1. Which of the following is dereferencing object o?
a. Object o = new Object();

All of the above
. None of the above
2. Which of the following is NOT an example of object dereferencing?

b. o.setvalue(8);

C. field = o.fieldName;
d. Object o = null;

e. aandb

f. bandc

g. candd

h.

i

a. o[5] =23;

b. o.getField();

c. o=null;

d. Objectp =o;

e. aandb

f. bandc

g. candd

h. All of the above

i. None of the above
3. If you are going to dereference an object, it is best practice to:
a. Check if the object is null prior to the dereference
Ensure that the object is not null after dereferencing it
Create a new instance of the object prior to dereferencing it
Set all object attributes prior to dereferencing to retrieve any of them.
aandb
candd
candb
All of the above
i. None of the above
4. The value null indicates:
an empty object
no object
a new object
an object with no attributes
aandb
aandc
candd
All of the above
. None of the above
5. ANullPointerException is thrown when:
a. adereferenced object is null and should not be
b. A piece of code is run with compilation errors

e R

T TQ@ M0 20T



c. anull objectis created and then dereferenced immediately after

d. More than one object is trying to access the same piece of information at the
same time

e. aandc

f. bandd

g. aandd

h. All of the above

i. None of the above
6. The best way to avoid a NullPointerException is by:
a. Using getter and setter methods to access object attributes/fields (i.e.
o.getField())
b. Make sure every method you implement either throws or catches
NullPointerException
c. Debug your program to make sure no objects are found to be nul1l during

execution
d. Checking the object you are trying to access to make sure it is not null
before completing any operations with the value (i.e. if o '= null

{...}
7. Say you have the following code:

1 public Element getParagraphElement (int pos) {
2 Element e;

3

4 for (e = getDefaultRootElement(); ! e.isLeaf(); )
{

5 int index = e.getElementIndex (pos);
6 e = e.getElement (index) ;

7 }

8 if(e !'= null)

9 return e.getParentElement () ;

10 return e;

11 }

A static analysis tool gives the following warning on the code as written:

A value is checked here to see whether it is null, but this value can't be null
because it was previously dereferenced and if it were null a null pointer
exception would have occurred at the earlier dereference. Essentially, this code
and the previous dereference disagree as to whether this value is allowed to be
null. Either the check is redundant or the previous dereference is erroneous.



Upon executing your code, you do not get a NullPointerException. To test the
accuracy of the notification, and prevent problems from manifesting later, you might:
a. Move the first dereferencing of e inside the null check at line 8
b. remove the if statement at line 8
c. add an if statement in to check if the value returned by
getDefaultRootElement () is null before proceeding; this includes moving
line 10 to preserve functionality

All of the above
None of the above

d. Move line 10 above the null check at line 8
e. aandb

f. bandc

g. candd

h.

i.

8. Say you are calling a Java API method, getObject (), that returns object o, given o
is not null. Inside the method that is calling getObject (), there is the following line
of code:

1 if (getObject() !'= null) {
2 return getObject () .. }

Running a static analyzer on the code produces the following notification:

This method contains a redundant check of a known non-null value against the
constant null.

Which of the following is the simplest way to fix the problem, or prevent it from
manifesting, without modifying the code for getObject ():
a. remove the if statement at line 1
b. make sure the method you are writing throws a NullPointerException
c. create a new method that performs the same functionality as getObject ()
but does not check that
d. Nothing - the code is fine as it is.



