
What We Have Here is a Failure to
Communicate!

Consequences & Improvement Requests

March 10, 2016

1 Introduction
We conducted a study to understand why developers encounter challenges when
interpreting program analysis tool notifications. Using a miscommunication
model, we defined criteria for identifying these challenges in transcripts from
sessions with twenty-six developers with varying backgrounds. Although our
criteria was designed to identify challenges, one criteria was general enough
(inability to resolve the notification) to encapsulate some of the consequences
that come with the challenges developers encounter. When participants could
not explain a notification, some also provided tool improvement suggestions that
might have helped them better understand the problem. In this short article, we
discuss two consequences that can stem from the challenges developer encounter
and tool improvements suggestions made by participants in our study.

2 Consequences

2.1 “Just Make It Go Away”
For six participants, when the text did not provide enough information regarding
the problem or the fix options, they would opt to “just make it go away”.
By “just make it go away,” we mean either applying a recommended fix or
doing what the notification suggests without understanding why. Participants
often mentioned that they only knew what to do about the notification because
of the fix suggestions provided. P22 made a valiant effort to understand
CMP4. However, he gave up on searching the notification and code for why the
serialversionUID was needed when he realized there are recommended fixes
he can choose from. Some participants immediately applied the fix when they
realized it was available. Although applying the fix removed the notification, it
did not clarify the problem with the code for any participants.

1



2.2 Lack of Trust in the Tool
For ten participants, if a tool did not communicate in a way that met their
expectations, it caused their trust in the tool to waiver. For example, as P13
finished up with the set of notifications in ECL5, he began to realize how much
the notifications provided by EclEmma differs from what he understands about
exception handling. He mentioned his waivering trust in the tool, stating:

Again now that I’ve seen this [notification] seems to be a little bit
dodgy so I’m now doubting what it’s telling me.

Sometimes, trust in the tool was affected when the participant did not
understand or agree with the severity communicated by the tool. P4 , while
explaining FB4 (Figure ??), wanted to know why FindBugs marked the problem
as scary because, to him, “it won’t do any bad to check” for null. Similarly, P23
found FB5 to be much “scarier” of a problem than FB4, which has a severity of
“scary” while FB5 is only “troubling.” He searched some of the documentation
to understand why FindBugs considers FB4 scary. However, he could not find
anything to support the severity so he dismissed the notification and moved on.

3 Tool Feature Requests
Seven participants made suggestions regarding how tools could improve commu-
nication and better meet their expectations. One suggestion posed by P13 and
P5 on multiple occasions during their sessions is that the tools should have
more information readily available. This was even the case with FindBugs;
P13 found himself in situations where he needed information FindBugs did
not provide. For example, while attempting to interpret and explain FB3,
P13 stated that he would “like to understand why this is a problem a bit
more.” He read the full description, searching for what is wrong with the
way synchronization is currently being implemented, but could not find that
information in the notification.

Both P5 and P13 also made mention of the compiler providing more
information. P13 spoke from an experience standpoint, stating that if he was
a junior Java developer, it would help him if the tool provided more information

I would say maybe double click and it gives me the code conditions
or javadoc. If I’m a junior Java developer, then definitely would help
me out to read more about what this thing is.

Similarly, P22 , possibly recalling his experiences with FindBugs, expected
the functionality of the compiler to be similar to that of FindBugs by providing
detailed descriptions. While interpreting CMP4, he clicked the gutter icon to
see if he could get any more details regarding the problem at hand. However,
rather than providing more details, clicking the icon provides a list of action
items.

He stated the following:

2



Why doesn’t this give a detailed description like...So when I hover
over the mouse it gives me the error, but when I click on it it directly
give me the error and the operations.

Another suggestion, made by P15 and P16 , was that tools attempt
to be more context-specific when communicating problems in their code. For
example, while looking at ECL4, P16 attempted to explain what EclEmma was
trying to tell him about coverage of the methods in that class. Eventually he
began looking for where the methods in that class are called in the code and
asked about viewing the test cases. P16 explained to us he was searching for
where the methods are tested and in what context.

Participants also made some tool-specific suggestions. Four participants
thought EclEmma could improve its notifications by improving its communica-
tion of control flow. P4 , for example, was attempting to interpret ECL5 and
found it challenging to understand what parts of program did not execute and
why without control flow information being readily available. Most of the feature
requests and suggestions came from more experienced participants, suggesting
that perhaps with experience comes a stronger notion of preference regarding
how the tools they use should work.

3


