
Intro to Software Testing
Chapter 6.1

Input Space Partition Testing

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Benefits of ISP

Equally applicable at several levels of testing
- Unit
- Integration
- System

Easy to apply with no automation
Can adjust the procedure to get more or fewer tests
No implementation knowledge is needed

- Just the input space

2

Input Domains
Input domain: all possible inputs to a program

- Most input domains are effectively infinite

Input parameters define the input domain
- Parameter values to a method
- Data from a file
- Global variables
- User inputs

We partition input domains into regions (called blocks)
Choose at least one value from each block

3

Input domain: Alphabetic letters

Partitioning characteristic: Case of letter

• Block 1: upper case

• Block 2: lower case

Partitioning Domains
Domain D
Partition scheme q of D
The partition q defines a set of blocks, Bq = b1, b2, …, bq

The partition must satisfy two properties:

1. Blocks must be pairwise disjoint (no overlap)

2. Together the blocks cover the domain D (complete)

4

b1 b2

b3

b1 b2

b3

In-class exercise

Partitioning for integers

Design a partitioning for all integers

That is, partition integers into blocks such that each block seems to
be equivalent in terms of testing

Make sure your partition is valid:
1) Pairwise disjoint

2) Complete
5

Characteristics & Partitions
Example characteristics

- Whether X is null
- Order of the list F (sorted, inverse sorted, arbitrary, …)
- Min separation of two aircraft
- Input device (DVD, CD, VCR, computer, …)
- Hair color, height, major, age

Partition characteristic into blocks
- Each value in a block should be equally useful for testing

Choose a value from each block
Form tests by combining one value from each
characteristic

6

Choosing Partitions
Defining partitions is not hard, but is easy to get wrong
Consider the characteristic ”order of elements in list F”

7

b1 = sorted in ascending order

b2 = sorted in descending order

b3 = arbitrary order

but … something’s fishy …

Length 1 : [14]

This list is in all three blocks

That is, disjointness is not
satisfied

Design blocks for that characteristic

Can you spot the problem?

Can you think of a solution?

Solution:
Two characteristics that address
just one property

C1: List F sorted ascending
- c1.b1 = true
- c1.b2 = false

C2: List F sorted descending
- c2.b1 = true
- c2.b2 = false

In-class exercise

Creating an IDM

Pick one of the programs from Chapter 1 (findLast, numZero, etc)

Create an IDM for the program you chose

8

Modeling the Input Domain
Step 1: Identify testable functions

Step 2: Find all inputs, parameters,
& characteristics

Step 3: Model the input domain

Step 4: Apply a test criterion to
choose combinations of values (6.2)

Step 5: Refine combinations of
blocks into test inputs

9

Move from imp
level to design
abstraction level

Entirely at the design
abstraction level

Back to the
implementation
abstraction level

Steps 1 & 2

Identify testable functions

Find inputs, parameters, characteristics

10

Example IDM (syntax)
Method triang() from class TriangleType on the book website:

- https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java

- https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }
public static Triangle triang (int Side1, int Side2, int Side3)
// Side1, Side2, and Side3 represent the lengths of the sides of a
triangle
// Returns the appropriate enum value

- IDM for each parameter is identical

- Characteristic: Relation of side with zero
- Blocks: negative; positive; zero

11

https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java
https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

Example IDM (behavior)
Method triang() again:

- https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java

- https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

Three parameters represent a triangle

The IDM can combine all parameters
Characteristic: type of triangle
Blocks: Scalene; Isosceles; Equilateral; Invalid

12

https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java
https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

In-class exercise
Functions, parameters, and characteristics

public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// else return true if element is in the list, false

otherwise

Identify functionalities, parameters, and characteristics for
findElement()

13

Steps 1 & 2 – IDM
public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// else return true if element is in the list, false otherwise

Parameters and Characteristics
Two parameters : list, element

Characteristics based on syntax :
list is null (block1 = true, block2 = false)
list is empty (block1 = true, block2 = false)

Characteristics based on behavior :
number of occurrences of element in list

(0, 1, >1)
element occurs first in list

(true, false)
element occurs last in list

(true, false) 14

Step 3

Model input domain

Partition characteristics into blocks

Choose values for blocks

15

triang(): Relation of side with zero
3 inputs, each has the same partitioning

Maximum of 3*3*3 = 27 tests
Some triangles are valid, some are invalid
Refining the characterization can lead to more tests

16

Characteristic b1 b2 b3

q1 = “Relation of Side 1 to 0” positive equal to 0 negative

q2 = “Relation of Side 2 to
0”

positive equal to 0 negative

q3 = “Relation of Side 3 to
0”

positive equal to 0 negative

Refining triang()’s IDM
Second characterization of triang()’s inputs

Maximum of 4*4*4 = 64 tests
Complete only because the inputs are integers

17

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

Characteristic b1 b2 b3 b4

Side1 5 1 0 -5

Refining triang()’s IDM
Second characterization of triang()’s inputs

Maximum of 4*4*4 = 64 tests
Complete only because the inputs are integers

18

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

Characteristic b1 b2 b3 b4

Side1 5 1 0 -52 -1

Test boundary conditions

triang(): Type of triangle
Geometric characterization of triang()’s inputs

Equilateral can also be isosceles!
We need to refine the example to make characteristics valid
Correct geometric characterizations of triang()’s inputs

19

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles equilateral invalid

What’s wrong with
this partitioning?

Characteristic B1 b2 b3 b4

q1 = “Geometric Classification” scalene Isosceles, not
equilateral equilateral invalid

Values for triang()

20

Characteristic b1 b2 b3 b4

Triangle (4,5,6) (3, 3, 4) (3, 3, 3) (3, 4, 8)

Yet another triang() IDM
A different approach would be to break the geometric
characterization into four separate characteristics

Four characteristics for triang()

Use constraints to ensure that
- Equilateral = True implies Isosceles = True
- Valid = False implies Scalene = Isosceles = Equilateral = False

21

Characteristic b1 b2

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False

IDM hints
More characteristics è more
tests
More blocks è more tests
Do not use program source
Design more characteristics with
fewer blocks

- Fewer mistakes
- Fewer tests

Choose values strategically
- valid, invalid, special values
- Explore boundaries
- Balance the number of blocks in

the characteristics

22

Characteristic b1 b2

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False

In-class exercise

Proper partitioning?

Which two properties must be satisfied for an input
domain to be properly partitioned?

23

