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Abstract
Automatic classification of documents is an important area
of research with many applications in the fields of document
searching, forensics and others. Methods to perform classifi-
cation of text rely on the existence of a sample of documents
whose class labels are known. However, in many situations,
obtaining this sample may not be an easy (or even possible)
task. Consider for instance, a set of documents that is re-
turned as a result of a query. If we want to separate the
documents that are truly relevant to the query from those
that are not, it is unlikely that we will have at hand la-
belled documents to train classification models to perform
this task. In this paper we focus on the classification of an
unlabelled set of documents into two classes: relevant and
irrelevant, given a topic of interest. By dividing the set of
documents into buckets (for instance, answers returned by
different search engines), and using association rule mining
to find common sets of words among the buckets, we can
efficiently obtain a sample of documents that has a large
percentage of relevant ones. (I.e., a high “purity”.) This
sample can be used to train models to classify the entire
set of documents. We try several methods of classification
to separate the documents, including Two-class SVM, for
which we develop a heuristic to identify a small sample of
negative examples. We prove, via experimentation, that our
method is capable of accurately classify a set of documents
into relevant and irrelevant classes.

Keywords: Document classification, frequent itemsets,
support vector machines, partially supervised classifica-
tion.

1 Introduction

In information retrieval, such as content-based image
retrieval, web-page classification, or document retrieval,
we face an asymmetry between positive and negative
examples [22, 4]. Suppose, for example, we submit a
query to multiple search engines. Each engine retrieves
a collection of documents in response to our query.
Such collections include, in general, both relevant and
irrelevant documents. Suppose we want to discriminate
the relevant documents from the irrelevant ones. The
set of all relevant documents in all retrieved collections
represent a sample of the positive class, drawn from an

underlying unknown distribution. On the other hand,
the irrelevant documents may come from an unknown
number of different “negative” classes. In general, we
cannot approximate the distributions of the negative
classes, as we may have too few representatives for
each of them. Hence, we are facing a problem with
an unknown number of classes, with the user interested
in only one of them.

Modelling the above problem as a two-class prob-
lem, may impose misleading requirements, that can
yield poor results. For example, lets assume for a mo-
ment that the positive and negative labels are available,
and all negatives are “alike”. We can apply Fisher dis-
criminant analysis, and therefore project the data onto a
subspace in which the ratio of the between-class scatter
over the within-class scatter is maximized [7]. By doing
so we require that the negative examples, as well as the
positives, shall cluster in the discriminating subspace.
This is an unnecessary requirement that can damage
the accuracy of the resulting model. In fact, most likely
negative examples belong to different classes, and the
few examples available per class cannot be representa-
tive of the underlying distributions.

As such, a two-class model may not reflect the
actual nature of the data. We are definitely better off
focusing on the class of interest, as positive examples in
this scenario have a more compact support, that reflects
the correlations among their feature values.

Moreover, more often than not, the class labels of
the data are unknown, either because the data is too
large for an expert to label it, or because no such expert
exists. In this work we eliminate the assumption of
having even partially labelled data.

In this work we focus on document retrieval, and
develop a technique to mining relevant text from unla-
belled documents. Specifically, our objective is to iden-
tify a sample of positive documents, representative of
the underlying class distribution. The scenario of a
query submitted to multiple search engines will serve



as running example throughout the paper, although the
technique can be applied to a variety of scenarios and
data. Our approach reflects the asymmetry between
positive and negative data, and does not make any par-
ticular and unnecessary assumption on the negative ex-
amples. After identifying the sample of positive exam-
ples, we employ several classification methods to sepa-
rate the documents in the data set. Specifically, we used
One-class SVM, Two-class SVM, and the techniques of
the system LPU [16] for the classification part. In or-
der to be able to apply Two-class SVM, we developed a
simple heuristic that finds a threshold capable of iden-
tifying a few negative examples from the data set, given
the characteristics of the positive sample obtained.

The rest of the paper is organized as follows. Sec-
tion 2 covers the related work. Section 3 presents the
DocMine algorithm employed to identify the positive
examples. Section 4 explains the details of the docu-
ment classification step, including the way of obtaining
a sample of negative examples. Section 5 shows the
experimental results. Finally in Section 6 we present
conclusions and future work.

2 Related Work

In [9] the authors discuss a hierarchical document
clustering approach using frequent set of words. Their
objective is to construct a hierarchy of documents for
browsing at increasing levels of specificity of topics.
The algorithm starts constructing, for each frequent
itemset (i.e., set of words) in the whole document set,
an initial cluster of all the documents that contain this
itemset. Then, it proceeds making the clusters disjoint.
To this extent a measure of goodness of a cluster for a
document is used: a cluster is “good” for a document
if there are many frequent items (with respect to the
whole document set) in the document that are also
frequent within the cluster. Hence, each document is
removed from all the initial clusters but the one that
maximizes this measure of goodness. This stage gives
a disjoint set of clusters, that is used to construct a
tree of groups of documents. The tree is built bottom-
up by choosing for each cluster Ck at a given level
the unique parent (cluster) with the largest similarity
score. By merging all documents in Ck into a single
conceptual document, the similarity score between Ck

and its candidate parents is measured using a criterion
similar to the measure of goodness of a cluster for a
document.

[2] considers the problem of enhancing the perfor-
mance of a learning algorithm allowing a set of un-
labelled data augment a small set of labelled exam-
ples. The driving application is the classification of Web
pages. Although similar to our scenario, the technique

depends on the existence of labelled data to begin with.
(This technique could be readily used after ours to learn
a good classifier.)

Similarly, the work in [15] makes use of unlabelled
documents to construct classifiers with enhanced per-
formance. It is assumed that a set of (labelled) posi-
tive documents is given, and a (larger) set of unlabelled
documents is available. The technique initially consid-
ers the unlabelled data as negatives. It then applies
an iterative naive Bayes classifier, combined with the
EM algorithm to re-estimate class posterior probabili-
ties. Positive documents (called “spy”) are introduced
in the set of unlabeled data to estimate which docu-
ments are most likely the actual negatives.

The authors in [11] exploit semantic similarity be-
tween terms and documents in an unsupervised fashion.
Documents that share terms that are different, but se-
mantically related, will be considered as unrelated when
text documents are represented as a bag of words. The
purpose of the work in [11] is to overcome this limita-
tion by learning a semantic proximity matrix [6] from a
given corpus of documents by taking into consideration
high order correlations. Two methods (both yielding
to the definition of a kernel function) are discussed. In
particular, in one model, documents with highly cor-
related words are considered as having similar content.
Similarly, words contained in correlated documents are
viewed as semantically related.

The work we present here serves a similar purpose,
by using association rule mining. The search for fre-
quent set of words, in a segmented corpus of exam-
ples, allows the selection of documents that share co-
occurrent terms, thereby considered to have a similar
content. Our method views documents as bags of words,
for the purpose of mining frequent itemsets, and, at the
same time, views itemsets (i.e., set of words) as bags of
documents (i.e., the documents that contain them), for
the purpose of retrieving the texts that have such words
expressed within. An analog duality is also observed in
Kandola et al. (2002).

3 The DocMine Algorithm

Given a document, it is possible to associate with
it a bag of words (Joachims, 1998; Dumais et al.,
1997; Leopold & Kindermann, 2002). Specifically, we
represent a document as a binary vector d ∈ <n, in
which each entry records if a particular word stem
occurs in the text. The dimensionality n of d is
determined by the number of different terms in the
corpus of documents (size of the dictionary), and each
entry is indexed by a specific term.

Going back to our example, suppose we submit
a query to s different search engines. We obtain s



collections, or buckets, of documents

Bj = {di}j , j = 1, . . . , s(3.1)

While many documents retrieved by a specific
search engine (a bad one) might be irrelevant, the rele-
vant ones are expected to be more frequent in the ma-
jority of buckets. In addition, since we can assume that
positive documents are drawn from a single underlying
distribution, a compact support unifies them across all
buckets. On the other hand, the negatives manifest a
large variation. We make use of these characteristics to
develop a technique that discriminates relevant docu-
ments from the irrelevant ones. In details, we proceed
as follows.

We mine each bucket Bj to find the frequent
itemsets that satisfy a given support level. Each
resulting itemset is a set of words. The result of this
process is a collection of sets of itemsets, one set for
each bucket:

Fj = {Wi|Wi is a frequent itemset in bucket j}(3.2)

for j = 1, . . . , s, where it is possible that Fj = ∅, for
some j. Now we compute all itemsets that are frequent
in m buckets

Im = {Wi|Wi ∈ Fj1 ∩ Fj2 ∩ . . . ∩ Fjm}(3.3)

for distinct j1, . . . , jm. In general m = bs/2c + 1.
In our experiments we set m = s since we consider
a limited number of buckets (s = 5), driven by the
number of available documents per topic. We wish
now to retrieve the documents that support the itemsets
that are frequent in m buckets. Then, for each Wi ∈
Im, we select, in each of the m buckets that contain
Wi as frequent itemset, the documents that has Wi

expressed within. The resulting collection of documents
P represent the presumed positive documents, relevant
to our query.

The algorithm, which we call DocMine (Document
Mining)([1] contains a description of DocMine and pre-
liminary results on the purity of the sample of positives
obtained) is summarized in the following. The algo-
rithm takes as input the s buckets of documents, and
the minimum support (Supmin) for the computation of
frequent itemsets.

Algorithm 3.1. (DocMine)

1. Input: s buckets of documents Bj = {di}j , j =
1, . . . , s, Supmin,m.

2. Compute frequent itemsets in each bucket Bj :

Fj = {Wi|Wi is a frequent itemset in bucket j},
j = 1 . . . , s

3. Compute all itemsets that are frequent in m
buckets:

Im = {Wi|Wi ∈ Fj1 ∩ Fj2 ∩ . . . ∩ Fjm}
4. Set P = ∅.
5. for each Wi ∈ Im

• for each l = 1, . . . , m such that Wi ∈ ∩m
l=1Fjl

– for each d ∈ Bjl

∗ if d contains Wi

· P = P ∪ {d}

6. Output: the set P (presumed positive documents)

Figure 1 shows a functional diagram of the algo-
rithm.
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Figure 1: Algorithm DocMine.

It is important to remark here that the DocMine
algorithm can be tuned to ignore small size itemsets



(i.e., sets of less than t items). The reason for this is that
some words (or even small combinations of words) may
be common across documents of many different topics
(they would not discriminate). Our experience tells us
that, for instance, combinations of two frequent words
(itemsets of size two) are not sufficient to discriminate
among different topics.

4 Document Classification

Given the set P of (presumed) positives computed by
the DocMine algorithm, we can proceed towards the
definition, and training of a classifier. We wish to make
use not only of P , but also of the original whole set of
documents, with the objective of bootstrapping negative
documents as well.

We need to find a suitable representation of the
documents for the purpose of classifying them. The set
P contains the documents that support the collection
of frequent itemsets Im. Such itemsets contain the
words of the dictionary that allowed the discrimination
of P , and discriminant features is what is needed for
classification. Hence, we can consider the union of
the words (i.e., frequent items) in Im, and represent
a document in P as a bag of frequent itemsets. That
is: each entry of d ∈ P is indexed by a word in
Im. The actual value of the entry is the frequency of
the corresponing word in the document. This gives a
suitable representation since it is compact, and captures
the distinctive characteristic of the documents in P .
In this respect, the DocMine algorithm can be seen
as a dimensionality reduction and feature extraction
procedure for the target class (or topic of interest). The
dimensionality of d is determined by the number of
frequent items in Im. In our experiments it varies from
40 to 60.

To select a set of likely negative documents from
the buckets we derive a data-driven threshold value.
We make use of the fact that the average number of
(distinct) frequent items is expected to be larger in
positive documents rather than in negatives. Let P be
the set of positives given in output by the DocMine
algorithm. We denote with A the set of all the
documents in the buckets. Note that all the documents
share the same bag of frequent itemsets representation.
For each document d in P , we count the number Nd of
non-zero entries (i.e., number of distinct frequent items
in d). We then consider the inverse 1/Nd, and compute
the average AveP = 1/|P |∑P (1/Nd) for all documents
in P . We proceed similarly for the documents in
A, and obtain the corresponding average value AveA.
Since we are averaging over the inverse of numbers
of non zero entries in documents, AveA will be larger
than AveP . We derive an estimate of the expected

average value AveN for the negatives from the equation:
AveA = (AveP + AveN )/2. (In reality this equation
may not hold, as the distribution of the positives and
negatives is not likely to be the same.) Thus we set
AveN = 2AveA −AveP . We then consider as negatives
the documents d ∈ (A− P ) satisfying 1/Nd > AveN .

5 Experimental Results

To test the feasibility of our approach we use the
Reuters-21578 text categorization collection [13], omit-
ting empty documents and those without labels. Com-
mon and rare words are removed, and the vocabulary
is stemmed with the Porter Stemmer [17]. After stem-
ming, the vocabulary size is 12113. We also combine
the result provided by the DocMine algorithm with sev-
eral classification approaches, and compare the obtained
accuracy levels.

5.1 Results with the DocMine algorithm In our
experiments, we consider five buckets of documents (s =
5), and vary the percentage R of relevant documents
(i.e., concerning the topic of interest) in each bucket
from 50% to 80%. As topics of interest, we select the
topics with the largest number of documents available
in the data set. Once we have identified a topic, the
non relevant documents are randomly selected from the
remaining topics. We observe that some documents in
the Reuters data have multiple topics associated (e.g.,
grain and crops). In our experiments, a document is
considered positive if it has the topic of interest among
its associated topics. For each topic examined, we test
three different values of the minimum support (10%,
5%, 3%).

We have also investigated different threshold values
(from 2 to 5) for the cardinality of the frequent itemsets
(|Wi|). Only frequent itemsets of size above (or equal to)
the threshold are considered for the retrieval of relevant
documents. The rationale beyond this test is that if an
item is too common across different documents, then it
would have little discriminating power. The setting of a
proper threshold for |Wi| allows to discard frequently
used words (not removed during preprocessing) that
are not discriminating. Our experiments show that
threshold values of 4 or 5 (depending on the value of
the minimum support) give good results.

In the following tables we report, for each topic and
each value of R, the number of (retrieved) documents
in P (|P |), the number of positive (relevant) documents
in P (|P+|), the percentage of positive documents in
P (%|P+|) –precision –, and the percentage of positive
documents retrieved by P (r) – recall–. When a dash
“-” is reported, instead of a numerical value, it means
that there are no frequent itemsets, of corresponding



size, common to the five buckets. Each caption has (in
parenthesis) the total number of positive documents ver-
sus the total number of documents in the five buckets.

We observe that, although we report the recall
values for all the experiments, the most important
measure of the effectiveness of this step is the precision
obtained in the sample. The reason is that precision
quantifies the “purity” of the sample, whose documents
we intend to label as relevant to the topic at hand.

We have considered three different topics in our
experiments: earn, acq, and grain. The data set
contains 3776 documents of topic earn, 2210 of topic
acq, and 570 of topic grain. In each experiment, we
distribute all the available positives among the buckets,
and adjust the number of negatives accordingly to the
R value considered.

Tables 1-4 show the results for the topic earn.
Figures 2-4 plot the precision values for the topic earn,
for increasing threshold t on the itemset size |Wi|. Each
line corresponds to a value of R (percentage of positive
documents in each bucket). The plots show that, in
each case, the setting of t = 5 allows the achievement
of a precision value very close to 1. For larger support
values (5% and 10%), t = 4 suffices for the selection
of an almost “pure” sample of documents. Even in the
adverse condition of 50% of irrelevent documents in the
buckets, the DocMine algorithm is able to achieve a very
high precision. Similar results are shown in Tables 5-8
and Figures 5-7 for the topic acq.

Tables 9-12 show the results for the topic grain.
Since in this case we have available a small number of
positives (570), we have considered only the two larger
support values (10% and 5%) (Supmin = 3% generated
an intractable large number of frequent itemsets for our
current implementation of the algorithm). Moreover,
for larger values of |Wi|, often the five buckets had no
frequent itemsets in common, due to the limited number
of positives available. In figure 8, we summarize the
precision values as a function of t, corresponding to
Supmin = 5%. For R = 70% and R = 80%, and t = 4,
a precision value above 90% is achieved (97% and 92%,
respectively) also in this case, for which a limited sample
of positives is available.

5.2 Classification Results We compare the classi-
fication results of a number of different approaches:

1. DocMine and One-class SVM [19, 20];

2. DocMine and Two-class SVM [21, 5] (with boot-
strapped negatives as described in Section 4)

3. DocMine and (SPY, SVM) [15, 16];

4. DocMine and (SPY, EM) [15, 16];

5. DocMine and (Rocchio, SVM) [18, 16];

6. DocMine and (Rocchio, EM) [18, 16];

LIBSVM [3] is used to build the SVM classifier in
1 and 2 above. We used a Gaussian kernel K(xi,x) =
e−γ‖xi−x‖2 , with γ set to the inverse of the number of
input features. We test the sensitivity of the classifi-
cation accuracy for different values of the soft-margin
parameter.

In 3, 4, 5, and 6 above, the techniques SPY, SVM,
Rocchio, and EM were tested using the classification
system LPU [16]. The method SPY or Rocchio is used
to identifying a set of negative documents from the
unlabeled set (documents in our buckets). SVM or EM
is then used to build and select a classifier [14]. We
emphasize that all the techniques in [14, 16] assume the
existence of a set of (labeled) positive documents. Thus,
we first apply our DocMine algorithm to obtain such a
collection of positives.

Classification results for the topics earn and acq, for
different values of Supmin and minimum cardinality t,
are shown in Figures 9-14. Accuracy is tested on the
whole set of documents in our buckets. Labels of docu-
ments are used only to test accuracy, and never during
training. The top plot of each figure shows the preci-
sion values of a one-class SVM trained with the set P
computed by DocMine. The results for different tested
values of the soft margin parameter “nu” are reported.
The middle plot of each figure shows the precision val-
ues of a two-class SVM trained with the set P computed
by DocMine, and the set of negatives obtained via the
technique described in Section 4. Here also, we show
the results for different tested values of the soft mar-
gin parameter “nu”. The two-class SVM, in general,
is able to achieve higher levels of accuracy, indicating
that our technique to bootstrapping negatives has the
potential of enhancing classification performance. For
a variety of combinations of values of Supmin and t,
(Middle plots of Figures 10, 11, 12), the two-class SVM
gives excellent performance, especially in adverse con-
ditions where the percentage of negatives in the buck-
ets is high. Robustness across different “nu” values is
also high. The bottom plots show the precision values
of different combinations of techniques ((SPY, SVM),
(SPY, EM), (Rocchio, SVM), (Rocchio, EM)) applied
using the set P computed by DocMine. As also pointed
out in [16], the performance achieved by these methods
at convergence may often be considerably worst than
the one achieved at an intermediate step. Here we re-
port the best precision value (hand picked) achieved by
any of the steps (intermediate or at convergence). For
the topic earn the combination (Rocchio, EM) gives the
best performance across all conditions (Bottom plots of



Figures 9-12). For the topic acq the combination (SPY,
SVM) gives the best performance (a monotonically in-
creasing accuracy for larger values of R). As expected,
different methods may be well suited for differet data
sets. Nevertheless, our techniques to bootstrap positives
and negatives, combined with two-class SVMs, show a
robust behavior across the conditions and data tested
(for values of “nu” in the range 0.15-0.20). This is a
very promising and encouraging result for the construc-
tion of accurate classifiers without using any labels for
training.

Table 1: Results for topic earn. R = 50% (3776/7552).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 5323 2824 0.53 0.74

10% ≥ 3 2538 2204 0.87 0.58
≥ 4 1848 1848 1.00 0.49
≥ 5 1103 1103 1.00 0.29
≥ 2 6441 3012 0.47 0.80

5% ≥ 3 4653 2597 0.56 0.69
≥ 4 1972 1913 0.97 0.51
≥ 5 1284 1284 1.00 0.34
≥ 2 7246 3597 0.50 0.95

3% ≥ 3 5789 2943 0.51 0.78
≥ 4 3671 2408 0.66 0.64
≥ 5 1642 1628 0.99 0.43

Table 2: Results for topic earn. R = 60% (3776/6294).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 4453 2932 0.66 0.78

10% ≥ 3 2725 2250 0.83 0.60
≥ 4 1842 1841 0.99 0.49
≥ 5 1403 1403 1.00 0.37
≥ 2 5684 3507 0.62 0.93

5% ≥ 3 3985 2668 0.67 0.71
≥ 4 2045 1999 0.98 0.53
≥ 5 1381 1376 0.99 0.36
≥ 2 5859 3561 0.61 0.94

3% ≥ 3 4636 2928 0.63 0.78
≥ 4 3311 2490 0.75 0.66
≥ 5 1879 1875 0.99 0.50

6 Conclusions

We have introduced a new algorithm, based on associ-
ation rule mining, to select a representative sample of
positive examples from a given set of unlabelled docu-

Table 3: Results for topic earn. R = 70% (3776/5394).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 3592 2940 0.82 0.78

10% ≥ 3 2515 2274 0.90 0.60
≥ 4 1849 1842 0.99 0.49
≥ 5 1674 1674 1.00 0.44
≥ 2 4784 3467 0.72 0.92

5% ≥ 3 3253 2747 0.84 0.73
≥ 4 2027 1989 0.98 0.53
≥ 5 1644 1642 0.99 0.43
≥ 2 4982 3555 0.71 0.94

3% ≥ 3 4422 3447 0.78 0.91
≥ 4 3550 3079 0.87 0.81
≥ 5 1807 1803 0.99 0.48

Table 4: Results for topic earn. R = 80% (3776/4720).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 3192 2810 0.88 0.74

10% ≥ 3 2398 2279 0.95 0.60
≥ 4 1394 1393 0.99 0.37
≥ 5 1205 1205 1.00 0.32
≥ 2 4151 3483 0.84 0.92

5% ≥ 3 3003 2763 0.92 0.73
≥ 4 2126 2111 0.99 0.56
≥ 5 1589 1587 0.99 0.42
≥ 2 4294 3493 0.81 0.93

3% ≥ 3 3854 3275 0.85 0.87
≥ 4 3059 2780 0.91 0.74
≥ 5 2447 2377 0.97 0.63

Table 5: Results for topic acq. R = 50% (2210/4420).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 3413 1896 0.56 0.86

10% ≥ 3 2015 1414 0.70 0.64
≥ 4 - - - -
≥ 5 - - - -
≥ 2 4014 2157 0.54 0.98

5% ≥ 3 3131 818 0.58 0.37
≥ 4 1654 1072 0.65 0.49
≥ 5 - - - -
≥ 2 3756 1971 0.52 0.89

3% ≥ 3 2495 1510 0.61 0.68
≥ 4 1383 892 0.64 0.40
≥ 5 - - - -



Table 6: Results for topic acq. R = 60% (2210/3685).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 2728 1927 0.71 0.89

10% ≥ 3 1874 1456 0.78 0.66
≥ 4 400 369 0.92 0.17
≥ 5 - - - -
≥ 2 3345 2173 0.65 0.98

5% ≥ 3 2598 1823 0.70 0.82
≥ 4 1582 1312 0.83 0.59
≥ 5 451 415 0.92 0.19
≥ 2 3609 2193 0.61 0.99
≥ 3 3196 2002 0.63 0.91

3% ≥ 4 2321 1593 0.69 0.72
≥ 5 1153 1041 0.90 0.47

Table 7: Results for topic acq. R = 70% (2210/3160).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 2515 1993 0.79 0.90

10% ≥ 3 1753 1475 0.84 0.67
≥ 4 680 627 0.92 0.28
≥ 5 - - - -
≥ 2 2964 2186 0.74 0.99

5% ≥ 3 2359 1879 0.80 0.85
≥ 4 1560 1397 0.90 0.63
≥ 5 709 665 0.94 0.30
≥ 2 3105 2194 0.71 0.99
≥ 3 2768 2074 0.75 0.94

3% ≥ 4 1793 1380 0.77 0.62
≥ 5 1052 950 0.90 0.43

Table 8: Results for topic acq. R = 80% (2210/2763).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 2370 2067 0.87 0.94

10% ≥ 3 1712 1554 0.91 0.70
≥ 4 850 815 0.96 0.37
≥ 5 - - - -
≥ 2 2579 2187 0.85 0.99

5% ≥ 3 2187 1912 0.87 0.87
≥ 4 1553 1456 0.94 0.66
≥ 5 861 830 0.96 0.38
≥ 2 2705 2186 0.81 0.99
≥ 3 2275 1931 0.85 0.87

3% ≥ 4 1999 1719 0.86 0.78
≥ 5 940 902 0.96 0.41

Table 9: Results for topic grain. R = 50% (570/1140).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 895 517 0.58 0.91

10% ≥ 3 - - - -
≥ 4 - - - -
≥ 5 - - - -
≥ 2 1016 554 0.55 0.97

5% ≥ 3 659 399 0.61 0.70
≥ 4 - - - -
≥ 5 - - - -

Table 10: Results for topic grain. R = 60% (570/950).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 687 507 0.74 0.89

10% ≥ 3 - - - -
≥ 4 - - - -
≥ 5 - - - -
≥ 2 831 555 0.67 0.97

5% ≥ 3 515 421 0.82 0.74
≥ 4 - - - -
≥ 5 - - - -

Table 11: Results for topic grain. R = 70% (570/814).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 688 522 0.76 0.92

10% ≥ 3 110 110 1.00 0.19
≥ 4 - - - -
≥ 5 - - - -
≥ 2 762 561 0.74 0.98

5% ≥ 3 626 503 0.80 0.88
≥ 4 174 168 0.97 0.29
≥ 5 - - - -

Table 12: Results for topic grain. R = 80% (570/713).

Supmin |Wi| |P | |P+| %|P+| r
≥ 2 627 529 0.84 0.93

10% ≥ 3 237 232 0.98 0.41
≥ 4 - - - -
≥ 5 - - - -
≥ 2 677 562 0.83 0.99

5% ≥ 3 579 510 0.88 0.89
≥ 4 296 273 0.92 0.48
≥ 5 - - - -
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Figure 2: Precision values for topic earn and
Supmin = 3%. The x-axis is the minimum
cardinality of common itemsets (t).
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Figure 3: Precision values for topic earn and
Supmin = 5%. The x-axis is the minimum
cardinality of common itemsets (t).

ments. Our experiments show that our method is capa-
ble of selecting sets of documents with precision above
90% in most cases, when frequent itemsets of cardinal-
ity 4 or 5 are considered. We emphasize that, in all
cases, the precision tends to reach high levels, as the
cardinality of the common itemsets grows, regardless of
the value of the support, or the percentage of relevant
documents in the original buckets.

We have used the sample P of sifted documents
to train classification models. We conducted experi-
ments using One-Class SVM, Two-class SVM (for this
we use an estimated threshold to find potentially nega-
tive examples), and the techniques SPY, Rocchio, and
SVM using the classification system LPU [16].As ex-
pected, the results obtained depend on the data set
used, but in general all methods performed exceedingly
well. This was specially true for our technique of boot-
strapping positives (by DocMine) and negatives (by au-
tomatic thresholding), combined with a Two-class SVM
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Figure 4: Precision values for topic earn and
Supmin = 10%.The x-axis is the minimum car-
dinality of common itemsets (t).
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Figure 5: Precision values for topic acq and
Supmin = 3%. The x-axis is the minimum
cardinality of common itemsets (t).

approach, which showed robustness across all the sce-
narios tested.

In the future we will also consider an unsupervised
learning approach, in which we take the resulting sample
of documents given by DocMine, and use a clustering al-
gorithm to find clusters of positives. Those clusters will
be considered a good model of relevant documents, and
used to filter possible outliers among the original doc-
uments. By measuring the fitness of each original doc-
ument with respect to these clusters, we can prioritize
the original set. We also plan to conduct more extensive
experiments, including the real scenario of documents
returned by several search engines.
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Figure 9: Classification performance for topic earn
with (Top): One-class SVM, (Middle): Two-class SVM,
(Bottom): (SPY, SVM), (SPY, EM), (Rocchio, SVM),
(Rocchio, EM). (Supmin = 3%, and minimum cardinal-
ity t = 4.) The x-axis corresponds to the R values.
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Figure 10: Classification performance for topic earn
with (Top): One-class SVM, (Middle): Two-class SVM,
(Bottom): (SPY, SVM), (SPY, EM), (Rocchio, SVM),
(Rocchio, EM). (Supmin = 3%, and minimum cardinal-
ity t = 5.) The x-axis corresponds to the R values.
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Figure 11: Classification performance for topic earn
with (Top): One-class SVM, (Middle): Two-class SVM,
(Bottom): (SPY, SVM), (SPY, EM), (Rocchio, SVM),
(Rocchio, EM). (Supmin = 5%, and minimum cardinal-
ity t = 4.) The x-axis corresponds to the R values.
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Figure 12: Classification performance for topic earn
with (Top): One-class SVM, (Middle): Two-class SVM,
(Bottom): (SPY, SVM), (SPY, EM), (Rocchio, SVM),
(Rocchio, EM). (Supmin = 5%, and minimum cardinal-
ity t = 5.) The x-axis corresponds to the R values.
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Figure 13: Classification performance for topic acq
with (Top): One-class SVM, (Middle): Two-class SVM,
(Bottom): (SPY, SVM), (SPY, EM), (Rocchio, SVM),
(Rocchio, EM). (Supmin = 3%, and minimum cardinal-
ity t = 4.) The x-axis corresponds to the R values.
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Figure 14: Classification performance for topic acq
with (Top): One-class SVM, (Middle): Two-class SVM,
(Bottom): (SPY, SVM), (SPY, EM), (Rocchio, SVM),
(Rocchio, EM). (Supmin = 5%, and minimum cardinal-
ity t = 4.) The x-axis corresponds to the R values.
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