
Test driven development (Koskela)

Chapter 3: Refactoring in Small Steps

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Overview
Exploring a potential solution
Changing design in a controlled manner

Taking the new design further

Most excellent designs are the result of a continuous process
of simplification and refinement

2

The problem from chapter 2
Existing design replaced variables via simple matching

- For all variables v, replace ${v} with its value:
result = result.replaceAll (regex, entry.getValue())

Failing test from chapter 2: Sets the value to “${one}, ${two},
${three}”

Tweaking the current design won’t make this test pass
3

@Test
public void variablesGetProcessedJustOnce() throws Exception {

template.set (“one”, “${one}”);
template.set (“two”, “${three}”);
template.set (“three”, “${two}”);
assertTemplateEvaluatesTo (“${one}, ${three}”, ${two});

}

regex
p

blows
 up

What is a spike?
A detour to learn something new

- Package, details on API, etc.
- Whether proposed design will work

Spikes are experimental in nature

Self education – increase knowledge, skills, or
abilities

4

Exploring a potential solution
Break the templates into “segments”
Prototyping with spikes

- A spike is a detour to learn
- In the template example, we learn more about using
regex

Learn by writing tests (learning tests)
- Need to figure out an API?

- Write some tests that use the API
- RegexLearningTest on Ammann’s website, from section

3.3
https://cs.gmu.edu/~pammann/Koskela/code/RegexLearningT
est.java

Example spike for learning an API
- Note that Koskela thought find() would count

occurrences
- He learned it breaks strings into pieces

Learn on a short detour, then apply

5

https://cs.gmu.edu/~pammann/Koskela/code/RegexLearningTest.java

Changing design in a controlled manner
Creating an alternative implementation
- Start with the “low hanging fruit”

- TDD Development of Template parser

- Remove duplication from tests
- Refactoring is always important

- Apply learning from the spike
- Final code version (not Segment class, originally a String)

private void append(String segment, StringBuilder result) {
if (isVariable(segment) { evaluateVariable(segment, result); } // dispatching L
else { result.append(segment);}

}

- Koskela refactors substantially
- TemplateParse.java

6

http://cs.gmu.edu/~pammann/Koskela/code/TemplateParse.java

Changing design in a controlled manner
Switching over safely
- Adopting the new implementation

- Recoding the evaluate() method

- Cleaning up by extracting methods (more refactoring)
- Pull out the old stuff that’s no longer relevant

- Result is new Template class
- Template.java

No new functionality, but definitely refactored!

7

http://cs.gmu.edu/~pammann/Koskela/code/Template.java

Taking the new design further

Keeping things compatible
- Build on existing functionality
- Refactor logic into objects

- Motivation for segment class

- Make the switchover
- Getting caught by safety nets

- Don’t forget your exceptional behavior!

- Delete dead code + further clean up

Test sets make requirements concrete
8

Practice, practice, practice!

Chapter 3 has a lot of details that
you should explore on your own

I suggest going through the exercise with the code and Junit

A spike for you!

Code location:

https://cs.gmu.edu/~pammann/Koskela/code/

Template.java, Segment, PlainText, Variable
10

https://cs.gmu.edu/~pammann/Koskela/code/
http://cs.gmu.edu/~pammann/Koskela/code/Template.java
http://cs.gmu.edu/~pammann/Koskela/code/Segment.java
http://cs.gmu.edu/~pammann/Koskela/code/PlainText.java
http://cs.gmu.edu/~pammann/Koskela/code/Variable.java

