gorman, L., and Nickerson, J.V., 1989, “An Approach to fingerprint Filter

Design”, Pattern Recognition, Vol.22, No. 1, pp. 29-38.

Porat, M., and Zeevi, Y.Y., July 1988, “The Generalized Gabor Scheme of Im-
age Representation in Biological and Machine Vision”, IEEE Trans. on Pattern

Analysis and Machine Intelligence, Vol. 10, No. 4, pp. 452—468.

Ratha, N.K., Chen, S., and Jain, A.K., 1995, “Adaptive Flow Orientation-
Based Feature Extraction in Fingerprint Images”, Pattern Recognition, Vol. 28,

No. 11, pp. 1657-1672.

Ratha, N.K., Karu, K., N.K.; Chen, S., and Jain, A.K., 1996, “A Real-Time
Matching System for Large Fingerprint Databases”, IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. 18, No. 8, pp. 799-813.

Shah, J., 1996, ” A Common Framework for Curve evolution, Segmentation, and

Anisotropic Diffusion”, CVPR 96.



56 BIBLIOGRAPHY

[24] Stock, R.M., and Swonger, C.W., 1969, “Development and Evaluation of a
Reader of Fingerprint Minutiae”, Cornell Aeronautical Laboratory, Technical

Report CAL No. XM-2478-X-1:13-17.

[25] Suzuki, S., Ueda, N., and Sklansky, J., 1993, “Graph-Based Thinning for Bi-
nary Images”, International Journal of Pattern Recognition and Artificial In-

telligence, Vol. 7, No. 5, pp. 1009-1030.

[26] Verma, M.R., Majumdar, A.K., and Chatterjee, B., 1987, “Edge Detection in
Fingerprints”, Pattern Recognition, Vol. 20, No. 5, pp.513-523.

[27] Watson, C.I., and Wilson, C.L., March 1992, NIST Special Database 4, Finger-

print Database, National Institute of Standards and Technology.

(28] Watson, C.I., May 1993, NIST Special Database 9, Fingerprint Database, Na-

tional Institute of Standards and Technology.

[29] Watson, C.I., September 1993, NIST Special Database 14, Fingerprint

Database, National Institute of Standards and Technology.



BIBLIOGRAPHY

S7



