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Abstract.  Many high level representations of time series have been proposed for data mining, including 
Fourier transforms, wavelets, eigenwaves, piecewise polynomial models etc. Many researchers have also 
considered symbolic representations of time series, noting that such representations would potentiality allow 
researchers to avail of the wealth of data structures and algorithms from the text processing and 
bioinformatics communities. While many symbolic representations of time series have been introduced over 
the past decades, they all suffer from two fatal flaws. Firstly, the dimensionality of the symbolic 
representation is the same as the original data, and virtually all data mining algorithms scale poorly with 
dimensionality. Secondly, although distance measures can be defined on the symbolic approaches, these 
distance measures have little correlation with distance measures defined on the original time series. 
In this work we formulate a new symbolic representation of time series. Our representation is unique in that it 
allows dimensionality/numerosity reduction, and it also allows distance measures to be defined on the 
symbolic approach that lower bound corresponding distance measures defined on the original series. As we 
shall demonstrate, this latter feature is particularly exciting because it allows one to run certain data mining 
algorithms on the efficiently manipulated symbolic representation, while producing identical results to the 
algorithms that operate on the original data. In particular, we will demonstrate the utility of our 
representation on various data mining tasks of clustering, classification, query by content, anomaly detection, 
motif discovery, and visualization.   
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1. Introduction 

Many high level representations of time series have been proposed for data mining. Figure 1 illustrates a 
hierarchy of all the various time series representations in the literature [3, 11, 20, 24, 27, 30, 36, 53, 54, 63]. 
One representation that the data mining community has not considered in detail is the discretization of the 
original data into symbolic strings. At first glance this seems a surprising oversight. There is an enormous 
wealth of existing algorithms and data structures that allow the efficient manipulations of strings. Such 
algorithms have received decades of attention in the text retrieval community, and more recent attention from 
the bioinformatics community [5, 19, 25, 52, 57, 60]. Some simple examples of “tools” that are not defined 
for real-valued sequences but are defined for symbolic approaches include hashing, Markov models, suffix 
trees, decision trees etc. 

There is, however, a simple explanation for the data mining community’s lack of interest in string 
manipulation as a supporting technique for mining time series. If the data are transformed into virtually any 
of the other representations depicted in Figure 1, then it is possible to measure the similarity of two time 
series in that representation space, such that the distance is guaranteed to lower bound the true distance 
between the time series in the original space1. This simple fact is at the core of almost all algorithms in time 

                                                 
1 The exceptions are random mappings, which are only guaranteed to be within an epsilon of the true distance with a certain probability, 
trees, interpolation and natural language.    



series data mining and indexing [20]. However, in spite of the fact that there are dozens of techniques for 
producing different variants of the symbolic representation [3, 15, 27], there is no known method for 
calculating the distance in the symbolic space, while providing the lower bounding guarantee.  

In addition to allowing the creation of lower bounding distance measures, there is one other highly 
desirable property of any time series representation, including a symbolic one. Almost all time series datasets 
are very high dimensional. This is a challenging fact because all non-trivial data mining and indexing 
algorithms degrade exponentially with dimensionality. For example, above 16-20 dimensions, index 
structures degrade to sequential scanning [26]. None of the symbolic representations that we are aware of 
allow dimensionality reduction [3, 15, 27]. There is some reduction in the storage space required, since fewer 
bits are required for each value, however the intrinsic dimensionality of the symbolic representation is the 
same as the original data. 

 

 
There is no doubt that a new symbolic representation that remedies all the problems mentioned above 

would be highly desirable. More specifically, the symbolic representation should meet the following criteria: 
space efficiency, time efficiency (fast indexing), and correctness of answer sets (no false dismissals). 

In this work we formally formulate a novel symbolic representation and show its utility on other time 
series tasks2. Our representation is unique in that it allows dimensionality/numerosity reduction, and it also 
allows distance measures to be defined on the symbolic representation that lower bound corresponding 
popular distance measures defined on the original data. As we shall demonstrate, the latter feature is 
particularly exciting because it allows one to run certain data mining algorithms on the efficiently 
manipulated symbolic representation, while producing identical results to the algorithms that operate on the 
original data. In particular, we will demonstrate the utility of our representation on the classic data mining 
tasks of clustering [29], classification [24], indexing [2, 20, 30, 63], and anomaly detection [14, 34, 54].   

The rest of this paper is organized as follows. Section 2 briefly discusses background material on time 
series data mining and related work. Section 3 introduces our novel symbolic approach, and discusses its 
dimensionality reduction, numerosity reduction and lower bounding abilities. Section 4 contains an 
experimental evaluation of the symbolic approach on a variety of data mining tasks. Impact of the symbolic 
approach is also discussed. Finally, Section 5 offers some conclusions and suggestions for future work. 

 

2. Background and Related Work 

Time series data mining has attracted enormous attention in the last decade. The review below is 
necessarily brief; we refer interested readers to [32, 53] for a more in depth review. 

                                                 
2 A preliminary version of this paper appears in [41]. 

 

Figure 1: A hierarchy of all the various time series representations in the literature. The leaf nodes refer to the actual representation, 
and the internal nodes refer to the classification of the approach. The contribution of this paper is to introduce a new representation, 
the lower bounding symbolic approach 
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2.1 Time Series Data Mining Tasks 

While making no pretence to be exhaustive, the following list summarizes the areas that have seen the 
majority of research interest in time series data mining. 

• Indexing: Given a query time series Q, and some similarity/dissimilarity measure D(Q,C), find the 
most similar time series in database DB [2, 11, 20, 30, 63]. 

• Clustering: Find natural groupings of the time series in database DB under some 
similarity/dissimilarity measure D(Q,C) [29, 36]. 

• Classification: Given an unlabeled time series Q, assign it to one of two or more predefined classes 
[24]. 

• Summarization: Given a time series Q containing n datapoints where n is an extremely large 
number, create a (possibly graphic) approximation of Q which retains its essential features but fits 
on a single page, computer screen, executive summary etc [43]. 

• Anomaly Detection: Given a time series Q, and some model of “normal” behavior, find all sections 
of Q which contain anomalies or “surprising/interesting/unexpected/novel” behavior [14, 34, 54].  

Since the datasets encountered by data miners typically don’t fit in main memory, and disk I/O tends to be 
the bottleneck for any data mining task, a simple generic framework for time series data mining has emerged 
[20]. The basic approach is outlined in Table 1. 

Table 1: A generic time series data mining approach 

1. 
Create an approximation of the data, which will 
fit in main memory, yet retains the essential 
features of interest. 

2. 
Approximately solve the task at hand in main 
memory. 

3. 

Make (hopefully very few) accesses to the 
original data on disk to confirm the solution 
obtained in Step 2, or to modify the solution so it 
agrees with the solution we would have obtained 
on the original data. 

 
It should be clear that the utility of this framework depends heavily on the quality of the approximation 
created in Step 1. If the approximation is very faithful to the original data, then the solution obtained in main 
memory is likely to be the same as, or very close to, the solution we would have obtained on the original 
data. The handful of disk accesses made in Step 3 to confirm or slightly modify the solution will be 
inconsequential compared to the number of disk accesses required had we worked on the original data. With 
this in mind, there has been great interest in approximate representations of time series, which we consider 
below. 

2.2 Time Series Representations  

As with most problems in computer science, the suitable choice of representation greatly affects the ease and 
efficiency of time series data mining. With this in mind, a great number of time series representations have 
been introduced, including the Discrete Fourier Transform (DFT) [20], the Discrete Wavelet Transform 
(DWT) [11], Piecewise Linear, and Piecewise Constant models (PAA) [30], (APCA) [24, 30], and Singular 
Value Decomposition (SVD) [30]. Figure 2 illustrates the most commonly used representations. 

Recent work suggests that there is little to choose between the above in terms of indexing power [32], 
however, the representations have other features that may act as strengths or weaknesses. As a simple 
example, wavelets have the useful multiresolution property, but are only defined for time series that are an 
integer power of two in length [11].  

One important feature of all the above representations is that they are real valued. This limits the 
algorithms, data structures and definitions available for them. For example, in anomaly detection we cannot 
meaningfully define the probability of observing any particular set of wavelet coefficients, since the 



probability of observing any real number is zero [38]. Such limitations have lead researchers to consider 
using a symbolic representation of time series. 
 

 

Figure 2: The most common representations for time series 
data mining. Each can be visualized as an attempt to 
approximate the signal with a linear combination of basis 
functions  

 
While there are literally hundreds of papers on discretizing (symbolizing, tokenizing, quantizing) time 

series [3, 27] (see [15] for an extensive survey), none of the techniques allows a distance measure that lower 
bounds a distance measure defined on the original time series. For this reason, the generic time series data 
mining approach illustrated in Table 1 is of little utility, since the approximate solution to problem created in 
main memory may be arbitrarily dissimilar to the true solution that would have been obtained on the original 
data. If, however, one had a symbolic approach that allowed lower bounding of the true distance, one could 
take advantage of the generic time series data mining model, and of a host of other algorithms, definitions 
and data structures which are only defined for discrete data, including hashing, Markov models, and suffix 
trees. This is exactly the contribution of this paper.  We call our symbolic representation of time series SAX 
(Symbolic Aggregate approXimation), and define it in the next section. 

3. SAX: Our Symbolic Approach  

SAX allows a time series of arbitrary length n to be reduced to a string of arbitrary length w, (w < n, typically 
w << n). The alphabet size is also an arbitrary integer a, where a > 2. Table 2 summarizes the major notation 
used in this and subsequent sections. 

Table 2: A summarization of the notation used in this paper 

C A time series C = c1,…,cn  

C  
A Piecewise Aggregate Approximation of a time 
series wccC ,...,1=   

Ĉ  
A symbol representation of a time series 

wccC ˆ,...,ˆˆ
1=  

w The number of PAA segments representing time 
series C 

a Alphabet size (e.g., for the alphabet = {a,b,c},  a = 
3) 

 
Our discretization procedure is unique in that it uses an intermediate representation between the raw time 

series and the symbolic strings. We first transform the data into the Piecewise Aggregate Approximation 
(PAA) representation and then symbolize the PAA representation into a discrete string. There are two 
important advantages to doing this:  

• Dimensionality Reduction: We can use the well-defined and well-documented dimensionality 
reduction power of PAA [30, 63], and the reduction is automatically carried over to the 
symbolic representation. 

• Lower Bounding: Proving that a distance measure between two symbolic strings lower bounds 
the true distance between the original time series is non-trivial. The key observation that 
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allowed us to prove lower bounds is to concentrate on proving that the symbolic distance 
measure lower bounds the PAA distance measure. Then we can prove the desired result by 
transitivity by simply pointing to the existing proofs for the PAA representation itself [31, 63]. 

We will briefly review the PAA technique before considering the symbolic extension. 
 

3.1 Dimensionality Reduction Via PAA 

A time series C of length n can be represented in a w-dimensional space by a vector wccC ,,1 K= . The ith 

element of C is calculated by the following equation: 

∑
+−=
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n
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   (1) 

Simply stated, to reduce the time series from n dimensions to w dimensions, the data is divided into w 
equal sized “frames”. The mean value of the data falling within a frame is calculated and a vector of these 
values becomes the data-reduced representation. The representation can be visualized as an attempt to 
approximate the original time series with a linear combination of box basis functions as shown in Figure 3. 
For simplicity and clarity, we assume that n is divisible by w. We will relax this assumption in Section 3.5. 

 

Figure 3: The PAA representation can be visualized as an 
attempt to model a time series with a linear combination of 
box basis functions. In this case, a sequence of length 128 is 
reduced to 8 dimensions 

 
The PAA dimensionality reduction is intuitive and simple, yet has been shown to rival more 

sophisticated dimensionality reduction techniques like Fourier transforms and wavelets [30, 32, 63].  
We normalize each time series to have mean of zero and a standard deviation of one before converting it 

to the PAA representation, since it is well understood that it is meaningless to compare time series with 
different offsets and amplitudes [32]. 

3.2 Discretization 

Having transformed a time series database into the PAA we can apply a further transformation to obtain a 
discrete representation. It is desirable to have a discretization technique that will produce symbols with 
equiprobability [5, 45]. This is easily achieved since normalized time series have a Gaussian distribution 
[38]. To illustrate this, we extracted subsequences of length 128 from 8 different time series and plotted 
normal probability plots of the data as shown in Figure 4.  A normal probability plot is a graphical technique 
that shows if the data is approximately normally distributed [1]: an approximate straight line indicates that 
the data is approximately normally distributed. As the figure shows, the highly linear nature of the plots 
suggests that the data is approximately normal. For a large family of the time series data in our disposal, we 
notice that the Gaussian assumption is indeed true.  For the small subset of data where the assumption is not 
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obeyed, the efficiency is slightly deteriorated; however, the correctness of the algorithm is unaffected. The 
correctness of the algorithm is guaranteed by the lower-bounding property of the distance measure in the 
symbolic space, which we will explain in the next section.  

Given that the normalized time series have highly Gaussian distribution, we can simply determine the 
“breakpoints” that will produce a equal-sized areas under Gaussian curve [38].  

Definition 1. Breakpoints: breakpoints are a sorted list of numbers Β = β1,…,βa-1 such that the area 
under a N(0,1) Gaussian curve from βi  to βi+1 = 1/a (β0  and βa  are defined as -∞ and ∞, respectively). 

These breakpoints may be determined by looking them up in a statistical table. For example, Table 3 
gives the breakpoints for values of a from 3 to 10.  

 

 
Table 3: A lookup table that contains the breakpoints that divide a Gaussian 

distribution in an arbitrary number (from 3 to 10) of equiprobable regions 
a  

βi  
3 4 5 6 7 8 9 10 

β1  -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 

β3  0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 

β4   0.84 0.43 0.18 0 -0.14 -0.25 

β5    0.97 0.57 0.32 0.14 0 

β6     1.07 0.67 0.43 0.25 

β7      1.15 0.76 0.52 

β8       1.22 0.84 

β9        1.28 

 

 

Figure 4: A normal probability plot of the distribution of values from subsequences of length 128 from 8 different 
datasets. The highly linear nature of the plot strongly suggests that the data came from a Gaussian distribution 



Once the breakpoints have been obtained we can discretize a time series in the following manner. We 
first obtain a PAA of the time series. All PAA coefficients that are below the smallest breakpoint are mapped 
to the symbol “a”, all coefficients greater than or equal to the smallest breakpoint and less than the second 
smallest breakpoint are mapped to the symbol “b”, etc. Figure 5 illustrates the idea. 
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Figure 5: A time series is discretized by first obtaining a PAA approximation and 
then using predetermined breakpoints to map the PAA coefficients into SAX 
symbols. In the example above, with n = 128, w = 8 and a = 3, the time series is 
mapped to the word baabccbc   

 
Note that in this example the 3 symbols, “a”, “b” and “c” are approximately equiprobable as we desired. 

We call the concatenation of symbols that represent a subsequence a word. 
Definition 2. Word: A subsequence C of length n can be represented as a word wccC ˆ,,ˆˆ

1 K= as follows. 
Let alphai denote the ith element of the alphabet, i.e., alpha1 = a and alpha2 = b. Then the mapping from a 
PAA approximation C  to a word Ĉ  is obtained as follows: 

jijji ciifalphac ββ <≤= −1,ˆ              (2) 

We have now defined our symbolic representation (the PAA representation is merely an intermediate 
step required to obtain the symbolic representation). 

Recently, [6] has empirically and theoretically shown some very promising clustering results for 
“clipping”, that is to say, converting the time series to a binary vector.  They demonstrated that discretizing 
the time series before clustering significantly improves the accuracy in the presence of outliers.  We note that 
“clipping” is actually a special case of SAX, where a = 2. 

 

3.3 Distance Measures 

Having introduced the new representation of time series, we can now define a distance measure on it. By 
far the most common distance measure for time series is the Euclidean distance [32, 52]. Given two time 
series Q and C of the same length n, Eq. 3 defines their Euclidean distance, and Figure 6A illustrates a visual 
intuition of the measure. 

( ) ( )∑ −≡
=

n

i
ii cqCQD

1

2,                               (3) 

If we transform the original subsequences into PAA representations, Q  and C , using Eq. 1, we can then 
obtain a lower bounding approximation of the Euclidean distance between the original subsequences by: 

( )∑ =
−≡

w

i iiw
n cqCQDR

1
2),(   (4) 

This measure is illustrated in Figure 6B. If we further transform the data into the symbolic 
representation, we can define a MINDIST function that returns the minimum distance between the original 
time series of two words: 
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i iiw
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The function resembles Eq. 4 except for the fact that the distance between the two PAA coefficients has 
been replaced with the sub-function dist(). The dist() function can be implemented using a table lookup as 
illustrated in Table 4.   

Table 4: A lookup table used by the MINDIST function. This table is for an alphabet of cardinality of 4, i.e. 
a=4. The distance between two symbols can be read off by examining the corresponding row and column. For 
example, dist(a,b) = 0 and dist(a,c) = 0.67. 

 a b c d 
a 0 0 0.67 1.34 
b 0 0 0 0.67 
c 0.67 0 0 0 
d 1.34 0.67 0 0 

 
The value in cell (r,c) for any lookup table can be calculated by the following expression.  

⎩
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−
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=
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             (6) 

For a given value of the alphabet size a, the table needs only be calculated once, then stored for fast 
lookup. The MINDIST function can be visualized is Figure 6C.  

 

Figure 6: A visual intuition of the three representations discussed in this work, 
and the distance measures defined on them. A) The Euclidean distance between 
two time series can be visualized as the square root of the sum of the squared 
differences of each pair of corresponding points. B) The distance measure defined 
for the PAA approximation can be seen as the square root of the sum of the 
squared differences between each pair of corresponding PAA coefficients, 
multiplied by the square root of the compression rate. C) The distance between 
two SAX representations of a time series requires looking up the distances 
between each pair of symbols, squaring them, summing them, taking the square 
root and finally multiplying by the square root of the compression rate  
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As mentioned, one of the most important characteristics of SAX is that it provides a lower-bounding 

distance measure. Below, we show that MINDIST lower-bounds the Euclidean distance in two steps. First, 
we will show that the PAA distance lower-bounds the Euclidean distance. The proof has appeared in [31] by 
the current author; for completeness, we repeat the proof here. Next, we will show that MINDIST lower-
bounds the PAA distance, which in turn, by transitivity, shows that MINDIST lower-bounds the Euclidean 
distance. 
 
Step 1: We need to show that the PAA distance lower-bounds the Euclidean distance; that is, 

),(),( CQDRCQD ≥ . We will show the proof on the case where there is a single PAA frame (i.e. mapping 
the time series into one single PAA coefficient). A more generalized proof for N frames can be obtained by 
applying the single-frame proof on every frame. 
 
Proof: Using the same notations as Eq. (3) and Eq. (4), we want to prove that  
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Let Q  and C  be the means of time series Q and C, respectively. Since we are considering only the single-
frame case, Ineq. (7) can be rewritten as: 
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Squaring both sides we get 
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Each point qi in Q can be represented in term of Q , i.e. ii qQq ∆−= . Same applies to each point ci in C. 
Thus, Ineq. (9) can be rewritten as: 
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Re-arranging the left-hand side we get 
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We can expand and rewrite Ineq. (11) as: 
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By distributive law we get: 
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Recall that ii qQq ∆−= , which means that 

ii qQq −=∆ , and similarity, ii cCc −=∆ . Therefore, the 
summation part of the second term on the left-hand side of the inequality becomes: 
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Substituting 0 into the second term on the left-hand side, Ineq. (14) becomes: 
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Cancelling out 2)( CQn −  on both sides of the inequality, we get 
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which always holds true, hence completes the proof. 
 
Step 2: Continuing from Step 1 and using the same methodology, we will now show that MINDIST lower-
bounds the PAA distance; that is, we will show that  
 

22 ))ˆ,ˆ(()( CQdistnCQn ≥−       (17) 

 
Let a = 1, b = 2, and so forth, there are two possible scenarios: 
 
  Case 1: 1|)ˆˆ(| ≤−CQ . In other words, the symbols representing the two time series are either the same, or 
consecutive from the alphabet, e.g. ''ˆ''ˆ,''ˆˆ bCandaQoraCQ ==== . From Eq. (6), we know that the 



MINDIST is 0 in this case. Therefore, the right-hand side of Ineq. (17) becomes zero, which makes the 
inequality always hold true. 
 
  Case 2: 1|)ˆˆ(| >−CQ . In other words, the symbols representing the two time series are at least two 
alphabets apart, e.g. ''ˆ''ˆ aCandcQ == . For simplicity, assume CQ ˆˆ > ; the case where CQ ˆˆ <  can be proven 
in similar fashion. According to Eq. (6), )ˆ,ˆ( CQdist  is 

  

CQCQdist ˆ1ˆ)ˆ,ˆ( ββ −=
−

      (18) 

 
For the example above, 12)'','(' ββ −=acdist . 

Recall that Eq. (2) states the following: 
 

jijji ciifalphac ββ <≤= −1,ˆ       

 
So we know that 
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Substituting Eq. (18) into Ineq. (17) we get 
 

2
ˆ1ˆ

2 )()( CQnCQn ββ −≥−
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      (20) 

 
which implies that 
 

CQCQ ˆ1ˆ ββ −≥−
−

       (21) 

 

Note that from our assumptions earlier that 1|)ˆˆ(| >−CQ  and CQ ˆˆ >  (i.e. Q  is at a “higher” region thanC ), 
we can drop the absolute value notations on both sides: 
 

CQCQ ˆ1ˆ ββ −≥−
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Rearranging the terms we get: 
 

CQ CQ ˆ1ˆ ββ −≥−
−

       (23) 

 
which we know always holds true since, from Ineq. (19), we know that 
 



⎪⎩

⎪
⎨
⎧

<−

≥−
−

0

0

ˆ

1ˆ

C

Q

C

Q

β

β         (24) 

 
This completes the proof for CQ ˆˆ > . The case where CQ ˆˆ <  can be proven similarily, and is omitted for 
brevity. 

There is one issue we must address if we are to use a symbolic representation of time series. If we wish 
to approximate a massive dataset in main memory, the parameters w and a have to be chosen in such a way 
that the approximation makes the best use of the primary memory available. There is a clear tradeoff between 
the parameter w controlling the number of approximating elements, and the value a controlling the 
granularity of each approximating element. 

It is unfeasible to determine the best tradeoff analytically, since it is highly data dependent. We can 
however empirically determine the best values with a simple experiment. Since we wish to achieve the 
tightest possible lower bounds, we can simply estimate the lower bounds over all possible feasible 
parameters, and choose the best settings.   

),(
)ˆ,ˆ(

CQD
CQMINDISTBoundLowerofTightness =         (25) 

We performed such a test with a concatenation of 50 time series databases taken from the UCR time 
series data mining archive. For every combination of parameters we averaged the result of 100,000 
experiments on subsequences of length 256. Figure 7 shows the results. 

 

Figure 7: The empirically estimated tightness of lower 
bounds over the cross product of a = [3…11] and w = [2…9]. 
The darker histogram bars illustrate combinations of 
parameters that require approximately equal space to store 
every possible word. 

 
The results suggest that using a low value for a results in weak bounds. While it’s intuitive that larger 

alphabet sizes yield better results, there are diminishing returns as a increases. If space is an issue, an 
alphabet size in the range 5 to 8 seems to be a good choice that offers a reasonable balance between space 
and tightness of lower bound – each alphabet within this range can be represented with just 3 bits. Increasing 
the alphabet size would require more bits to represent each alphabet. 

We end this section with a visual comparison between SAX and the four most used representations in 
the literature (Figure 8). We can see that SAX preserves the general shape of the original time series. Note 
that since SAX is a symbolic representation, the alphabets can be stored as bits rather than doubles, which 
results in a considerable amount of space-saving. Therefore, SAX representation can afford to have higher 
dimensionality than the other real-valued approaches, while using less or the same amount of space. 
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Figure 8:  A visual comparison of SAX and the four most 
common time series data mining representations. A raw time 
series of length 128 is transformed into the word 
ffffffeeeddcbaabceedcbaaaaacddee. This is a fair 
comparison since the number of bits in each representation is 
the same 

 

3.4 Numerosity Reduction 

We have seen that, given a single time series, our approach can significantly reduce its dimensionality. In 
addition, our approach can reduce the numerosity of the data for some applications.  

Most applications assume that we have one very long time series T, and that manageable subsequences 
of length n are extracted by use of a sliding window, then stored in a matrix for further manipulation [11, 20, 
30, 63]. Figure 9 illustrates the idea. 

 

 

Figure 9:  An illustration of the notation introduced in this 
section: A time series T of length 128, the subsequence C67, of 
length n = 16, and the first 8 subsequences extracted by a 
sliding window. Note that the sliding windows are 
overlapping 

 
When performing sliding windows subsequence extraction, with any of the real-valued representations, 

we must store all |T| - n + 1 extracted subsequences (in dimensionality reduced form). However, imagine for 
a moment that we are using our proposed approach. If the first word extracted is aabbcc, and the window is 
shifted to discover that the second word is also aabbcc, we can reasonably decide not to include the second 
occurrence of the word in sliding windows matrix. If we ever need to retrieve all occurrences of aabbcc, we 
can go to the location pointed to by the first occurrences, and remember to slide to the right, testing to see if 
the next window is also mapped to the same word. We can stop testing as soon as the word changes. This 
simple idea is very similar to the run-length-encoding data compression algorithm. 

The utility of this optimization depends on the parameters used and the data itself, but it typically yields 
a numerosity reduction factor of two or three. However, many datasets are characterized by long periods of 
little or no movement, followed by bursts of activity (seismological data is an obvious example). On these 
datasets the numerosity reduction factor can be huge. Consider the example shown in Figure 10. 
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Figure 10: Sliding window extraction on Space Shuttle 
Telemetry data, with n = 32. At time point 61, the extracted 
word is aabbcc, and the next 401 subsequences also map to 
this word. Only a pointer to the first occurrence must be 
recorded, thus producing a large reduction in numerosity 

There is only one special case we must consider. As we noted in Section 3.1, we normalize each time 
series (including subsequences) to have a mean of zero and a standard deviation of one. However, if the 
subsequence contains only one value, the standard deviation is not defined. More troublesome is the case 
where the subsequence is almost constant, perhaps 31 zeros and a single 0.0001. If we normalize this 
subsequence, the single differing element will have its value exploded to 5.65. This situation occurs quite 
frequently. For example, the last 200 time units of the data in Figure 10 appear to be constant, but actually 
contain tiny amounts of noise. If we were to normalize subsequences extracted from this area, the 
normalization would magnify the noise to large meaningless patterns. 

We can easily deal with this problem, if the standard deviation of the sequence before normalization is 
below an epsilon ε, we simply assign the entire word to the middle-ranged alphabet (e.g. cccccc if a = 5). 

 

3.5 Relaxation on the Number of Segments 

So far we have described SAX with the assumption that the length of the time series is divisible by the 
number of segments, i.e. n/w must be an integer. If n is not dividable by w, there will be some points in the 
time series that we are not sure which segment to put them. For example, in Figure 11A, we are dividing 10 
data points into 5 segments. And it is obvious that point 1, 2 should be in segment 1; point 3, 4 should be in 
segment 2; so on and so forth. In Figure 11B, we are dividing 10 data points into 3 segments. It’s not clear 
which segment point 4 should go: segment 1 or segment 2. Same problem holds for point 7. The assumption 
n must be dividable by w clearly limits our choices of w, and is problematic if n is a prime number. Here we 
show that this needs not be the case and provide a simple solution when n is not divisible by w. 

Instead of putting the whole point into a segment, we can put part of it. For example, in Figure 11B, 
point 4 contributes its 1/3 to segment 1 and its 2/3 to segment 2, and point 7 contributes its 2/3 to segment 2 
and its 1/3 to segment 3. This makes each segment contains exactly 3 1/3 data points and solves the 
undividable problem. This generalization is implemented in the later version of SAX, as well as some of the 
applications that utilize SAX. 
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Figure 11: A) 10 data points are divided into 5 segments. B) 10 data points are divided into 3 segments. The data points 
marked with circles contribute to two adjacent segments at the same time 

 

4. Experimental Validation of Our Symbolic Approach 

In this section, we perform various data mining tasks using our symbolic approach and compare the 
results with other well-known existing approaches. 

For clustering, classification, and anomaly detection, we compare the results with the classic Euclidean 
distance, and with other previously proposed symbolic approaches.  Note that none of these other approaches 
use dimensionality reduction.   In the next paragraphs we summarize the strawmen representations that we 
compare ours to. We choose these two approaches since they are typical representatives of approaches in the 
literature.  

André-Jönsson, and Badal [3] proposed the SDA algorithm that computes the changes between values 
from one instance to the next, and divide the range into user-predefined sections.  The disadvantages of this 
approach are obvious: prior knowledge of the data distribution of the time series is required in order to set the 
breakpoints; and the discretized time series does not conserve the general shape or distribution of the data 
values. 

Huang and Yu proposed the IMPACTS algorithm, which uses change ratio between one time point to 
the next time point to discretize the time series [27].  The range of change ratios are then divided into equal-
sized sections and mapped into symbols.  The time series is converted to a discretized collection of change 
ratios.  As with SAX, the user needs to define the cardinality of symbols. 

4.1 Clustering 

Clustering is one of the most common data mining tasks, being useful in its own right as an exploratory tool, 
and also as a sub-routine in more complex algorithms [16, 21, 29]. We consider two clustering algorithms, 
one of hierarchical clustering, and one of partitional clustering.  

 
4.1.1 Hierarchical Clustering 

Comparing hierarchical clusterings is a very good way to compare and contrast similarity measures, since a 
dendrogram of size N summarizes O(N2) distance calculations [32]. The evaluation is typically subjective, we 
simply adjudge which distance measure appears to create the most natural groupings of the data. However, if 
we know the data labels in advance we can also make objective statements of the quality of the clustering. In 
Figure 12 we clustered nine time series from the Control Chart dataset, three each from the decreasing trend, 
upward shift and normal classes. 
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Figure 12: A comparison of the four distance measures’ 
ability to cluster members of the Control Chart dataset. 
Complete linkage was used as the agglomeration technique 

 
In this case we can objectively state that SAX is superior, since it correctly assigns each class to its own 

subtree. This is simply a side effect due to the smoothing effect of dimensionality reduction. Therefore, it’s 
not surprising that SAX can sometimes outperform the simple Euclidean distance, especially on noisy data, 
or data with shifting on the time-axis. This fact is demonstrated in the dendrogram produced by Euclidean 
distance: the “normal” class, which contains a lot of noise, is not clustered correctly. More generally, we 
observed that SAX closely mimics Euclidean distance on various datasets.  

The reasons that SDA and IMPACTS perform poorly, we observe, are that neither symbolic 
representation is very descriptive of the general shape of the time series, and that the lack of dimensionality 
reduction can further distort the results if the data is noisy. What SDA does is essentially differencing the 
time series, and then discretizing the resulting series. While differencing has been used historically in 
statistical time series analysis, its purposes to remove some autocorrelation, and to make a time series 
stationary are not always applicable in determination of similarity in data mining. In addition, although 
computing the derivatives tells the type of change from one time point to the next time point: sharp increase, 
slight increase, sharp decrease, etc., this approach doesn’t appear very useful since time series data are 
typically noisy. More specifically, in addition to the overall trends or shapes, there are noises that appear 
throughout the entire time series. Without any smoothing or dimensionality reduction, these noises are likely 
to overshadow the actual characteristics of the time series. 

To demonstrate why the “decreasing trend” and the “upward shift” classes are indistinguishable by the 
clustering algorithm for SDA, let’s look at what the differenced series look like. Figure 13 shows the original 
time series and their corresponding series after differencing. It’s clear that the differenced series from the 
same class are not any more similar than those from a different class. As a matter of fact, as we compute the 
pairwise distances between all 6 differenced series, we realize that the distances are not indicative at all of the 
classes these data belong. Table 5 and Table 6 show the inter- and the intra-distances between the series (the 
series from the “decreasing trend” class are denoted as Ai, and the series from the “upward shift” are denoted 
as Bi).  

Interestingly, in [23], the authors show that taking the first derivatives (i.e. differencing) actually 
worsens the results when compared to using the raw data. They further show that performing piecewise 
normalization (i.e. normalization on fixed-sized windows rather on the whole series) on the first derivatives 
improves the results. Our experimental results validate their observations, as SDA does not do any kind of 
normalization, whereas piecewise normalization is a part of SAX (in the PAA step). 
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        IMPACTS suffers from similar problems as SDA. In addition, it’s clear that neither IMPACTS nor SDA 
can beat simple Euclidean distance, and the discussion above applies to all data mining tasks, since the 
problems lie in the nature of the representations.  
 

 

Figure 13: A) Time series from the “decreasing trend” class and the resulting series after differencing. B) 
Time series from the “upward shift” class and the resulting series after differencing. 

 
 
Table 5: Intra-class distances between the 
differenced time series from the “decreasing 
trend” class. 

  
Table 6: Inter-class distances between the differenced 
time series from the “decreasing trend” and the 
“upward shift” classes. 

 A1 A2 A3  B1 B2 B3 
A1 0 60.59 59.08 A1 49.92 46.02 49.21 
A2 60.59 0 57.12 A2 54.24 58.07 61.38 
A3 59.08 57.12 0 

 

A3 51.28 49.07 51.72 
 
 
4.1.2 Partitional Clustering 

Although hierarchical clustering is a good sanity check for any proposed distance measure, it has limited 
utility for data mining because of its poor scalability. The most commonly used data mining clustering 
algorithm is k-means [21], so for completeness we will consider it here.  We performed k-means on both the 
original raw data, and our symbolic representation. Figure 14 shows a typical run of k-means on a space 
telemetry dataset. Both algorithms converge after 11 iterations. Since k-means algorithm seeks to optimize 
the objective function, by minimizing the sum of squared intra-cluster error, we compare and plot the 
objective functions for each iteration. The objective function for a given clustering is given by Eq. 26, where 
xi is the time series, and cm is the cluster center of the cluster that xi belongs to. The smaller the objective 
function, the more compact (thus better) the clusters. 

∑∑
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i
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1 1

    (26) 

The results here are quite unintuitive and surprising: working with an approximation of the data gives 
better results than working with the original data. Fortunately, a recent paper offers a suggestion as to why 
this might be so. It has been shown that initializing the clusters centers on a low dimension approximation of 
the data can improve the quality [16], this is what clustering with SAX implicitly does. 
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Figure 14: A comparison of the k-means clustering algorithm 
using SAX and using the raw data. The dataset was Space 
Shuttle telemetry, 1,000 subsequences of length 512. 
Surprisingly, working with the symbolic approximation 
produces better results than working with the original data 

 
In 4.4.3 we introduce another distance measure based on SAX. By applying it on clustering, we show 

that it outperforms the Euclidean distance measure. 

4.2 Classification 

Classification of time series has attracted much interest from the data mining community. Although special- 
purpose algorithms have been proposed [36], we will consider only the two most common classification 
algorithms for brevity, clarity of presentations and to facilitate independent confirmation of our findings.  
 
4.2.1 Nearest Neighbor Classification 

To compare different distance measures on 1-nearest-neighbor classification, we use leaving-one-out 
cross validation. Firstly, we compare SAX with Euclidean distance, IMPACTS, SDA, and LPinf.  Two classic 
synthetic datasets are used: the Cylinder-Bell-Funnel (CBF) dataset has 50 instances of time series for each 
of the three clusters, and the Control Chart (CC) has 100 instances for each of the six clusters [32].  

Since SAX allows dimensionality and alphabet size as user input, and the IMPACTS allows variable 
alphabet size, we ran the experiments on different combinations of dimensionality reduction and alphabet 
size.   For the other approaches we applied the simple dimensionality reduction technique of skipping data 
points at a fixed interval.  In Figure 15, we show the result with a dimensionality reduction of 4 to 1. 

Similar results were observed for other levels of dimensionality reduction. Once again, SAX’s ability to 
beat Euclidean distance is probably due to the smoothing effect of dimensionality reduction, nevertheless this 
experiment does show the superiority of SAX over the others proposed in the literature.    
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Figure 15: A comparison of five distance measures utility for nearest neighbor 
classification. We tested different alphabet sizes for SAX and IMPACTS,  
SDA’s alphabet size is fixed at 5 

 
Since both IMPACTS and SDA perform poorly compared to Euclidean distance and SAX, we will 

exclude them from the rest of the classification experiments. To provide a closer look on how SAX compares 
to Euclidean distance, we ran an extensive experiment and compared the error rates on 22 datasets (available 
online at http://www.cs.ucr.edu/~eamonn/time_series_data/). Each dataset is split to training and testing 
parts. We use the training part to search the best value for SAX parameters w (number of SAX words) and a 
(size of the alphabet): 

• For w, we search from 2 up to n/2 (n is the length of the time series). Each time we double the 
value of w. 

• For a, we search each value between 3 and 10. 

• If there is a tie, we use the smaller values. 

The compression ratio (last column of next table) is calculated as: ⎡ ⎤
32

log2

×
×
n

aw , because for SAX 

representation we only need ⎡ ⎤a2log  bits per word, while for the original time series we need 4 bytes (32 

bits) for each value. 

Then we classify the testing set based on the training set using one nearest neighbor classifier and report 
the error rate. The results are shown in Table 7. We also summarize the results by plotting the error rates for 
each dataset as a 2-dimensional point: (EU_error, SAX_error). If a point falls within the lower triangle, then 
SAX is more accurate than Euclidean distance, and vice versa for the upper triangle. The plot is shown in 
Figure 16. From this experiment, we can conclude that SAX is competitive with Euclidean distance, but 
requires far less space. 

 
 
 
 
 
 
 
 
 
 
 



Table 7: 1-NN comparison between Euclidean Distance and SAX. 

Name Number of 
Classes 

Size of 
Training Set 

Size of 
Testing Set

Time Series 
Length 

1-NN EU 
Error 

1-NN SAX 
Error 

w a Compression 
Ratio 

Synthetic 
Control  

6 300 300 60 0.12 0.02 16 10 3.33% 

Gun-Point  2 50 150 150 0.087 0.18 64 10 5.33% 

CBF 3 30 900 128 0.148 0.104 32 10 3.13% 

Face (all) 14 560 1690 131 0.286 0.330 64 10 6.11% 

OSU Leaf 6 200 242 427 0.483 0.467 128 10 3.75% 

Swedish Leaf 15 500 625 128 0.211 0.483 32 10 3.13% 

50Words 50 450 455 270 0.369 0.341 128 10 5.93% 

Trace 4 100 100 275 0.24 0.46 128 10 5.82% 

Two Patterns 4 1000 4000 128 0.093 0.081 32 10 3.13% 

Wafer 2 1000 6174 152 0.0045 0.0034 64 10 5.26% 

Face (four) 4 24 88 350 0.216 0.170 128 10 4.57% 

lightning-2 2 60 61 637 0.246 0.213 256 10 5.02% 

lightning-7 7 70 73 319 0.425 0.397 128 10 5.02% 

ECG 2 100 100 96 0.12 0.12 32 10 4.17% 

Adiac 37 390 391 176 0.389 0.890 64 10 4.55% 

Yoga 2 300 3000 426 0.170 0.195 128 10 3.76% 

Fish 7 175 175 463 0.217 0.474 128 10 3.46% 

Plane 7 105 105 144 0.038 0.038 64 10 5.56% 

Car 4 60 60 577 0.267 0.333 256 10 5.55% 

Beef 5 30 30 470 0.467 0.567 128 10 3.40% 

Coffee 2 28 28 286 0.25 0.464 128 10 5.59% 

Olive Oil 4 30 30 570 0.133 0.833 256 10 5.61% 
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Figure 16: Error rates for SAX and Euclidean distance on 22 datasets. 
Lower triangle is the region where SAX is more accurate than Euclidean 
distance, and upper triangle is where Euclidean distance is more accurate 
than SAX. 

 



4.2.2 Decision Tree Classification 

Because of Nearest Neighbor’s poor scalability, it is unsuitable for most data mining applications; 
instead decision trees are the most common choice of classifier. While decision trees are defined for real 
data, attempting to classify time series using the raw data would clearly be a mistake, since the high 
dimensionality and noise levels would result in a deep, bushy tree with poor accuracy. 

In an attempt to overcome this problem, Geurts [24] suggests representing the time series as a 
Regression Tree  (RT) (this representation is essentially the same as APCA [30], see Figure 2, and training 
the decision tree directly on this representation. The technique shows great promise. 

We compared SAX to the Regression Tree (RT) on two datasets; the results are in Table 8. 
Table 8: A comparison of SAX with the specialized Regression 
Tree approach for decision tree classification. Our approach used 
an alphabet size of 6, both approaches used a dimensionality of 8 

Dataset SAX Regression Tree 
CC 3.04 ± 1.64 2.78 ± 2.11 

CBF 0.97 ± 1.41 1.14 ± 1.02 
 
Note that while our results are competitive with the RT approach, the RT representation is undoubtedly 

superior in terms of interpretability [24]. Once again, our point is simply that our “black box” approach can 
be competitive with specialized solutions.    
 

4.3 Query by Content (Indexing) 

The majority of work on time series data mining appearing in the literature has addressed the problem of 
indexing time series for fast retrieval [53]. Indeed, it is in this context that most of the representations 
enumerated in Figure 1 were introduced [11, 20, 30, 63]. Dozens of papers have introduced techniques to do 
indexing with a symbolic approach [3, 27], but without exception, the answer set retrieved by these 
techniques can be very different to the answer set that would be retrieved by the true Euclidean distance. It is 
only by using a lower bounding technique that one can guarantee retrieving the full answer set, with no false 
dismissals [20].  

To perform query by content, we build an index using SAX, and compare it to an index built using the 
Haar wavelet approach [11]. Since the datasets we use are large and disk-resident, and the reduced 
dimensionality could still be potentially high (or at least high enough such that the performance degenerates 
to sequential scan if R-tree were used [26]), we use Vector Approximation (VA) file as our indexing 
algorithm. We note, however, that SAX could also be indexed by classic string indexing techniques such as 
suffix trees.    

To compare performance, we measure the percentage of disk I/Os required in order to retrieve the one-
nearest neighbor to a randomly extracted query, relative to the number of disk I/Os required for sequential 
scan. Since it has been forcibly shown that the choice of dataset can make a significant difference in the 
relative indexing ability of a representation, we tested on more than 50 datasets from the UCR Time Series 
Data Mining Archive. In Figure 17 we show 4 representative examples. The y-axis shows the index power in 
terms of the percentage of the data retrieved from the disk, compared to sequential scan. In almost all cases, 
SAX shows a superior reduction in the number of disk accesses. In addition, SAX does not have the 
limitation faced by the Haar Wavelet that the data length must be a power of two.  

 



 

Figure 17: A comparison of indexing ability of wavelets 
versus SAX. The Y-axis is the percentage of the data that 
must be retrieved from disk to answer a 1-NN query of length 
256, when the dimensionality reduction ratio is 32 to 1 for 
both approaches 

 

4.4 Taking Advantage of the Discrete Nature of our Representation 

In the previous sections we showed examples of how our proposed representation can compete with real-
valued representations and the original data. In this section we illustrate examples of data mining algorithms 
that take explicit advantage of the discrete nature of our representation. 
 
4.4.1 Detecting Novel/Surprising/Anomalous Behavior 

A simple idea for detecting anomalous behavior in time series is to examine previously observed normal 
data and build a model of it. Data obtained in the future can be compared to this model and any lack of 
conformity can signal an anomaly [14]. In order to achieve this, in [34] we combined a statistically sound 
scheme with an efficient combinatorial approach. The statistically scheme is based on Markov chains and 
normalization. Markov chains are used to model the “normal” behavior, which is inferred from the 
previously observed data. The time- and space-efficiency of the algorithm comes from the use of suffix tree 
as the main data structure. Each node of the suffix tree represents a pattern. The tree is annotated with a score 
obtained comparing the support of a pattern observed in the new data with the support recorded in the 
Markov model. This apparently simple strategy turns out to be very effective in discovering surprising 
patterns. In the original work we use a simple symbolic approach, similar to IMPACTS [27]; here we revisit 
the work using SAX.  

For completeness, we will compare SAX to two highly referenced anomaly detection algorithms that are 
defined on real valued representations, the TSA-tree Wavelet based approach of Shahabi et al. [54] and the 
Immunology (IMM) inspired work of Dasgupta and Forrest [14]. We also include the Markov technique 
using IMPACTS and SDA in order to discover how much of the difference can be attributed directly to the 
representation. Figure 18 contains an experiment comparing all 5 techniques.  
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Figure 18: A comparison of five anomaly detection 
algorithms on the same task. I) The training data, a slightly 
noisy sine wave of length 1,000. II) The time series to be 
examined for anomalies is a noisy sine wave that was created 
with the same parameters as the training sequence, then an 
assortment of anomalies were introduced at time periods 250, 
500 and 750. III) and IIII) The Markov Model technique 
using the IMPACTS and SDA representations did not clearly 
discover the anomalies, and reported some false alarms. V) 
The IMM anomaly detection algorithm appears to have 
discovered the first anomaly, but it also reported many false 
alarms. VI) The TSA-Tree approach is unable to detect the 
anomalies. VII) The Markov model-based technique using 
SAX clearly finds the anomalies, with no false alarms 

 
The results on this simple experiment are impressive. Since suffix trees and Markov models can be used 

only on discrete data, this offers a motivation for our symbolic approach. While all the other approaches, 
including the Markov Models using IMPACTS and SDA representations, the Immunology-based anomaly 
detection approach, and the TSA-Tree approach, did not clearly discover the anomalies and reported some 
false alarms, the SAX-based Markov Model clearly finds the anomalies with no false alarms. 

 
4.4.2 Motif Discovery 

It is well understood in bioinformatics that overrepresented DNA sequences often have biological 
significance [5, 19, 52]. A substantial body of literature has been devoted to techniques to discover such 
patterns [25, 57, 60]. In a previous work, we defined the related concept of “time series motif” [43]. Time 
series motifs are close analogues of their discrete cousins, although the definitions must be augmented to 
prevent certain degenerate solutions. The naïve algorithm to discover the motifs is quadratic in the length of 
the time series. In [43], we demonstrated a simple technique to mitigate the quadratic complexity by a large 
constant factor, nevertheless this time complexity is clearly untenable for most real datasets. 

The symbolic nature of SAX offers a unique opportunity to avail of the wealth of bioinformatics 
research in this area.  In particular, recent work by Tompa and Buhler holds great promise [60]. The authors 
show that many previously unsolvable motif discovery problems can be solved by hashing subsequences into 
buckets using a random subset of their features as a key, then doing some post-processing search on the hash 
buckets3. They call their algorithm PROJECTION.  

We carefully reimplemented the random projection algorithm of Tompa and Buhler, making minor 
changes in the post-processing step to allow for the fact that although we are hashing random projections of 
our symbolic representation, we actually wish to discover motifs defined on the original raw data [13]. Figure 
19 shows an example of a motif discovered in an industrial dataset [8] using this technique. The patterns 
found are extremely similar to one another. 

                                                 
3 Of course, this description greatly understates the contributions of this work. We urge the reader to consult the original paper. 
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Figure 19: Above, a motif discovered in a complex dataset by 
the modified PROJECTION algorithm. Below, the motif is best 
visualized by aligning the two subsequences and “zooming 
in”. The similarity of the two subsequences is striking, and 
hints at unexpected regularity   

 
Apart from the attractive scalability of the algorithm, there is another important advantage over other 

approaches. The PROJECTION algorithm is able to discover motifs even in the presence of noise. Our 
extension of the algorithm inherits this robustness to noise. We direct interested readers to [13]  for more 
detailed discussion of this algorithm. 
 

4.4.3 Visualization 

Data visualization techniques are very important for data analysis, since the human eye has been 
frequently advocated as the ultimate data-mining tool. However, despite their illustrative nature, which can 
provide users better understanding of the data and intuitive interpretation of the mining results, there has been 
surprisingly little work on visualizing large time series datasets. One reason for this lack of interest is that 
time series data are also usually very massive in size. With limited pixel space and the typically enormous 
amount of data at hand, it is infeasible to display all the data on the screen at once, much less finding any 
useful information from the data. How to efficiently organize the data and present them in such a way that is 
intuitive and comprehensible to human eyes thus remains a great challenge. Ideally, the visualization 
technique should follow the Visual Information Seeking Mantras, as summarized by Dr. Ben Shneiderman: 
“Overview, zoom & filter, details-on-demand.” In other words, it should be able to provide users the 
overview or summary of the data, and allows users to further investigate on the interesting patterns 
highlighted by the tool. To this end, we developed VizTree [42], a time series pattern discovery and 
visualization system based on augmenting suffix trees. VizTree visually summarizes both the global and 
local structures of time series data at the same time. In addition, it provides novel interactive solutions to 
many pattern discovery problems, including the discovery of frequently occurring patterns (motif discovery), 
surprising patterns (anomaly detection), and query by content.  The user interactive paradigm allows users to 
visually explore the time series, and perform real-time hypotheses testing. Since the use of suffix tree 
requires that the input data be discrete, SAX is the perfect candidate for discretizing the time series data. 

Compared to the existing time series visualization systems in the literature, VizTree is unique in several 
respects. First, almost all other approaches assume highly periodic time series, whereas VizTree makes no 
such assumption. Other methods typically require space (both memory space, and pixel space) that grows at 
least linearly with the length of the time series, making them untenable for mining massive datasets. Finally, 
VizTree allows us to visualize a much richer set of features, including global summaries of the differences 
between two time series, locally repeated patterns, anomalies, etc. 

In VizTree, patterns are represented in a depth-limited tree structure, in which their frequencies of 
occurrence are encoded in the thicknesses of branches. The algorithm works by sliding a window across the 
time series and extracting subsequences of user-defined lengths. The subsequences are then discretized into 
strings by SAX and inserted into an augmented suffix tree. Each string is regarded as a pattern, and the 
frequency of occurrence for each pattern is encoded by the thickness of the branch: the thicker the branch, the 
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more frequent the corresponding pattern. Motif discovery and anomaly detection can thus be easily achieved: 
those that occur frequently can be regarded as motifs, and those that occur rarely can be regarded as anomaly. 
Figure 20 shows the screenshot of VizTree for anomaly detection on the Dutch power demand dataset. 
Electricity consumption is recorded every 15 minutes; therefore, for the year of 1997, there are 35,040 data 
points. The majority of the weeks follow the regular Monday-Friday, 5-working-day pattern, as shown by the 
thick branches. The thin branches denote the anomalies (in the sense that the electricity consumption is 
abnormal given the day of the week).  Note that in VizTree, we reverse the alphabet ordering so the alphabets 
now read top-down rather than bottom-up (e.g. ‘a’ is now in the topmost branch, rather than in the bottom-
most branch). This way, the string better describes the actual shape of the time series – ‘a’ denotes the top 
region, ‘b’ the middle region, ‘c’ the bottom region. The top right window shows the subtree when we click 
on the 2nd child of the root node. Clicking on any of the existing branches (in the main or the subtree window) 
will plot the subsequences represented by them in the bottom right window. The highlighted, circled 
subsequence is retrieved by clicking on the branch “bab.” The zoom-in shows why it is an anomaly: it’s the 
beginning of the three-day week during Christmas (Thursday and Friday off).  The other thin branches denote 
other anomalies such as New Year’s Day, Good Friday, Queen’s Birthday, etc. 
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Figure 20: Anomaly detection on power consumption data.  The anomaly shown here is a short week during Christmas. 
 
 

The evaluation for visualization techniques is usually subjective. Although VizTree clearly demonstrates 
its capability in detecting non-trivial patterns, in [40] we also devise a measure that quantifies the 
effectiveness of the algorithm. The measure, which we call the “dissimilarity coefficient,” describes how 
dissimilar two time series are, and ranges from 0 to 1. In essence, the coefficient summarizes the difference 
in “behavior” of each pattern (represented by a string) in two time series. More concretely, for each pattern, 
we count its respective numbers of occurrences in both time series, and see how much the frequencies differ. 
We call this measure support, which is then weighted by the confidence, or the degree of “interestingness” of 
the pattern. For example, a pattern that occurs 120 times in time series A and 100 times in time series B is 



probably less significant than a pattern that occurs 20 times in A but zero times in B, even though the support 
for both cases is 20.  

Subtracting the dissimilarity coefficient from 1 then gives us a novel similarity measure that describes 
how similar two time series are. More details on the (dis)similarity measure can be found in [40]. An 
important fact about this similarity measure is that, unlike a distance measure that computes point-to-point 
distances, it captures the global structure of the time series rather than local differences. This time-invariant 
feature is useful if we are interested in the overall structures of the time series. Figure 21 shows the 
dendrogram of clustering result using the (dis)similarity coefficient as the distance measure. It clearly 
demonstrates that the coefficient captures the dissimilarity very well and that all clusters are separated 
perfectly. Note that it’s even able to distinguish the four different sets of heartbeats (from top down, cluster 1, 
4, 5, and 6)! 

 
Figure 21: Clustering result using the (dis)similarity coefficient 

 
As a reference, we ran the same clustering algorithm using the widely-used Euclidean distance.  The 

result is shown in Figure 22. Clearly, clustering using our (dis)similarity measure returns superior results. 

 
Figure 22: Clustering result using Euclidean distance 



So far we discussed how the symbolic nature of SAX makes possible the approaches that were not 
considered, at least not effectively, by the time series data mining community before, since these approaches 
require the input be discrete. It sheds some light in offering efficient solutions on various problems from a 
new direction. The problems listed in this section, however, are just a small subset of examples that show the 
efficacy of SAX. We have since then proposed more algorithms on anomaly detection (HOT SAX) [33], 
contrast sets mining [39], visualization by time series bitmaps [37], clustering [51], compression-based 
distance measures [35], etc., all of which based on SAX. In the next section, we discuss the evident impact of 
SAX, illustrated by great interests from other researchers/users from both the academic and the industrial 
communities. 

4.5 The Impact of SAX 

In the relatively short time since its initial introduction, SAX has had a large impact in industry and 
academia. Below we summarize some of this work, without attempting to be exhaustive. We can broadly 
classify this work into those who have simply used the original formulation of SAX to solve a particular 
problem, and those who have attempted to extend or augment SAX in some way.  
 
4.5.1 Applications of SAX 

 
In addition to the applications mentioned in this section, it has been used worldwide in various domains. 

To name a few, in [4] the authors analyzed complex kinetic mechanisms using a method based on SAX. In 
[22] the authors consider the problem of analysis of protein unfolding data. After noting that “a 
complexity/dimensionality reduction on the data may be necessary and desirable” the authors consider 
various alternatives before noting “We adopted a two step approach called SAX .” Dr. Amy McGovern of the 
University of Oklahoma is leading a project on dynamic relational models for improved hazardous weather 
prediction. In attempting to use propositional models for this task, her group needs a discrete representation 
of the real-valued metrological data, and they noted in a recent paper “We are currently using Lin et al.’s 
SAX approach to creating discrete data from continuous data” [46]. In [17, 18, 55, 56], the authors use SAX 
and random projection to discover motifs in telemedicine time series. In [12] the authors convert palmprint to 
time series, then to SAX, then they do biometric recognition. The authors in [59] use SAX and random 
projection to mine motion capture data. In [10] SAX is used to find repeated patterns in motion capture data. 
[49] uses SAX to find rules in time series. In [58] the authors use SAX to find motifs of unspecified 
length. In [48] SAX is used to find repeated patterns in robot sensors. In [7] the authors use SAX to do 
spatiotemporal trajectory joins. In [50] the authors use SAX to "detect multi-headed stealthy attack tools".  

 
4.5.2 Extensions to SAX 
 

As noted above, there have been dozens of applications of SAX to diverse problems. However, there has 
been surprisingly little work to augment or extend the SAX representation itself. We attribute this to the 
generality of the original framework; it simply works very well for most problems. Nevertheless, recently 
there have been some SAX extensions, which we consider below.  

In [44] the authors augment each SAX symbol by incorporating the minimum and maximum value in the 
range. Thus each SAX segment contains a triplet of information, rather that a single symbol. Very 
preliminary results are presented which suggest that this may be useful in some domains. Bernard Hugueney 
[28] has recently suggested that SAX could be improved by allowing SAX symbols to adaptively represent 
different length sections of a time series. Just as SAX may be seen as symbolic a symbolic version of the 
PAA representation [31], Dr. Hugueneys approach may be seen as symbolic a symbolic version of the APCA 
representation [30]. While the author shows that this does decrease the reconstruction error on some datasets, 
it is not obvious that the new representation can be used with hashing (as in [43]) or with suffix trees (as in 
[42]). In contrast to Hugueneys idea of allowing segment lengths to be adaptive, recent work by Mörchen and 
Ultsch has suggested that the breakpoints should be adaptive [47]. The authors make a convincing case that 
in some datasets this may be better than the Gaussian assumption (cf. section 3.2). For example they consider 
a time series of muscle activity and show that it strongly violates the Gaussian assumption. Note that once the 
new breakpoints are defined, and tables 3 and 4 are appropriately adjusted, the lower bounding property still 
holds. Finally, in an interesting new development, Wei et al. have shown techniques to adapt SAX to various 



problems in 2D shape matching, after modifying algorithms/representations to allow for rotation invariance, 
which in the SAX representation corresponds to circular shifts [62].   

The list of papers using SAX keeps growing at rapid rate. The wide acceptance of SAX by fellow 
researchers has shown its generality and utilities in diverse domains. There is great potential for adapting and 
extending SAX on an even broader class of data mining problems. 
 

5. Conclusions and Future Directions 

In this work we have formulated the first dimensionality/numerosity reduction, lower bounding symbolic 
approach in the literature. We have shown that our representation is competitive with, or superior to, other 
representations on a wide variety of classic data mining problems, and that its discrete nature allows us to 
tackle emerging tasks such as anomaly detection, motif discovery and visualization.  

A host of future directions suggest themselves. There is an enormous wealth of useful definitions, 
algorithms and data structures in the bioinformatics literature that can be exploited by our representation [5, 
19, 25, 45, 52, 57, 60]. It may be possible to create a lower bounding approximation of Dynamic Time 
Warping [9], by slightly modifying the classic string edit distance. Finally, there may be utility in extending 
our work to multidimensional and streaming time series [61]. 
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