
Intro to Software Testing
Chapter 5

Criteria-based Test Design

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Changing Notions of Testing

Old view focused on testing at each software development
phase as being very different from other phases

- Unit, module, integration, system…

New view is in terms of structures and criteria
- Input space, graphs, logical expressions, syntax

Test design is largely the same at each phase
- Creating the model is different
- Choosing values and automating the tests is different

2

Model-driven test design

3

software artifact implementation
abstraction

level

design
abstraction

level

test requirements

test requirements

refined requirements /
test specs

input
values

test
cases

test
scripts

test
results

model / structure

pass /
fail

Criteria give us
test requirements

Test Coverage Criteria
A tester’s job is simple: Define a mode of the software,

then find ways to cover it.

Test requirements: A specific element of a software
artifact that a test case must satisfy or cover

Coverage criterion: A rule or collection of rules that impose
test requirements on a test set

Testing researchers have defined dozens of criteria, but
they are all really just a few criteria on four types of

structures…
4

Criteria based on structures
Structures: Four ways to model software

1. Input domain
characterization (sets)

2. Graphs

3. Logical expressions

4. Syntactic structures

5

A: {0, 1, >1}
B: {600, 700, 800}
C: {swe, cs, isa, infs}

(not X or not Y) and A and B

if (x > y)
z = x - y;

else
z = 2 * x;

Source of structures
These structures can be extracted from lots of software
artifacts

- Graphs can be extracted from UML use cases, finite state
machines, source code,…

- Logical expressions can be extracted from decisions in program
source, guards on transitions, conditionals in use cases, …

This is not the same as “model-based testing” which
derives tests from a model that describes some aspects of
the system under test

- The model usually describes part of the behavior
- The source is explicitly not considered a model

6

Example: jelly bean coverage
Flavors:

1. Lemon
2. Pistachio
3. Cantaloupe
4. Pear
5. Tangerine
6. Apricot

7

Colors:
1. Yellow (Lemon,

Apricot)
2. Green (Pistachio)
3. Orange (Cantaloupe,

Tangerine)
4. White (Pear)

Possible coverage criteria:
1. Taste one jelly bean of each flavor

• Deciding if yellow jelly bean is Lemon or Apricot is a controllability problem

2. Taste one jelly bean of each color

Coverage
Given a set of test requirements TR for coverage criteria C,
a test set T satisfies C coverage if and only if for every test
requirement tr in TR, there is at least one test t in T such

that t satisfies tr.

Infeasible test requirements: test requirements that
cannot be satisfied

- No test case values exist that meet the test requirements
- Example: dead code
- Detection of infeasible test requirements is formally undecidable

for most test criteria

Thus, 100% coverage is impossible in practice

8

More jelly beans
T1 = { three Lemons, one Pistachio, two Cantaloupes, one
Pear, one Tangerine, four Apricots }

Does test set T1 satisfy the flavor criterion?

T2 = { One Lemon, two Pistachios, one Pear, three
Tangerines }

Does test set T2 satisfy the flavor criterion?
Does test set T2 satisfy the color criterion?

9

Coverage level

The ratio of the number of test requirements satisfied by T
to the size of TR

T2 on the previous slide satisfies 4 of 6 test requirements

10

Two ways to use test criteria
1. Directly generate test values to satisfy the criterion

- Often assumed by the research community
- Most obvious way to use criteria
- Very hard without automated tools

2. Generate test values externally and measure against the
criterion

- Usually favored by industry
- Sometimes misleading
- If tests do not reach 100% coverage, what does that mean?

Test criteria are sometimes called metrics

11

Generators and recognizers
Generator: A procedure that automatically generates values to satisfy
a criterion

Recognizer: A procedure that decides whether a given set of test
values satisfies a criterion

Both problems are provably undecidable for most criteria

It is possible to recognize whether test cases satisfy a criterion far
more often than it is possible to generate tests that satisfy the
criterion

Coverage analysis tools are quite plentiful

12

Comparing criteria with
subsumption (5.2)

Criteria Subsumption: a test criterion C1 subsumes C2 if
and only if every set of test cases that satisfies criterion C1
also satisfies C2

Must be true for every set of test cases

Examples:
- The flavor criterion on jelly beans subsumes the color

criterion…if we taste every flavor, we taste every color
- If a test set has covered every branch in program (satisfied

branch criterion), the test set is guaranteed to also have covered
every statement

13

Advantages of criteria-based test
design (5.3)

Criteria maximize the “bang for the buck”
- Fewer tests that are more effective at finding faults

Comprehensive test set with minimal overlap
Traceability from software artifacts to tests

- The ”why” for each test is answered
- Built-in support for regression testing

A “stopping rule” for testing – advance knowledge of how
many tests are needed

Natural to automate
14

Characteristics of a good
coverage criterion

1. It should be fairly easy to compute test requirements
automatically

2. It should be efficient to generate test values
3. The resulting tests should reveal as many faults as

possible

Subsumption is only a rough approximation of fault
revealing capability

Researchers still need to give us more data on how to
compare coverage criteria

15

Test coverage criteria
Traditional software testing is expensive and labor-
intensive
Formal coverage criteria are used to decide which test
inputs to use
More likely that the test will find problems
Greater assurance that the software is of high quality and
reliability
A goal or stopping rule for testing
Criteria makes testing more efficient and effective

How do we start applying these ideas in practice?
16

How to improve testing?
Testers need more and better software tools
Testers need to adopt practices and techniques that lead to
more efficient and effective testing

- More education
- Different management organizational strategies

Testing & QA teams need more technical expertise
- Developer expertise has been increasing dramatically

Testing & QA teams need to specialize more
- This same trend happened for development in the 1990s

17

Four roadblocks to adoption
1. Lack of test education

Microsoft and Google say half their engineers are testers, programmers test half the time
Number of UG CS programs that require testing?
Number of MS CS programs that require testing?
Number of UG testing classes in the US?

2. Necessity to change process
Adoption of many test techniques and tools require changes in development process
This is expensive for most software companies

3. Usability of tools
Many testing tools require the user to know the underlying theory to use them
Do we need to know how an internal combustion engine works to drive?
Do we need to understand parsing and code generation to use a compiler?

4. Weak and ineffective tools
Most test tools don’t do much – but most users do not realize they could be better
Few tools solve the key technical problem -- generating test values automatically

18

0
0

~50

Needs from researchers
1. Isolate: Invent processes and techniques that isolate the

theory from most test practitioners
2. Disguise: Discover engineering techniques, standards

and frameworks that disguise the theory
3. Embed: Theoretical ideas in tools
4. Experiment: Demonstrate economic value of criteria-

based testing and ATDG (ROI)
- Which criteria should be used and when?
- When does the extra effort pay off?

5. Integrate high-end testing with development

19

Needs from educators
1. Disguise theory from engineers in classes

2. Omit theory when it is not needed

3. Restructure curricula to teach more than test design
and theory
- Test automation
- Test evaluation
- Human-based testing
- Test-driven development

20

Changes in practice
1. Reorganize test and QA teams to make effective use of

individual abilities
- One math-head can support many testers

2. Retrain test and QA teams
- Use a process like MDTD
- Learn more testing concepts

3. Encourage researchers to embed and isolate
4. Get involved in curricular design efforts through

industrial advisory boards

21

Criteria summary
Many companies still use “monkey testing”

- A human sits at the keyboard, wiggles the mouse and bangs the
keyboard

- No automation
- Minimal training required

Some companies automate human-designed tests
But companies that use both automation and criteria-based
testing

Save money
Find more faults

Build better software

22

Structures for criteria-based testing

23

Four Structures for
Modeling Software

Graphs LogicInput Space Syntax

Input

Models

Integ

Source

Applied to

DNFSpecs

FSMsSource

Applied to

Use cases

Specs

Design

Source

Applied to

Summary of Part 1’s new ideas
1. Why do we test – to reduce the risk of using software

- faults, failures, the RIPR model
- Test process maturity levels – level 4 is a mental discipline that

improves the quality of the software

2. Model-driven test design
- Four types of test activities – test design, automation, execution,
and evaluation

3. Test automation
- Testability, observability and controllability, test automation
frameworks (e.g., JUnit)

4. Test-driven development
5. Criteria-based test design

- Four structures – test requirements and criteria
Earlier and better testing empowers test managers

24

