
Why Don’t Software Developers Use Static
Analysis Tools to Find Bugs?

Brittany Johnson, Yoonki Song, and Emerson Murphy-Hill
North Carolina State University

Raleigh, NC, U.S.A.
bijohnso,ysong2@ncsu.edu,emerson@csc.ncsu.edu

Robert Bowdidge
Google

Mountain View, CA, U.S.A.
bowdidge@google.com

Abstract—Using static analysis tools for automating code

inspections can be beneficial for software engineers. Such tools

can make finding bugs, or software defects, faster and cheaper

than manual inspections. Despite the benefits of using static

analysis tools to find bugs, research suggests that these tools

are underused. In this paper, we investigate why developers

are not widely using static analysis tools and how current tools

could potentially be improved. We conducted interviews with 20

developers and found that although all of our participants felt

that use is beneficial, false positives and the way in which the

warnings are presented, among other things, are barriers to use.

We discuss several implications of these results, such as the need

for an interactive mechanism to help developers fix defects.

I. INTRODUCTION

Software quality is becoming more important with the
increasing reliance on software systems. There are different
ways to ensure quality in software, including code reviews and
rigorous testing. Software defects, or bugs, can cost companies
significant amounts of money, especially when they lead to
software failure [1], [2].

Static analysis tools provide a means for analyzing code
without having to run the code, helping ensure higher quality
software throughout the development process. There are a
variety of ways to perform automatic static analyses [3], in-
cluding at the developers request, continuously while creating
the software in a development environment, and just before
the software is committed to a version control system. The
tool may allow the developer to configure what kinds of
bugs it finds, and sometimes even define new bug patterns.
Some automated static analysis software, such as the software
integrated into IntelliJ IDEA [4], provide quick fixes. A quick
fix is a suggested solution for a defect that is automatically
applied to a developer’s code. To help explain the “state of the
art” of static analysis tools, let us look at FindBugs [5] as a
concrete example of how these tools work [6]. FindBugs runs
as a plug-in for the Eclipse [7] and NetBeans [8] integrated
development environments (IDEs). It can also be run from the
command line or as a separate tool on its own. When run in
the IDE, FindBugs has its own perspective where the defects
are listed and organized. Each defect is assigned a severity,
signifying how important the defect is; either high, medium or
low, each represented by red, yellow and green bug markers
respectively. FindBugs offers a select few quick fixes.

There are many situations where a developer may consider
using a static analysis tool to find defects in their code. Let
us consider a developer, Susie. Susie is a software developer
at a small company. She wants to make sure that she is
following the company’s standards while maintaining quality
code. She needs a way of checking her code in her IDE, before
submitting it to the general code repository, without worrying
about any outside dependencies that she has no control over.
Susie decides that her best bet is to install a static analysis
tool. She decides to install FindBugs because she likes the
quality of the results and the fact that bugs can be found as
she types; at first, she is very happy with her decision and
feels productive when using it.

The above scenario is an interpretation of an experience
one of our participants recalled during their interview. Static
analysis tools use well-defined programming rules to find
defects early in the development process, when they are cheap
to fix [6]. For example, there are static analysis tools that
can alert developers to synchronization issues which can lead
to unsafe thread interactions. Developers have been able to
eliminate many defects that were previously overlooked at
large companies [9] using the warnings produced by static
analysis tools.

Despite the benefits of using static analysis tools to find
bugs, consistent usage of these tools is not very frequent [6].
Remember Susie, who adopted a static analysis tool to im-
prove the quality of her code? After using the tool for a
while, dealing with the interface became a burden; finding the
warnings was not easy and when she did, she had a hard time
interpreting the feedback. Inspecting her code without using
the tool involved more work, but she prefered to do it this way
to avoid the time and confusion involved with using the tool.
There have been studies to investigate ways of improving static
analysis tools. However, none look at what the tools do or can
do for a developer, what features developers use, what could be
improved and why [10], [11]. Our research aims to understand
why software developers are not using static analysis tools and
how current tools could be improved to increase usage based
on developer feedback. For our study, we intend to focus on
static analysis tools used to finds bugs. This includes tools
like FindBugs, Lint [12] , IntelliJ [4] (which includes built-in
static analyzers), and PMD [13]. FindBugs will be referenced
the most as it is the tool we chose to use during our interviews.

978-1-4673-3076-3/13/$31.00 c� 2013 IEEE ICSE 2013, San Francisco, CA, USA672

In the following sections of this paper, we will first discuss
some related work (Section II) and the methods used in our
study (Section III). Section IV presents the results and threats
to the validity of our study. In Section V we discuss implica-
tions for static analysis tools and finish with a discussion of
future work (Section VI) and take away points (Section VII).

II. RELATED WORK

There have been many studies on static analysis tools, many
of which focus on their correctness and functionality [6],
[10], [14], [15]. Unlike existing work, our work focuses on
developers’ perception on using static analysis tools, including
interacting with the interface of the tool, and what may have
caused their perceptions. Perception plays an important role in
when considering human and computer interactions [16] and
can be influenced by a number of things, such as the subjective
preferences of the user.

Ayewah and Pugh conducted a study where they claimed
that static analysis tools should help engineers find bugs as
early as possible in the development cycle, when they are
cheap to fix [17]. They interviewed 12 FindBugs users by
phone and conducted a controlled study with 12 students to see
how they use FindBugs and handle defects that are labeled “not
a bug”. Their work is similar to ours in that they are interested
in how developers use static analysis tools. Our work builds
on this work by recruiting various tool users for interactive,
participatory interviews.

Khoo et al. examined and focused on the interface of static
analysis tools and how the interface could be improved [11].
They developed a user interface toolkit called Path Projection
that uses program visualizations to help developers walk
through the error reports produced by static analysis tools.
Path Projection was designed to improve and simplify the
process of triaging bug reports, or labeling bugs as a false
or true positives, by utilizing checklists to systematically label
bugs. This study is similar to our work in that they look at
improving the static analysis tool user experience. Our study
builds on this study by investigating not only improving the
user experience, but also finding out why these improvements
need to be made from the developers who use them.

Heckman and Williams conducted research in an attempt to
develop a benchmark, FAULTBENCH, that would help devel-
opers compare and evaluate static analysis alert prioritization
and classification techniques [18]. The overall goal of their
research was to make using static analysis tools easier and
more useful to developers. Our work is related in that we
are also looking for ways to improve current static analysis
tools for developers. Layman et al. recruited 18 participants to
investigate factors that developers may consider when deciding
whether to address a defect when notified of it [19]. This study
is related to our work in that a similar methodology is used and
they are also interested in learning more about how developers
use these tools and how it can be made easier. Our work builds
on these works by focusing on various aspects of using static
analysis tools, including how users interact with the tools.

III. METHODOLOGY

For this study, we conducted interviews with software
developers. Each semi-structured interview lasted approxi-
mately 40-60 minutes and, with the participant’s consent,
was recorded. By conducting “semi-structured” interviews, we
aimed to achieve the flexibility needed to get as much detailed
information as possible [24]. We prepared a script of questions
for the interview, but would add or omit questions on the fly
depending on how detailed a participant was in their responses.
We created and modified the script as we conducted trial
interviews; any changes made to the script was based on the
responses we got from our 4 trial participants [25].

Upon completion, we manually transcribed each session.
We performed qualitative analysis 1 on the transcripts by
“coding” the transcriptions. This process is discussed in detail
in Section III-F.

A. Participants
We conducted this study with a group of 20 participants.

Although this seems like a small sample, we followed a
similar methodology to that of Layman et. al.’s study that only
had 18 participants [19]. Participants were recruited using an
electronic recruitment flyer that was sent out to our industry
contacts to then be sent to developers within their company.
Sixteen of our participants are professional developers at a
large company and 4 are graduate students at North Carolina
State University with previous industry experience. Partici-
pants’ years of development experience ranged from 3 to
25 years. We did not explicitly ask participants about their
experience building static analysis tools, however, based on
conversations approximately 2 participants had tool building
experience. We interviewed two participants remotely, one by
phone and one by video chat, due to location differences.
Each participant filled out a short questionnaire used to collect
demographic information.

Table I shows the statistics and background information
gathered from the questionnaire and interviews. The first
column lists the participants’ pseudonyms, given for confi-
dentiality purposes. The second and third columns show the
open-source tools and closed-source tools that they have used
to find bugs. If a space has a “-”, it indicates no response from
the participant.

B. Research Questions
For this research, we want to learn:
• RQ1: What reasons do developers have for using or not

using static analysis tools to find bugs?
• RQ2: How well do current static analysis tools fit into

the workflows of developers? We define a workflow as
the steps a developer takes when writing, inspecting and
modifying their code.

• RQ3: What improvements do developers want to see
being made to static analysis tools?

1All study materials including interview scripts and coding categories are
available at http://www4.ncsu.edu/⇠bijohnso/ffsat.html

673

TABLE I
DESCRIPTIVE STATISTICS REPORTED BY PARTICIPANTS.

Participant Open-source Tools Closed-source Tools Local

Abby FindBugs IntelliJ Yes
Adam CheckStyle, FindBugs, PMD IntelliJ Yes
Andy FindBugs, Lint Jtest [20] Yes
Chris CheckStyle, FindBugs, Lint Coverity Yes
Cody Dehydra - Yes
Frank - - Yes
Gordon Lint, CheckStyle, FindBugs - Yes
Jake FindBugs, Lint FlexLint, Klocwork Insight [21], Visual Studio [22] Yes
James Lint, CheckStyle, FindBugs Visual Studio Yes
Jason Lint, FindBugs - Yes
John CheckStyle, Copy/Paste Detector(CPD), FindBugs, Lint, PMD CodePro [23] Yes
Jordan CheckStyle, FindBugs, PMD Jtest Yes
Josh FindBugs, Lint Coverity No
Lee CheckStyle, FindBugs, Lint Visual Studio Yes
Matt Lint FlexLint, PyCharm Yes
Mike cpplint, Lint - Yes
Phil - - Yes
Ray CheckStyle, FindBugs - Yes
Ryan FindBugs, Lint Coverity Yes
Steve CheckStyle, CPD, FindBugs, Lint IntelliJ Yes
Tony CPD, FindBugs, Lint, Splint,cpplint, PMD, Checkstyle Coverity No

We ask these questions because answers to these questions
will give toolsmiths and researchers areas for future work and
improvement in the area of static analysis tools. Research has
shown that the way a tool interrupts a developer’s workflow
is important therefore we wanted to specifically investigate
this aspect of tool usage [26], [27]. The interviews focused
on developers’ experiences with finding defects using static
analysis tools. Learning developers’ relevant experiences and
observing how they use static analysis tools to find bugs may
shed some light on why these tools may be underused. The
interviews were organized into into three main parts: Questions
and Short Responses (Section III-C), Interactive Interview
(Section III-D), and Participatory Design (Section III-E).

C. Part I: Questions and Short Responses

During part 1, Question and Short Response, we asked
developers questions related to their general usage, under-
standing, and opinion of static analysis tools in order to
answer RQ1. Some of the questions asked include:

• Can you tell us about your first experience with a static
analysis tool?

• Can you remember anything that stood out about this
experience as easy or difficult?

• Have you ever used a static analysis tool in a team
setting? Was it beneficial and why?

• Have you ever consciously avoided using a static analysis
tool? Why or why not?

• What in your opinion are the critical characteristics of a
good static analysis tool?

D. Part II: Interactive Interview

The second part is what we call the Interactive Interview.
The goal behind the Interactive Interview is to be able to
observe developers actually using a static analysis tool. This

allowed us to get more detailed information as to how de-
velopers are using their tools. We aim to use the information
obtained during this portion to address RQ2. We asked our
participants to explain what they are doing out loud [28] so
we could get a better understanding of their workflow and
thought process. Practice interviews before this study revealed
that using the interactive interview portion produced more
detailed information regarding when and how developers use
their static analysis tools [25].

Some of the questions asked during this portion include:
• Now that you have run your tool and gotten your feed-

back, what is your next move(s)?
• Do you configure the settings of your tool from default?

If so, how?
• Does this static analysis tool aid in assessing what to do

about a warning?
• Do you feel that “quick fixes” or code suggestions would

be helpful if they were available?2

For confidentiality reasons, not all of our participants could
use their own workstation for this part of the interview. For
those who could not, we provided 6 open source projects in
Java, such as log4j [29] and Ant [30], and asked each partic-
ipant to run FindBugs on one of them. We chose FindBugs
because it is one of the most popular and mature static analysis
tools for Eclipse. Due to technical difficulties, our remote
interviews were not able to fully experience the “interactive”
portion. Each was given a scenario of static analysis tool
usage and asked to, first, explain their thought process in
walking through that particular scenario. We then asked the
same questions as we would have asked if they had been local.

2Participants were only asked about quick fixes and code suggestions being
useful when they mentioned, either during the Question and Answer or
Interactive Interview, that they either a) find quick fixes useful, b) felt that
the tool should be more helpful or c) did not understand how to fix the defect
we presented them with.

674

E. Part III: Participatory Design

We intended the last part of the interview to get the
participants to make design suggestions for improving static
analysis tools. We utilized a concept called participatory
design [31], which involves getting stakeholders (in this case,
our participants) involved in the design process by allowing
them to show what they want instead of saying it. In order to
promote creativity, each participant was given a blank sheet
of paper and asked to show us what they wanted their tool to
look like and how it should work [25]. Participants were not
required to draw something, but 6 of them did. The rest of
our participants gave verbal descriptions of tool features they
desired.

F. Coding Interview Responses

After completing the interviews, we manually transcribed
each interview. Then, the transcriptions were coded. Coding
is a process that is meant to make referencing transcriptions
quicker and easier [32]. We used Gordon’s basic steps to code
our interviews and use the codings to help organize the Results
(Section IV). Before coding an interview, “coding categories”
need to be defined. These should be general enough for rele-
vant information to be grouped together but detailed enough
that a concrete example only falls under one category. Because
of this, it is possible to have “emergent” categories that may
need to be defined after reading the transcriptions. We devel-
oped and used the following coding categories: Tool Output,
which includes anything related to the output produced by
the tool (for example, false positives); Supporting Teamwork,
which includes anything about using static analysis tools in a
team or collaborative setting; User Input and Customizability,
which highlights points made about the customizability of
the static analysis tools (for example, modifying rule sets);
Result Understandability,which includes anything said about
the ability or inability to understand or interpret the results
produced by a static analysis tool; Workflows, which is defined
as anything related to the steps a developer takes when writing,
inspecting and modifying their software (for example, tool
integration); and Tool Design, which includes the proposed
tool design ideas from our participants. Examples of each of
these categories from the transcriptions are as follows:

Tool Output
Jason: “. . . like I mentioned with FlexLint it gives
you so many warnings and sifting through them is
so, arduous that whenever I just look at it I’m like
ehhh forget this.”

User Input/Customizability
Andy: “. . . it’s like is this list prioritized by you know
what’s important to me? No. You know? And there
may be a default listing that should be prioritized
because like this one’s inefficient.”

Supporting Teamwork
John: “The only reason I like the batch results is
to communicate, broadcast to the team a sense of
progress or lack of progress.”

Result Understandability
Matt: so now I wanna know why raising a string ex-
ception is bad. Like what should I be doing instead?
Since it thinks it’s a problem. And so none of these
really help me.

Workflows
Mike: “Clang is my favorite. Its built into the com-
piler. You don’t have to invoke anything special.”

Tool Design
Chris: “I dont mind the idea of the actual source code
itself having some plasticity . . . lets say the fourth line
there was some error here. . . having the 5th line drop
down and having the content expand with maybe all
sorts of annotations about my code.”

The next step in Gordon’s methodology is to assign “cat-
egory symbols” to each category for easier indexing and
processing of information. Gordon then suggests finding and
classifying the relevant information in the transcriptions using
the category symbols. In our codings, each coding category
had its own color as a “symbol”; if a portion of a participant’s
transcription fell into one of the categories, the text would
be highlighted the same color as its respective category. A
participant’s coded interview could contain multiple categories
or even multiple data items for one category. To ensure
consistency, one person was responsible for coming up with
the coding categories and “symbols” and going through the
transcriptions to apply them. The last step is to check the
reliability of the codings. For our study, once the codings
were complete, it was passed off to the other contributors to
look over. If there were any discrepancies they were discussed
and resolved as a group. This includes items that could fall
into more than one category; in this situation, either a new,
more specific, category or a “sub-category” was created for
the item. The purpose of the categories are to organize the
data in a relevant and useful manner; they are not meant to
directly correlate with the research questions.

IV. RESULTS

In this section, we will discuss the results we obtained.
We answered our research questions by linking the questions
to coding categories and interview parts. After analyzing the
results, we believe the following to be true:

• Our first research question (RQ1) can be answered by
observing the results that have been categorized under
“Tool Output,” “Supporting Teamwork,” “User Input and
Customizability,” “Result Understandability” and “De-
veloper Workflows”; the information collected in these
categories could be reasons why developers are or are
not using static analysis tools.

• Our second research question (RQ2) can be answered by
observing the results that have been categorized under
“Developer Workflows.”

• Our third research question (RQ3) can be answered by
observing the results that have been coded under “Tool
Design”; most of these results are from the Participatory
Design portion.

675

In each category, we expected there to be negative and
postive remarks about current tools, both of which are equally
important in answering our research questions; anything pos-
itive could be a reason for use while anything negative could
be a reason to discontinue use. For each coding category,
we separated the relevant statements into positive statements
and negative statements; if something good is said about a
static analysis tool it’s considered a positive comment and vice
versa for a negative comment. In Figure 1, we can see that
the majority of our participants have had problems with tool
output, customizability and workflow integration, and all but
one of our participants have had problems with understanding
results. Tool design is not included because this category
was defined to capture the developers’ ideas for improving
static analysis tools. Their reasons for wanting the features
are captured in the other categories.

A. RQ1: Reasons for Use and Underuse
Our interviews revealed that there are a variety of reasons

developers may have for choosing to use a static analysis
tool to find bugs in their code. One of the obvious reasons
is because too much time and effort is involved in manually
searching for bugs. Five out of our 20 participants feel that
because static analysis tools can automatically find bugs, they
are worth using. During his interactive interview, Jason told
us “anything that will automate a mundane task is great.” In
other words, one reason for using static analysis tools is that
they automates the process of finding bugs.

Another reason developers might use a static analysis tool is
if it is already available in the development environment and
ready to be used. For 3 of our participants, this was the case.
Development environments such as IntelliJ and PyCharm come
with built-in static analyzers, which requires little extra effort
on the developer’s part. Two of our participants, Matt and
Adam, use PyCharm and IntelliJ regularly and like the fact that
static analysis is already integrated. For 7 of our participants, a
good reason to use static analysis tools is to support team de-
velopment efforts. According to Josh and Andy, static analysis
tools do this by raising awareness of the potential problems,
or “dumb mistakes,” in the code earlier in the development
process. For Cody and Ray, static analysis tools are useful for
communicating and enforcing coding standards and styles on
development teams. Some developers enjoy using the static
analysis tools they use to find bugs because of the level of
customizability. Three of our participants fit into this category.
According to James, the customizability of a tool can play a
large part in the volume and quality of output developers get.

Although some of our participants could find reasons to
use static analysis tools to find bugs, most of our participants
brought up conflicting concerns that could make the decision
to adopt and use a static analysis tool less obvious.

Tool Ouput. Tool output was a popular dicussion topic.
Out of the 20 people we interviewed, 14 people expressed the
negative impacts of poorly presented output. Static analysis
tools are known to produce false positives and these false
positives can “outweigh” the true positives in volume [33].

Another known fact is that, especially with larger projects,
the number of warnings produced by a tool can be high,
sometimes in the thousands [9]. Some of our participants felt,
however, that false positives and large volumes of warnings
would be less burdensome if the way the output is presented
was more user-friendly and intuitive. Cody, who likes using
Dehydra, finds himself frustrated at times because the results
are dumped onto his screen with no distinct structure causing
him to spend a lot of time trying to figure out what needs to
be done. Jason wishes that his tool’s output would be a “slice”
that shows what the problem is and what else could be affected
in order to more quickly assess what is or is not important.
This “slice” should be taken from the entire project, using call
hierarchies, to show which parts are affected by each defect.
During his Interactive Interview he commented on a previous
experience with FindBugs. He had a large list of warnings
to scroll through but without there being any context to the
problems it just seemed like “a bunch of junk to sift through,”
which made him not want to bother using it. It may be worth
investigating how valuable an output like this would be.

Collaboration. In industry, software development is often a
team effort. For 9 of our participants, lack of or weak support
for teamwork or collaboration is one reason that teams, as well
as individual developers, may not adopt or regularly use static
analysis tools. According to John, although static analysis tools
are useful for trying to enforce coding standards, there is no
easy way to share the settings with other people on the team
so it ends up being a cumbersome manual process and causing
confusion when the standards need to be changed. Many of
our participants mentioned the desire for a way to easily
communicate and collaborate when using their static analysis
tool, especially in a team setting. Although static analysis
tools can be beneficial in team settings, current tools are not
collaborative enough for some developers. Newer versions
of FindBugs offer a cloud storage feature that can be used
store, share and discuss warning evaluations [34]. Although a
feature like this does make it easier to communicate and share
warning evaluations between developers, to add a comment to
a bug or current evaluation a web browser is needed. This
takes the devloper out of context and out of the development
environment which could demotivate some individuals from
checking them when they should.

Customizability. For 17 of our participants, customizability
is important however many tools are not trivial to configure
and do not accomodate the customizations that developers
want. False positives and large volumes of warnings are well-
known downsides to use static analysis tool to find bugs,
however Frank told us he believes that the way you configure
your tool plays a large part in the output you get. John
stated during his interview that “many tools are so hard to
configure, they prevent you from doing anything.” Sometimes
it is difficult just to get to the menu where the options
for configuring a particular feature are, which participants
Matt and Josh agree with. One of our participants, Jake,
found himself in an interesting situation during his Interactive
Interview where he could not figure out how to customize his

676

7

14

7
9

3

17

10

19

7

15

0

5

10

15

20

Positives Negatives Positives Negatives Positives Negatives Positives Negatives Positives Negatives

Tool Output Supporting Teamwork User Input and
Customizability

Result Understandability Developer Workflows

N
um

be
r

of
 P

ar
tic

ip
an

ts

Fig. 1. The number of participants in each category expressing the good and the bad about static analysis tools they have used.

tool and wound up having to search the web to find out where
the tool’s preferences were. A common problem expressed by
most of the participants is the inability to temporarily ignore or
suppress certain warnings. Although some static analysis tools
allow developers to turn off certain filters, not all developers
are comfortable with turning warnings completely off. Matt,
for example, is afraid that he may not remember to turn it
back on. The notion of dismissing or ignoring static analysis
warnings may be too coarse; as Jordan noted, he would
prefer that static analysis tools offered a way of recording his
judgement about that warning. More sophisticated judgements
may include things like “this warning isn’t a problem now, but
may be in the future if the following conditions are met. . . ”.

Result Understandability. The main objective when using
a tool like FindBugs is to learn what defects are in the code
so that problems can be removed. A developer not being able
to understand what the tool is telling her, according to our
participants, is a definite barrier to use. Nineteen of our 20
participants, felt that many static analysis tools do not present
their results in a way that gives enough information for them
to assess what the problem is, why it is a problem and what
they should be doing differently. James told us during his
interview that “it’s one thing to give an error message, it’s
another thing to give a useful error message.” When talking
about the Eclipse Python plug-ins, he also stated, “I find
that the information they provide is not very useful, so I
tend to ignore them.” A few participants felt that it would
be helpful to have links to more details or examples in the
error reports. In some situations more information is needed
to understand exactly what the problem is and why it is a
problem; understanding why a defect is a problem can help the
developer better assess whether the error is a false positive and
try to avoid repeating the same problem. Ryan told us during
his Interactive Interview that a start would be using “real
words,” or a more natural language, to explain the problem.

The most frequently mentioned difficulty when using static
analysis tools is lack of or ineffectively implemented quick
fixes. Most of our participants expressed interest in having
their tool provide code suggestions or quick fixes that assist
them when attempting to fix a bug; Abby proclaimed “if you

can tell me it’s an error, you should be able to tell me how to
fix it.” Jordan strongly agrees; he loves tools that have quick
fixes and hates tools that do not. According to our interviews,
these fixes do not have to be automatic; some prefer that
code suggestion previews be used or possibly using examples
to get a better understanding of how to fix the problem.
Some participants expressed interest in but skepticism toward
integrating quick fixes into static analysis tools. For example,
during Jordan’s Interactive Interview, he noted that sometimes
when using multiple tools, they may have conflicting quick
fixes or solutions. In Frank’s past experiences with automated
code changes, he has had to do manual refactorings because
something was done wrong; because of this, he prefers to use
find and replace to make his own changes. Another participant,
Adam, was concerned with knowing whether the semantics of
his code would be preserved after applying a quick fix. Most
static analysis tools, if they offer quick fixes, leave it to the
developer to figure out exactly what has been done after it has
been done. Almost all of our participants agree that effectively
designed quick fixes can help them to better understand the
problems its tool is telling them about, leading to a better sense
of productivity for the developer.

B. RQ2: Workflow Integration
The most common topic during the interviews was

“tool/environment integration.” Sometimes a developer’s pro-
cess includes running a static analysis tool, but more often it
is not part of a developer’s workflow to stop and run a tool
in the middle of working on some code or a specific task; she
usually prefers finding a “stopping point” in her code to run
the tool [19]. Analysis of our interviews reveal that while this
is true, there are many different ways that developers may want
their tool to fit into their development workflow. For example,
some developers prefer that the tool run in the background; it
is easier for them to figure out what is wrong if they are in the
process of doing it and do not have to think about invoking the
tool. On the other hand, some developers do not use IDEs, so
if they are to use a static analysis tool, compiler integration is
very important. Nineteen of the 20 developers we interviewed
expressed the importance of workflow integration to them and
how these needs have or should be met.

677

For some of our participants, there are features of static
analysis tools they have used that helped the tool better
integrate into their workflow leading to increased usage of
the tool. In fact, John feels that static analysis tools can be
used to help organize your workflow, based on the results it
produces. For example, if you are running a static analysis
tool on some code for the first time, it can be a good indicator
of the kinds of bugs the tool finds and that may be present;
this can give an idea as to how detailed of an analysis the
tool does, possibly giving you a better idea of when it would
be best for you to run it. Of all the tools Adam has used
in the past, he much prefers to use IntelliJ and its built-in
static analysis to find bugs; they are tightly integrated making
it seem more “real time”. For these participants, as well as
a few others, integration with the development environment
plays a major role in their decision to use or continue using a
static analysis tool. Common standalone static analysis tools
like FindBugs and PMD have the ability to integrate with
IDEs like Eclipse and NetBeans which becomes especially
important when you are using more than one static analysis
tool at a time, as we learned from discussing a past experience
of Steve’s where he was using 3 different static analysis tools.
Jordan and Chris like how FindBugs, PMD and CheckStyle fit
into their development processes; for Jordan, it is an integral
part of his workflow. For the majority of our participants,
however, current static analysis tools are not doing enough
to effectively integrate into their development process.

One of the biggest demotivational forces on a developer
when it comes to using a static analysis tool to find bugs is
when it is what Tony calls a “disjoint process.” Many of our
participants, especially those who do not use IDEs, do not like
when they have to go out of their coding environment to use
a tool or view the results produced by the tool. For example,
Frank, Lee, James and Andy commented on how “painful”
it was during their Interactive Interview to have to switch
perspectives in FindBugs to explore the complete listing of
bugs. According to Lee, having to open another perspective to
know what is going on is a guarantee that unmotivated people
will not do it. For Frank, although it is nice that the results are
hidden so that you are not overwhelmed, having to go back
and forth and drill down to see the bugs requires extra effort
and is disruptive to his workflow. Other tools our participants
had similar complaints about was Coverity and Lint for C/C++
projects. For Ryan and Tony, the biggest downside to using
Coverity is that it is not capable of being integrated into their
coding environment, leading to a lot of clicking back and forth
between their editor and the static analysis tool. Phil does not
like using Lint because of the fact that he has to “go out of
his way” to do so.

Some of our participants made it clear, however, that even if
the tool is integrated with their development environment, it is
still possible that the tool does not integrate well into their de-
velopment process. For example, one of our participants, Mike,
does not use IDEs so using a tool that integrates well with an
IDE does not fit well into his development process; he likes
using Clang because it can be tied into his compiler which

does not require a “development environment”. According to
Gordon, one of the key problems with static analysis tools
is that at times they can prevent him from being productive.
One way this can happen is when the tool slows the developer
down by taking a long time to run, which was a common
complaint amongst our participants. From Jason’s experience,
he believes that “if it disrupts your flow, you’re not gonna
use it.” Jason’s statement rings true among other participants
as well, like Steve who has used various tools in his past
but does not like to use FindBugs because, even though it is
IDE integrable, it runs slow. IntelliJ, which contains built in
static analyzers, utilizes idle time when reporting bugs in an
attempt to prevent the problem of interrupting the developer’s
workflow but for Matt, it can still be bothersome. Jason
believes that the problem with current static analysis tools is
that they are not capable of running well on larger code bases,
leading to a break in his “development flow” as he waits for
the tool to catch up.

In terms of workflow, participants valued using static anal-
ysis both to fix bugs once they are introduced into the
program, but also later in the development process. From
a workflow standpoint, it is valuable to fix potential bugs
when they are entered into a program because the necessary
context to understand the bug is already in the developers’
working memory. In contrast, fixing bugs later is difficult
because a developer must recall the context to analyze the
corresponding static analysis warning. This contrast is similar
to the difference between “floss refactoring” and “root canal
refactoring,” where the former involves restructuring code as
it is being worked with and the latter involves refactoring
by finding the “worst code” and dealing with that first [35].
Root canal refactoring is a discouraged practice and its analog
in static analysis – finding the most severe static analysis
warnings in a whole codebase and dealing with those first –
may also be a wasteful practice. Research has shown that many
static analysis warnings in working systems do not actually
manifest as program failures [9].

C. RQ3: Tool Design
Our main goal in this research is to improve static analysis

tools for developers. The best way to do this is to find
out how developers want their tool to be designed. Most
of the proposed designs are for warning notification and
manipulation or quick fix display. Participants made some
other interesting proposals which will also be presented.

Quick Fix Design. Ten of our participants made a sug-
gestion related to the way in which a quick fix should be
displayed. Most of our participants wanted to be able to
preview the fix and how it is going to change their code before
they apply it. Abby and Tony recommended splitting the code
editor to show a diff of the code, using highlighting to show
what code has changed or been added to their code. On one
side there would be the code now and on the other the code
once the fix is applied. Some felt that you should be able to see
the fix before applying it, but then also manually apply it so
that you know the fix is being applied without introducing any

678

new problems. One participant, Mike, prefers not to have quick
fixes at all because he feels the error messages are enough to
assess what to do about an error.

One interesting quick fix design idea, which came from
Ryan during his Interactive Interview, was to have what he
called a “three option dialog box” available when applying a
quick fix. This dialog box would pop up upon a click to fix
the bug and there would be three choices: apply the entire fix
(default option), do not apply the fix or step by step apply
the solution allowing the developer to decide which parts of
the solution they would like to keep. Static analysis tools like
FindBugs and IntelliJ offer some quick fixes. However they
do not give a full context preview of the changes that will be
made, leaving it to the developer to manually ensure that the
fix was applied correctly and to their liking.

Warning Notification and Manipulation Design. All 20
of our participants told us when and how they want to be
notified of errors in their code. The theme in this category
is “fast.” Developers want tools that provide faster feedback
in an efficient way that does not disrupt their workflows. For
some of our participants, this meant running the tool in the
background of the IDE so that feedback occurs as soon as a
problem is detected. For other participants, this meant running
the tool at build time or compile time. In this way, the results
are presented when the developer is at a “stopping point.” [19].
Overall, our participants find that current static analysis tools
are not fast enough when providing them with feedback;
this quickness should be accompanied with discretion as the
developer does not want the tool to break their thought process.

Our participants also thought it would be beneficial to have
the ability to easily make “judgements” about defects, such
as setting it aside to view later, save these judgements and
share them with other developers. Many of our participants
suggested that static analysis tools should allow developers to
ignore specific defects and move them to their own list for
later viewing, a form of temporary suppression. Most tools,
if they allow the developer to ignore specific warnings, only
allow the developer to turn off or suppress a bug category
for particular line of code using a comment-like annotation,
which Gordon told us makes the code “smell”. Developers
would like to have the option to ignore each individual defect
in case they either do not want to fix it and do not want to be
bothered by it again or do not want to be bothered with it at
that particular time but would like to come back to it later.

Other Design Ideas. Our participants also came up with
creative design ideas. One participant, Chris, suggested giving
the editor “plasticity”. When he is given a warning and would
like to get more information, the tool should move the code
surrounding the warning to embed this information into the
editor. A couple of our participants thought it would be useful
to have visual output, possibly a pie-style diagram of the
project and the bugs in it, instead of standard list and tree
outputs to make it easier to go back and forth between warn-
ings and code. During Frank’s Participatory Design session,
he suggested a potential solution; a parts-to-a-whole corpus
view of the project as a “heat map”. The heat map would

Fig. 2. One of our participant, Matt’s, Participatory Design drawing; (A)
shows where Matt wants the gradient colors and (B) shows the way his current
tool represents severity.

use colors to show where the errors are and how severe the
problems are. It would start with an overall “view” of the
project and as you drill down you can see the condition at
each level to see where the most attention is needed. This is
similar to the concept behind Khoo’s toolkit Path Projection
in that the toolkit is meant to visualize output that is usually,
if not always, textual and difficult to understand [11].

An interesting suggestion made by a couple of our par-
ticipants is to represent the severity of the defects using
gradients of one color instead of multiple different colors;
the darker the color the more important or urgent the bug
is. Figure 2 depicts a drawing one of our participants, Matt,
drew during his Participatory Design; he labeled the side of the
editor “gradient” (A) where he would like to see his severity
representation. In the top right corner, Matt also lists the colors
that his current tool uses (B); for example, “R” means red. The
idea behind this is not new; other studies have focused their
attention on using colors for error representation [36], [37].

D. Threats to Validity
There are several threats to the validity of our study; here

we categorize each threat as a threat to external, internal, or
construct validity.

External. One limitation to the generalizability of our
study is the sample size. Although we obtained valuable
information from the 20 interviews, due to time constraints
(and busy developers) they may not be representative of the
larger population that use static analysis tools. Although we
would have liked more participants, having a large number of
interviews to transcribe and code could lead to less accurate
analysis. The study conducted by Layman et al. [19], which
we discussed earlier as utilizing a similar methodology, had a
participant pool of similar size (18). Another possible threat

679

is that we only interviewed developers who have used static
analysis tools. In some cases it may be that static analysis
tools are not being used for other reasons, such as lack of
awareness. It should also be noted that some of our participants
had experience building static analysis tools, giving them
somewhat of a biased opinion of the usage of these tools.

Internal. Another threat to the validity of this study is the
way in which we conducted remote interviews. We did not
thoroughly prepare for what we would do if the technology
we wanted to use did not work or was not available. Therefore,
the Interactive Interview and Participatory Design in remote in-
terviews had to be conducted differently than local interviews.
Despite this, there was still value in the results obtained from
our remote participants; they could still give useful insights
from their previous experiences. Only 2 of the interviews fell
into this category, so this helps limit the impact of this threat.

Construct. The objective for using the Interactive Interview
was to get more accurate information on how developers use
their tools. One limitation here is that some developers were
not as familiar with the code or environment they had to use
in our interviews as they would be with their own code in
their own development environment. This could have caused
some developers to take different actions than they would if
they were in their own environment. Ideally it would have
been better to have been able to observe our participants
working in their own environment; however, for confidentiality
reasons, we were not allowed to view participants’ own
proprietary code. In an effort to compensate for this threat,
the open source projects and tool we chose are well-known
open source projects. Another threat to the validity our work
is that we did not originally consider is that we may have said
things in our consent form or session script that would give
unintended “hints” to our participants concerning our research
expectations. One example of this is us outlining our research
goals in the introductions we gave prior to beginning each
session. This could have led to what is called “hypothesis
guessing” where participants respond to questions based on
what they think the researcher wants to hear [38]. In retrospect,
we helped alleviate this threat in our interviews by asking our
participants experience questions.

V. DISCUSSION

A. Implications
Our interviews have several implications for current and

future static analysis tools. Current static analysis tools may
not give enough information for developers to assess what to
do about the warnings produced and very seldom offer a fix
to what it claims is an issue. If static analysis tools offered
quick fixes, giving a potential solution and applying it to the
problem may help developers assess warnings more quickly
and ultimately save time and effort. Our results indicate that
FindBugs, for example, would be more useful if it had more
informative messages and offered quick fixes. At the same
time, quick fixes do not appear to be a universally applicable
mechanism to help developers resolve static analysis warnings
because many static analysis warnings do not have a small

set of solutions. For example, FindBugs warns developers
when two method names in the same class differ only by
capitalization; no quick fix for this problem is likely to satisfy
a developer. Instead, interactive quick fixes that enable easy
access to refactoring and code modification tools may be able
to semi-automatically help developers resolve static analysis
warnings. On the negative side, quick fixes could also cause
developers to be hasty in fixing their code, which could
potentially lead to more problems, such as the introduction of
new defects. There are also challenges related to implementing
usable interactive quick fixes. We have not yet investigated
what theses challenges are or how to address them as they are
out of scope for this particular study.

Developers like tools like IntelliJ and FindBugs because
they have the ability to run without the developer telling it
to, however, there is still the issue of giving the developer
information they find useful. One way to allow developers
to focus on making judgments about defects is to treat each
warning like a Mylyn task [39], where the program elements
that are explored when making a judgement, such as the
assignments to a variable when judging a null-pointer warning,
automatically populate a warning’s task-context. In this way,
extraneous warnings and program elements not related to
a warning under investigation can be automatically elided,
reducing distractions. Like Mylyn task contexts, such “judge-
ment contexts” could also be saved and passed around between
developers, enabling knowledge about static analysis issues to
be more easily shared.

Developers may prefer a tool where the usage is tied into
their normal workflow. For example, if a developer has to
commit their code to a repository so many times a day, they
may be more likely to use a static analysis tool if it can be
run each time they go to commit their code; this way they do
not have to go out of their way to use the tool. Developers
may want also features such as the ability to modify existing
warnings or rule sets or choosing how and when their tool runs.
Most static analysis tools for finding bugs today offer some
type of customization to the bugs it finds; for example, in
FindBugs and IntelliJ it is fairly simple to turn off or suppress
warnings for any of the categories of bugs that the tool finds.
If a tool is to be customizable, it should be customizable in
a way that is simple and useful to the developer. FindBugs
allows developers to turn off certain bug detectors but only
on a project level. Turning off a detector for a specific class
or file has to be done manually in the code at each line you
want ignored. Configurations that require this much effort may
cause the developer to discontinue configuring the tool, which
could eventually lead to the developer discontinuing use of the
tool.

VI. FUTURE WORK

The results from our study suggest that there are ways
to make static analysis tools more useful to developers. In
the future it may be necessary to perform a follow-up study
that focuses on the adoption of static analysis tools to give
a more holistic view of what factors developers consider

680

when choosing to use a static analysis tool. We have begun
to implement a static analysis tool prototype based on the
results we obtained in this study. One of the main features
we plan to focus on are defect remediations, as this seemed
to be one of the most frequently mentioned requests made
by our interviewees. More specifically, we are interested in
implementing interactive quick fixes, giving the developer
more enhanced control over the “automatic fix,” beyond what
would normally be offered in a one-shot quick fix. We also
plan to conduct a user study to evaluate our prototype with
software developers with a range of experience.

VII. CONCLUSION

In this paper, we investigated why developers do not widely
use static analysis and how current tools could be improved
to increase usage. We conducted a user study involving 20
software developers who have an average of about 10 years
of experience with using static analysis tools to find bugs. We
also discussed the implications of our results.

Our results confirmed that false positives and developer
overload play a part in developers’ dissatisfaction with current
static analysis tools. Each of the factors presented in this paper
should also be considered when implementing a tool that will
lead to higher usage of static analysis tools for improving
software code quality and maintaining coding standards. Fu-
ture static analysis tools could improve adoption by software
developers by enhancing support for team development while
using static analysis tools, improving integration of the tool
into developers’ processes, having intuitive defect presenta-
tion and detailed explanation of defects with automatic fixes
where appropriate, and including easy and useful configuration
options for the tool.

ACKNOWLEDGEMENTS

We would like to thank Nat Ayewah and our participants for
their contributions. This material is based upon work supported
by the National Science Foundation under Grant No. 1217700
and a Google Faculty Award.

REFERENCES

[1] L. C. Briand, W. M. Thomas, and C. J. Hetmanski, “Modeling and
managing risk early in software development,” in Proc. ICSE, 1993, pp.
55–65.

[2] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in Proc. ICSE, 2005, pp. 580–586.

[3] M. Gegick and L. Williams, “Towards the use of automated static
analysis alerts for early identification of vulnerability- and attack-prone
components,” in Proc. ICIMP, 2007, pp. 18–23.

[4] “IntelliJ IDEA,” http://www.jetbrains.com/idea/.
[5] “FindBugs,” http://findbugs.sourceforge.net.
[6] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,

“Using Static Analysis to Find Bugs,” IEEE Softw., vol. 25, no. 5, pp.
22–29, 2008.

[7] “Eclipse,” http://www.eclipse.org/.
[8] “NetBeans,” http://www.netbeans.org/.
[9] N. Ayewah and W. Pugh, “The Google FindBugs Fixit,” in Proc. ISSTA,

2010, pp. 241–252.
[10] A. Bessey, D. Engler, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, and S. McPeak, “A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World,”
Commun. ACM, vol. 53, no. 2, pp. 66–75, 2010.

[11] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal, “Path projection for
user-centered static analysis tools,” in Proc. PASTE, 2008, pp. 57–63.

[12] S. C. Johnson, “Lint, a C Program Checker,” Bell Laboratories, Tech.
Rep., 1978.

[13] “PMD,” http://pmd.sourceforge.net/.
[14] B. Chess and J. West, Secure Programming with Static Analysis.

Addison-Wesley Professional, 2007.
[15] K. Vorobyov and P. Krishna, “Comparing Model Checking and Static

Program Analysis: A Case Study in Error Detection Approaches,” in
Proc. SSV, 2010, pp. 1–7.

[16] M. Dastani, “The role of visual perception in data visualization,” Journal
of Visual Languages and Computing, vol. 13, no. 6, pp. 601–622, 2002.

[17] N. Ayewah and W. Pugh, “A report on a survey and study of static
analysis users,” in Proc. DEFECTS, 2008, pp. 1–5.

[18] S. Heckman and L. Williams, “On Establishing a Benchmark for Evalu-
ating Static Analysis Alert Prioritization and Classification Techniques,”
in Proc. ESEM, 2008, pp. 41–50.

[19] L. Layman, L. Williams, and R. St. Amant, “Toward reducing fault fix
time: Understanding developer behavior for the design of automated
fault detection tools,” in Proc. ESEM, 2007, pp. 176–185.

[20] “Jtest,” http://www.parasoft.com/jsp/products/jtest.jsp.
[21] “Klocwork Insight,” http://www.klocwork.com/products/insight.
[22] “Microsoft Visual Studio,” http://www.microsoft.com/visualstudio/.
[23] “Google CodePro AnalytiX,” http://code.google.com/javadevtools/

codepro.
[24] S. Hove and B. Anda, “Experiences from Conducting Semi-structured

Interviews in Empirical Software Engineering Research,” in Proc. MET-
RICS, 2005, pp. 1–10.

[25] B. Johnson, “A Study on Improving Static Analysis Tools: Why are we
not using them?” in Proc. ICSE, Student Research Competition, 2012.

[26] T. Robertson, S. Prabhakararao, M. Burnett, C. Cook, J. Ruthruff,
L. Beckwith, and A. Phalgune, “Impact of interruption style on end-
user debugging,” in Proc. CHI, 2004, pp. 287–294.

[27] J. Gluck, A. Bunt, and J. McGrenere, “Impact of interruption style on
end-user debugging,” in Proc. CHI, 2007, pp. 41–50.

[28] C. H. Lewis, “Using the “Thinking Aloud” Method In Cognitive
Interface Design,” IBM, Tech. Rep. RC-9265, 1982.

[29] “log4j,” http://logging.apache.org/log4j/.
[30] “ANT,” http://ant.apache.org/.
[31] C. Spinuzzi, “The Methodology of Participatory Design,” Technical

Commun., vol. 52, no. 2, pp. 163–174, 2005.
[32] R. Gordon, “Coding interview responses,” in Basic Interviewing Skills.

Waveland Pr Inc., 1998, pp. 183–199.
[33] H. Shen, J. Fang, and J. Zhao, “EFindBugs: Effective error ranking for

findbugs,” in Proc. ICST, 2011, pp. 299–308.
[34] “FindBugs Cloud Storage,” http://findbugs.sourceforge.net/findbugs2.

html#cloud.
[35] E. Murphy-Hill and A. P. Black, “Refactoring Tools: Fitness for Pur-

pose,” IEEE Softw., vol. 25, no. 5, pp. 38–44, 2008.
[36] B. Oberg and D. Notkin, “Error reporting with graduated color,” IEEE

Softw., vol. 9, no. 6, pp. 33–38, 1992.
[37] E. Murphy-Hill and A. P. Black, “An Interactive Ambient Visualization

for Code Smells,” in Proc. SoftVis, 2010, pp. 5–14.
[38] “Threats to Construct Validity,” http://www.socialresearchmethods.net/

kb/consthre.php.
[39] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for

IDEs,” in Proc. AOSD, 2005, pp. 159–168.

681

