
Test driven development (Koskela)

Chapter 9: Acceptance TDD Explained

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt



Overview

“In the spacecraft business no design can survive 
the review process without first answering the 
question—how are we going to test this thing?”

—Glen Alleman

User stories
From user stories to acceptance tests
The overall process

2



Format of a story
- free form
- or structured: As a (role) I want (functionality) so that (benefit)
- often written on index cards

Card, conversation, confirmation (CCC)
Power of storytelling

- User view of what is needed, but now how it is provided

A user story represents a requirement, and creates a promise to 
communicate with the customer later

“Storytelling reveals meaning without defining it”
– Hannah Arendt

9.1 Introduction to user stories

3



Example user stories

4

Support technician sees 

customer’s history on-
screen at the start of a call

Application authenticates 

with the HTTP proxy 
server

The system prevents user 

from running multiple 
instances of the application 

simultaneously

State what, 
NOT how

Enabling value: A user story is valuable because it 
enables engineers to add functionality



Create tests based on user stories
Properties of acceptance tests

- Owned by customer
- Written together with the customer, developer, and tester
- Focus on the what, not the how
- Expressed in language of the problem domain – user’s vocabulary
- Concise, precise, and unambiguous

In-class discussion
- Consider the 3 user stories on previous slide (pg. 326) 
- Discuss whether and how they satisfy these properties

9.2 Acceptance Tests

5



Acceptance tests – example tests

6

Support technician sees customer’s 

history on-screen at the start of a call

- Simulate a call with Fred’s account number and verify that 
Fred’s info can be read from the screen

- Verify that the system displays a valid error message for 
non-existing account number

- Omit the account number in the incoming call completely 
and verify that the system displays the text “no account 
number provided” on the screen

Fig. 9.1

Fig. 9.2



Acceptance tests – what vs. how

7

1. Go to the “new transaction” screen, fill in the required 
details, and save the entry; verify that the transaction 
shows up on the list

2. Select the “delete” checkbox for the newly created entry, 
click “delete all marked transactions,” and verify they’re all 
gone

3. Create multiple transactions, check several of them and 
delete; verify that all selected transactions were indeed 
deleted

Fig. 9.3

In-class discussion:
What is wrong with 

these tests?

- Too much HOW for users
- Not in users’ vocabulary

Trimmed to focus on WHAT

Fig. 9.4

1. Try creating new order

2. Try deleting an order

3. Try deleting multiple orders



Acceptance tests – what vs. how

8

Support technician sees customer’s 

history on-screen at the start of a call

- Simulate a call with Fred’s account number and verify that 
Fred’s info can be read from the screen

- Verify that the system displays a valid error message for 
non-existing account number

- Omit the account number in the incoming call completely 
and verify that the system displays the text “no account 
number provided” on the screen

Fig. 9.1 Fig. 9.2

Too detailed

Trimmed version of tests

Fig. 9.5

1. Valid account number

2. Non-existing account number

3. No account number provided



The acceptance TDD cycle
1. Pick a story
2. Write tests for the story
3. Automate the tests
4. Implement the functionality

9.3 Understanding the process

9

Pick a user 
story

Write 
tests

Automate 
tests

Implement
functionality

A process with feedback



The acceptance TDD cycle
1. Pick a story (which story?)

- Most important
- Business value
- Technical risk
- Amount of programming

2. Write tests for the story
3. Automate the tests
4. Implement the functionality

A TDD Process – Step 1

10



The acceptance TDD cycle
1. Pick a story 
2. Write tests for the story

- Involve the customer
- Iterate
- Keep abstract as long as possible
- Get ahead of refactoring

3. Automate the tests
4. Implement the functionality

A TDD Process – Step 2

11



The acceptance TDD cycle
1. Pick a story 
2. Write tests for the story
3. Automate the tests

- Start with a table format
- Translate to implementation/
- Postpone use of tools – tools 
steal focus from the topic

4. Implement the functionality

A TDD Process – Step 3

12

Action Parameters

Place call 555-1234, account 123456

Accept call 555-1234

Verify text 123456

Verify text Cory Customer

Fig. 9.7



The acceptance TDD cycle
1. Pick a story 
2. Write tests for the story
3. Automate the tests
4. Implement the functionality

- This is done using TDD
- Each A-TDD test leads to multiple small tests
- As we get small tests to pass, we’re closer to A-test passing

A TDD Process – Step 4

13



Acceptance tests in agile methods

14

Acceptance
test fails

User 
story

TDD 
test

Add 
functionality

Acceptance
test passes

Refactor

Refactor

Customer must 
approve 

acceptance test 
passing



In-class exercise

15

Customer orders 
lunch at a kiosk

Write two or three acceptance tests for the following user story

Follow the guidelines in Chapter 9



Defining the customer role
- Representative of end users
- Possible several people

Characteristics of customer role
- Shared interest in success
- Authority to make decisions
- Ability to understand implications
- Ability to explain domain

Key is to verify against target domain

9.4 Acceptance testing as a team activity

16



Who writes tests with the customer?
- Tester?
- Developer?
- Requirements expert?
- Everybody?

How many testers do we need?
- One or two developers per tester
- Tester is a role, not a job title
- All developers should be testers

More contributors is better

Acceptance testing team

17



Definition of “done”
- Customer must agree it’s done
- Knowing where we are
- Knowing when to stop
- Test criteria satisfied

Cooperative work

Trust and commitment

Specification by example
- This is a big one!

Filling the gap
- Unit tests are not the same as acceptance tests

Both unit and acceptance tests are needed!

9.5 Benefits of acceptance testing

18



Should we test against the UI?
- Do whatever is easier long term
- UIs are often in the way
- Good tools can automate tests through and around the UI
- Performance might matter

Should we stub our system?
- Sufficiently close to the real thing
- Sometimes stubs are necessary

Should we test business logic directly?
- Of course – it’s what the customer cares about

Tests are like votes –
they need to run early and often

9.6 What are we testing, exactly?

19


