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Abstract. Users in online social networks often have very different
structural positions which may be attributed to a latent factor: roles. In
this paper, we analyze dynamic networks from two datasets (Facebook
and Scratch) to find roles which define users’ structural positions. Each
dynamic network is partitioned into snapshots and we independently find
roles for each network snapshot. We present our role discovery method-
ology and investigate how roles differ between snapshots and datasets.
Six persistent roles are found and we investigate user role membership,
transitions between roles, and interaction preferences.

1 Introduction

Online networks rely extensively on user contributions and participation for their
vibrancy. This requires that users perform certain activities and take on specific
roles within the network. In this paper we take a distinct approach to identify
latent role behaviors which persist over time by examining interaction patterns
and structural positions of users. Our approach provides a novel way of under-
standing latent mechanisms that underlie the structure and processes of dynamic
networks.

Role discovery has been applied to many networks [22] and incorporated into
static network models [27]. Despite the prevalence of role discovery methods
and applications, no experiments have been presented that show the existence of
persistent roles derived directly from data. While network-specific roles are useful
for many purposes, identifying a set of roles which commonly occur in online
social networks enables new methods for comparative analysis which emphasize
relationships between roles.

In this paper, we present a methodology for discovering and tracing persis-
tent roles over time. We discover roles for 26 network snapshots of online social
networks from two datasets (Facebook and Scratch). These roles are found to
persist both within and between the network snapshots from both datasets. We
then conduct a summary analysis to demonstrate how roles may help interpret
network structure by considering role membership, transitions between roles,
and interaction preferences.

In our experiments, we discover six roles from the networks and show these
roles are both distinct from one another and occur in every network from both
datasets. These roles are: popular, friendly, explorer, reciprocated, community



member and active-community member. While the discovered roles are common
to both datasets and persist over time, we find the relationships between roles
may differ. These findings suggest common roles shared among social interaction
networks are useful for modeling and comparing networks.

2 Related Work

2.1 Role Discovery

An overview of role discovery approaches is provided in [21] which discusses
graph-based, feature-based, and hybrid definitions of roles and methods for their
discovery from graph and node-attribute data. They show that feature-based
roles are more flexible and capable of capturing more complex roles. A framework
for feature-based role discovery is introduced and discusses classes of approaches
for role feature construction and role assignment.

The use of non-negative matrix factorization (NMF) for discovering node
roles was introduced in [9]. In that paper, the authors use a method [10] to
generate features which aggregate various per-node structural attributes. This
node-attribute matrix is then decomposed using NMF and the resulting basis
vectors correspond to node roles in the network. Later work adds additional
constraints to NMF which can be used to specify expectations of sparsity or
diversity of the roles [7]. The work in our paper differs as we discover persistent
roles across datasets and time using independent decompositions of network
snapshots.

Other work [5, 30] uses role-labeled nodes to identify the roles of unlabeled
nodes. However, the roles in their work are not defined in terms of structural
positions in the network but rather functional occupations in an organization
(e.g., roles held in technology companies: research & development, executives,
and human resources). That is, the roles are defined in terms of domain knowl-
edge and non-structural node features. The authors then introduce a classifier for
these functional roles which incorporates information derived from the network
structure.

Aside from identifying patterns of structural positions, roles have also been
used in the context of information cascades to identify groups of nodes which
have similar influence and blockage attributes [6].

A feature-based approach for automatic detection of user roles in online fo-
rums is presented in [4]. Their method uses principal component analysis (PCA)
and agglomerative clustering of feature profile data to find roles; where each
cluster corresponds to a role. Another feature-based approach using a mixture
model of roles is presented in [27]. Nodes are first clustered using node features
derived from the network structure and then a qualitative assignment of nodes
to roles follows.

Role discovery has been used to assist in creating compact representations of
networks. In [25] a method is introduced for generating multi-resolution maps of
networks by constructing a hierarchy of roles defined with regular equivalence.
The different levels of the hierarchy are used for different resolution maps.



2.2 Network Models with Roles

In [22] the role membership for a series of network snapshots are found and
analyzed and the roles are used to construct a transition model of role mem-
berships. Every node in every snapshot is represented as a mixed membership
of roles. This mixed membership may change over time and a transition model
captures the likelihood of transitioning between roles. Their method assumes
roles are stationary and uses the same set of basis vectors (roles) for every snap-
shot rather than directly estimate roles from each snapshot. The authors suggest
roles may generalize over time and across datasets, but do not provide support
for this statement. To our knowledge, this paper is the first to present evidence
of common, persistent roles derived directly from data.

Some models which incorporate roles do not distinguish between node fea-
tures derived from network structure and those external to the graph. In [28],
a probabilistic model which incorporates node features as dependent on latent
factors (roles) is introduced. While these features could be derived from network
structure as described in [21], the experiments performed in [28] only include ex-
ternal features such as document terms and voting counts. The network topology
is ignored.

Communities provide extra structural information which can benefit role
discovery. In both [23] and [8], communities are simultaneously detected with
roles. Roles are used as latent factors of which node attributes are dependent.

Finally, [14] and [29] add roles to topic models where authors may take a role
when generating a document and the topic of the document is dependent on the
author’s role.

3 Discovering Persistent Roles

We aim to find roles which best characterize the nodes in a network. The network
datasets we consider in this paper are dynamic networks which include times-
tamped, directed interactions between node pairs. Each interaction represents a
single action such as one user messaging another. As our primary goal is to iden-
tify persistent roles over time, we will partition the dynamic network D = (N , E)
into snapshots, St for each timestep t. The original edges E are timestamped,
directed interactions between node pairs and only edges occurring at timestep
t, Et, are included in snapshot St = (Nt, Et). The edges in Et are converted from
individual interactions to directed, weighted edges, where the edge weight is the
total number of directed interactions occuring between the nodes in St. Nodes N
are derived from the edges E and all nodes present at timestep t, Nt, participate
in at least one edge in Et.

3.1 Temporal Network Snapshots

The snapshots we construct are non-overlapping and each snapshot St spans
the same length of time, known as the observation window Ω. The structure of



network snapshots are defined by the activity which occurred within the obser-
vation window, thus there is no accumulation of inactive edges. The observation
window Ω is calculated so that most time deltas δtij between interactions of
any two nodes i and j are smaller than Ω. Specifically, we find the average time
deltas ⟨δtij⟩ for each interacting node pair. The 90th percentile of all average
time deltas is then used as Ω. We assume most connected pairs do not contin-
ually disconnect and reconnect and thus choosing an Ω which preserves most
edges is appropriate. This methodology is described with more detail in [15, 19].

3.2 Role Feature Selection

Table 1: Node features

Name Description
1 In-degree Count of incoming edges
2 Out-degree Count of outgoing edges
3 Weighted in-degree Count of incoming interactions
4 Weighted out-degree Count of outgoing interactions
5 Reciprocity Ratio of reciprocated edges over all outgoing edges
6 New activity count Count of new outgoing edges
7 Social strategy Ratio of new outgoing edges over all outgoing

edges [15]
8 Betweenness centrality Number of all shortest paths which pass through

the node
9 PageRank PageRank measure of centrality [17]

10 Weighted PageRank Weighted variant of PageRank
11 Transitivity Probability any two neighbor nodes are connected

(local clustering coefficient) [26]
12 Weighted transitivity Weighted variant of transitivity [2]

From the network snapshots we find D structural and behavioral features
(D = 12 for our experiments) for all n ∈ Nt nodes and construct a matrix
of node attributes Xt ∈ RD×Nt . The complete list of features used is shown
in Table 1. Most of the features listed in Table 1 have common definitions, a
few do not. The new activity count is computed for each node as the difference
of the set of nodes reached from outgoing edges at the current snapshot St

and the set of nodes reached from outgoing edges at the previous snapshot
St−1. Similarly, social strategy is a ratio of the count of new outgoing edges
(outgoing edges at snapshot St) that did not exist at the previous snapshot
over the total number of outgoing edges for the given node at snapshot St,
num. of new outgoing edges
num. of all outgoing edges . Users with a higher social strategy value tend to prefer

making new connections (social explorer, or simply explorer) rather than preserve
older connections (social keeper) [15].

These features were selected to enable the representation of the unique struc-
tural and behavioral patterns which may exist in online social networks which in-
clude individual, timestamped interactions. For example, while in-degree (count
of incoming edges) captures popularity, the weighted in-degree (count of incom-



ing interactions, e.g., in Facebook, number of incoming wall comments) cap-
tures the overall level of incoming activity for the target node. Features such as
transitivity encode information about a node’s neighborhood while betweenness
centrality and PageRank capture global information about the node’s position
in the network. The reciprocity, new activity count, and social strategy pertain
to interaction behaviors.

3.3 Role Discovery and Membership

To find roles, a decomposition of a node-attribute matrix is performed and the
resulting basis vectors are the discovered roles. We use non-negative matrix fac-
torization (NMF) [13] for this task. The role vectors contain values correspond-
ing to each feature which can be used to characterize the role — features with
higher values are more characteristic of the role. For example, a role with a large
in-degree might be labeled as popular.

NMF decomposes a matrix X ∈ RD×N into a basis matrix U ∈ RD×L

and a coefficient matrix V ∈ RL×N , where L is the factorization rank of the
decomposition X ≈ UV. Each of the L columns of the basis matrix U are the
basis vectors or factors (roles) and the N columns of the coefficient matrix V
are the coefficient (weight) vectors which explain how each observation xi is
represented as a mixture of roles.

NMF is independently run on the matrix of node attributes for each snapshot
Xt with the same parameters. We use the standard Euclidean update equation
and Frobenius cost function. We use non-negative double singular value decom-
position (NNDSVD) [3] to initialize NMF. This helps NMF converge faster and
introduces a bias for sparse factors (roles). We do not expect roles will have non-
zero values for all features as we assume roles are a parts-based representation
[12] of node attributes. Each role is characterized by a subset of all available
features.

3.4 Model Selection

A critical parameter of NMF is the factorization rank L. The common methods
for selecting the rank value include: MDL [20], AIC [1], and error curves [16].
We initially tried to use MDL but found model size dominated the description
length and resulted in the selection of low-performing models.

Recent existing work on role discovery with NMF [9, 22] used MDL and we
attempted to use the same MDL function definition. Unfortunately, it appears
the function does not appropriately balance between the model size and error
for our datasets. We found that in all cases, the model with the lowest MDL had
the smallest rank possible (for NMF with NNDSVD), L = 2.

We inspected the error curves, shown in Figure 1, and found that L = 2
results in a relatively large error. These curves were computed by calculating the
root-mean-square error (RMSE) between the actual data X and corresponding
NMF approximation UV. Instead of MDL, we elected to use the knee of the
error curve to estimate the rank. As shown in Figure 1, networks across both
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Fig. 1: Error curves for the first, mid, and final network snapshots in Facebook (top)
and Scratch (bottom).

datasets had a similar error curve. Ranks L = 5 and L = 6 correspond to the
knee point for most of the curves, and therefore are appropriate choices. Rank
L = 6 is used for the factorization of all networks in our experiments.

3.5 Tracking Roles

Given T snapshots and node-attribute matrices for each snapshot Xt, t =
0 . . . T −1, NMF is used to perform the approximate decomposition Xt ≈ UtVt.
Recall the basis matrix Ut corresponds to role features and the coefficient matrix
Vt corresponds to role membership weights for each user. We hypothesize that
roles may persist over time and need to verify whether the same roles do occur
in consecutive basis matrices; i.e., do roles from Ut appear in Ut+1.

This role tracking is performed by measuring the similarity of every pair
of role vectors between consecutive snapshots {ui

t × uj
t+1 | i, j ∈ 1 . . . L}. We

use cosine similarity to evaluate the pairs and ensure that each role in snap-
shot t maps to only one role in snapshot t + 1 (the mapping is injective). We
use a threshold value (0.75) to determine whether a pair matches. That is, if
sim(ui

t,u
j
t+1) > 0.75 then the pair of role vectors match. In practice, we find

most matching pairs in our data have a cosine similarity greater than 0.9.

4 Data

We use two datasets of timestamped, directed interactions to construct dynamic
networks and 26 network snapshots. The first dataset is a collection of Facebook
wall posts [24] available from KONECT1. In Facebook, users may post on each
other’s wall and these posts are typically comments, photos, and web links. Each

1 http://konect.uni-koblenz.de/networks/facebook-wosn-wall



of these posts is recorded as an interaction with a source user (the post author),
a destination user (the owner of the wall), and a timestamp.
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Fig. 2: Number of nodes, edges, and interactions over time in the Facebook and Scratch
networks.
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Fig. 3: Network diameter over time in the Facebook and Scratch networks.

The second dataset is a collection of Scratch project comments [18] extracted
from a general Scratch dataset available from the MIT Media Lab website2.
Scratch is an online social network and web application for writing and sharing
software programs. Programming education is the primary objective of Scratch
and many users are children and young adults. Scratch users write and share
projects; comments may be made on each other’s projects. Similar to Facebook
walls, project comments in Scratch serve the purpose of public communication
between users.

In both datasets, the interactions are used to construct a dynamic network
and then network snapshots. The snapshots are constructed using the methodol-

2 https://llk.media.mit.edu/scratch-data
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ogy discussed in Section 3.1. Figures 2, 3, and 4 show how the size and clustering
of the snapshots from both datasets vary over time. Note that both the Facebook
and Scratch interaction networks are growing over time.

A node-attribute matrix is created for each network snapshot using the fea-
tures described in Section 3.2. Attributes are normalized by min-max normal-
ization with all values belonging to the interval [0, 1].

5 Results

We use the roles found by decomposing the per-snapshot, node-attribute matrix
Xt to answer our research questions. First we demonstrate that a common set
of six persistent roles are found in the series of network snapshots from both
datasets. While the feature proportions of the roles is similar across datasets
and over snapshots, the magnitudes of the vectors change. Correspondingly, the
magnitudes of the coefficient vectors (role membership weights) differ between
snapshots.

We resolve this issue by averaging the basis vectors (roles) across all snap-
shots and then using non-negative least squares (NNLS) [11] to find the optimal
coefficient matrix for the data, given the averaged basis matrix. This normalizes
the role memberships between snapshots and these membership values are used
in the rest of the analysis. Note that since the original basis vectors for all net-
work snapshots had high cosine similarity, the averaged basis vectors also have
a high cosine similarity with every original basis vector.

5.1 Persistent Roles

We use the methodology discussed in Section 3.3 to find roles in each network
snapshot from both datasets. Then we follow the methodology described in Sec-
tion 3.5 to determine whether the discovered roles occur in all snapshots from
each dataset. We find six roles in both datasets which persist over time and



perform a pairwise comparison of the sets of roles from each dataset. There is
a one-to-one correspondence (bijection) of the two sets of six roles, using the
same cosine similarity test as was used for testing the persistence of roles across
consecutive snapshots. That is, the same set of six roles persist over time in both
datasets. We note that several roles are dominated by a single feature which is
not shared with any other role, this suggests a parts-based factorization of node
attributes.

popular friendly reciprocated

explorer active−community member community member

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

in
−

de
gr

ee
ou

t−
de

gr
ee

w
ei

gh
te

d 
in

−
de

gr
ee

w
ei

gh
te

d 
ou

t−
de

gr
ee

re
ci

pr
oc

ity
ne

w
 a

ct
iv

ity
 c

ou
nt

so
ci

al
 s

tr
at

eg
y

be
tw

ee
nn

es
s

pa
ge

ra
nk

w
ei

gh
te

d 
pa

ge
ra

nk
tr

an
si

tiv
ity

w
ei

gh
te

d 
tr

an
si

tiv
ity

in
−

de
gr

ee
ou

t−
de

gr
ee

w
ei

gh
te

d 
in

−
de

gr
ee

w
ei

gh
te

d 
ou

t−
de

gr
ee

re
ci

pr
oc

ity
ne

w
 a

ct
iv

ity
 c

ou
nt

so
ci

al
 s

tr
at

eg
y

be
tw

ee
nn

es
s

pa
ge

ra
nk

w
ei

gh
te

d 
pa

ge
ra

nk
tr

an
si

tiv
ity

w
ei

gh
te

d 
tr

an
si

tiv
ity

in
−

de
gr

ee
ou

t−
de

gr
ee

w
ei

gh
te

d 
in

−
de

gr
ee

w
ei

gh
te

d 
ou

t−
de

gr
ee

re
ci

pr
oc

ity
ne

w
 a

ct
iv

ity
 c

ou
nt

so
ci

al
 s

tr
at

eg
y

be
tw

ee
nn

es
s

pa
ge

ra
nk

w
ei

gh
te

d 
pa

ge
ra

nk
tr

an
si

tiv
ity

w
ei

gh
te

d 
tr

an
si

tiv
ity

Feature

W
ei

gh
t

Role Features

Fig. 5: Features for all roles, computed as average of role basis vectors from all network
snapshots.

Figure 5 shows the discovered roles and their feature weights. The role names
were selected according to the distinguishing features of the roles and we describe
them here. The popular role is defined by the in-degree and centrality features
while the friendly role has larger proportions in out-degree, weighted out-degree,
and the number of new outgoing edges.

The reciprocated role is dominated by the reciprocity feature and captures
the proportion of a node’s outgoing edges which are reciprocated by the receiver
node. A node with perfect reciprocity would have a high membership weight
in this role. The explorer role is dominated by the social strategy feature which
indicates whether a node prefers to interact with new nodes rather than maintain
existing relationships. We have observed that many nodes start as explorers when
they first join the network.

The final two roles, active-community member and community member,
capture the clustering of nodes. Active-community member is dominated by
weighted transitivity which is similar to standard transitivity (local clustering
coefficient) but accounts for the strength of the edge when calculating the coeffi-
cient. As we defined edge weight as the number of directed interactions between
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Fig. 6: Errors plotted for 50 series of randomly rewired networks.

a pair of source and destination nodes, a node with a high weighted transitivity
coefficient is involved in an active community. In contrast, a node with a high
unweighted transitivity coefficient simply participates in a densely-connected
community and we cannot say anything about the activity of the community
without further information.

5.2 Evidence of Role Dependence on Network Structure

We conduct an experiment with synthetic data to demonstrate the discovered
roles capture patterns particular to the datasets. Fifty series of rewired networks
were generated from networks in the original datasets. For each series, one of
the snapshot networks was randomly selected. An increasing percentage of in-
teractions in the network were removed and replaced with the same number
of random interactions. Non-negative least squares (NNLS) is used to find the
optimal role memberships (coefficient matrix) for each of the rewired networks.

The root-mean-square error between the actual data and the optimal approx-
imation is calculated and Figure 6 shows the error increases as more interactions
are randomly rewired. Thus our analysis supports the fact that the discovered
roles reflect an intrinsic property of both social interaction networks, and not an
artifact of the methodology used.

5.3 Role Membership

Using the persistent roles, we compare their distributions of role membership
weights and check for correlations between roles. The role membership corre-
lations (Spearman’s coefficients) were calculated for every snapshot network,



however due to space constraints only the results for the final snapshot from
Scratch is shown in Figure 7.

Active−community member

Community member

Friendly

Popular

Reciprocated

Explorer

Fig. 7: Role correlations for the final snapshot from the Scratch dataset. The upper pan-
els are colored to correspond to positive (blue) and negative (red) correlation. Darker
shaded panels indicate larger correlation. The diagonal panels show the distribution
of role membership weights. The lower panels show a confidence ellipse and smoothed
line of the correlation.

The role membership correlations tend to be similar between all network
snapshots in each dataset with one notable exception. Several correlations
in early Facebook snapshots (popular and friendly, community member and
friendly) shifted from having a negative correlation to a positive correlation.
This change in Facebook may be due to the growth and sudden increase of
activity after the first few snapshots.

5.4 Role Transitions

Nodes may be members of multiple roles and their role memberships may change
over time. We visualize these transitions in Figure 9 for both the Facebook and
Scratch datasets by identifying the top-5% nodes of each role for each network
snapshot and draw a line between the roles of subsequent snapshots if nodes
transition from one role to the other between those two snapshots. We select
the nodes with the highest role membership weights as we expect them to be
exemplary representatives of the roles. The height of the bars corresponds to
the number of nodes with the role. A line is drawn between two roles if at least
10 users transitioned between the roles. The transition lines are sized according
to the logarithm of the number of transitioning users. Since a user may share
multiple roles, some transition lines merge and show users with multiple roles in
common transitioning to a role in the next timestep. Figure 8 helps explain how
to interpret the transition lines.



Fig. 8: A transition line from the red role to the blue role (left). A combined transition
line from the red and green roles to the blue role (right). A combined line corresponds
to transitioning users who belong in the top-5% of multiple roles in a single timestep.
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Fig. 9: The role transitions for the top-5% users in each role over all snapshots for
Facebook (top) and Scratch (bottom).

As shown in [22], role membership of nodes may change over time and under-
standing these transitions allows us to construct predictive models. In this work,
since a set of common roles has been identified, we can also perform comparative
analysis of role transitions between the two datasets.

In both datasets, we see there are many transitions between popular and
friendly roles as well as both community member roles. This is unsurprising as
membership correlation is high for both pairs of roles. Further we note that nei-
ther popular nor friendly nodes ever transition to the explorer role. In contrast,
users do transition from explorer to popular and friendly. This suggests that the
most-popular users are less inclined to form new connections at the same rate
as the top-5% explorer users.

There are also differences in the role transitions between the two datasets. In
Facebook, we observe some community member nodes transition to the explorer
role but this does not occur in Scratch. We hypothesize this may be attributed
to the different uses of the social networks. While Facebook is a general social
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Fig. 10: A subgraph from a Facebook snapshot network. Nodes are colored by their
primary role and sized according to their in-degree. Edges are sized according to the
number of interactions they represent.

network, Scratch is used for teaching programming by schools and it is common
for students in those classes to primarily only interact with other classmates.

5.5 Role Affinity

In this section we determine whether the persistent roles affect user link pref-
erences. As the networks used in this study are directed, we consider both how
roles impact the selection of nodes to interact with (outgoing) as well as how
roles affect the attractiveness of some nodes (incoming). All nodes are assigned
their primary role (the role with highest membership weight) for the role affinity
analysis.

In Figure 10, we have colored nodes according to role and highlighted a sub-
graph for demonstration purposes. A standard force-directed layout algorithm
was used to position the nodes. Note that while nodes with a higher in-degree
tend to be either popular (magenta) or friendly (black), the friendly nodes have
more outgoing interactions (larger outgoing edges). While friendly and popu-
lar roles reside in the core of the subgraph, explorer (green) and reciprocated
(yellow) nodes appear on the periphery.
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Fig. 11: The number of users with a primary role linked to/from other user roles. The
column labels refer to the source node roles (for outgoing edges) and destination node
roles (for incoming edges). The roles on the x-axis refer to the adjacent nodes.

We augment the network visualization with Figure 11 to present the exact
counts of edges between roles. We note the lack of incoming edges to explorer
nodes; evidence of this is also visible in the network of Figure 10.

6 Conclusion

User roles have become a critical component for improving our understanding of
user interactions in online social networks. Persistent roles, shared between mul-
tiple datasets, enable a new comparative analysis method based on relationships
between roles.

In this paper, we present a methodology for identifying persistent roles across
time and datasets. Using this methodology, we find the same six user roles which
capture distinct structural positions in 26 network snapshots from two online
social networks. To our knowledge, this paper is the first to present evidence
of persistent roles independently derived from multiple datasets. Beyond the
discovery of persistent roles, we provide an analysis of the roles and show there
are differences in role membership and interaction across the snapshots.

The findings presented in this paper will be leveraged in our future work
to develop probabilistic models for the prediction of role membership and node
attributes. We will also investigate the composition and evolution of communities
viewed as interactions of roles.
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