Exercise 1
-~ 65
66
¢ 67
68
69
¢ 70
71
72
73
74
75
¢ 76
77
78
79
¢ 80
81
82
83
84
85
86
87
88

Exercise 2

public int remove(int idx) {
int value = 0;
if (front == null) {
throw new IndexOutOfBoundsException();

}
if (idx == @) {
value = front.data;

front = front.next;

} else {
ListNode current = front;
int i = @;

while (current.next != null && i < idx-1) {
current = current.next;

i++;
¥
if (current.next == null) {

throw new IndexOutOfBoundsException();
¥

value = current.next.data;
current.next = current.next.next;

}
size--;
return value;

Diamond1 - 1 of 2 branches missed
Diamond 2 - 1 of 2 branches missed
Diamond 3 = 3 of 4 branches missed
Diamond 4 - 1 of 2 branches missed

bﬁblic static void add(Listllode list, int data){
while (list != null) {
list = list.next;
I

list.next = new Listllode(data);
(Two overlapping notifications)

1 - Null pointer dereference of list in

edu.ncsu.csc216.linked_list.ListNode.add(ListNode, int)

A null pointer is dereferenced here. This will lead to a NullPointerException when

the code is executed.



2 - Load of known null value in
edu.ncsu.csc216.linked_list.ListNode.add(ListNode, int)

The variable referenced at this point is known to be null due to an earlier check
against null. Although this is valid, it might be a mistake (perhaps you intended to
refer to a different variable, or perhaps the earlier check to see if the variable is null
should have been a check to see if it was non null).

Exercise 3

pa public Object next() {
Object result = current.data;
current = current.next;
return result;

linked_List_Iterator_Bug.LinkedIterator.next() can't throw
NoSuchElementException

This class implements the java.util.Iterator interface. However, its next() method is
not capable of throwing java.util. NoSuchElementException. The next() method
should be changed so it throws NoSuchElementException if is called when there are
no more elements to return.

Exercise 4

public static int powl(int base, int exp) {

$§ return (base * powl(base, exp-1));
i
public static int pow2 (int n, int m) {
if (m==1) {
return n;
} else {
$§ return (n * pow2(n, m));
¥
I

Bug: There is an apparent infinite recursive loop in
infinite_Recursion_Bug.Recursive_Methods.pow1(int, int)

This method unconditionally invokes itself. This would seem to indicate an infinite
recursive loop that will result in a stack overflow.



