
Intro to Software Testing
Chapter 6.2

Input Space Partition Testing

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Modeling the Input Domain
Step 1: Identify testable functions

Step 2: Find all inputs, parameters,
& characteristics

Step 3: Model the input domain

Step 4: Apply a test criterion to
choose combinations of values (6.2)

Step 5: Refine combinations of
blocks into test inputs

2

Move from imp
level to design
abstraction level

Entirely at the design
abstraction level

Back to the
implementation
abstraction level

Modeling the Input Domain
Step 1: Identify testable functions

Step 2: Find all inputs, parameters,
& characteristics

Step 3: Model the input domain

Step 4: Apply a test criterion to
choose combinations of values (6.2)

Step 5: Refine combinations of
blocks into test inputs

3

Move from imp
level to design
abstraction level

Entirely at the design
abstraction level

Back to the
implementation
abstraction level

Step 4 – Choosing Combinations of
Values (6.2)

After partitioning characteristics into blocks, testers design
tests by combining blocks from different characteristics

- 3 characteristics: A, B, C
- Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

A test starts by combining one block from each
characteristic

- Then values are chosen to satisfy the combinations

We use criteria to choose effective combinations

4

All Combinations Criterion (ACoC)
The most obvious criterion is to choose all combinations

5

All Combinations (ACoC) : All combinations of blocks
from all characteristics must be used.

a1 b1 c1 a2 b1 c1 a3 b1 c1
a1 b1 c2 a2 b1 c2 a3 b1 c2
a1 b1 c3 a2 b1 c3 a3 b1 c3
a1 b2 c1 a2 b2 c1 a3 b2 c1
a1 b2 c2 a2 b2 c2 a3 b2 c2
a1 b2 c3 a2 b2 c3 a3 b2 c3
a1 b3 c1 a2 b3 c1 a3 b3 c1
a1 b3 c2 a2 b3 c2 a3 b3 c2
a1 b3 c3 a2 b3 c3 a3 b3 c3

All Combinations Criterion (ACoC)
Number of tests is the product of the number of blocks in
each characteristic:

The syntax characterization of triang()
- Each side: >1, 1, 0, <1
- Results in 4*4*4 = 64 tests

Most form invalid triangles

How can we get fewer tests?

6

P Q
i=1(Bi)

In-class exercise
All combinations criterion (ACoC)

Consider our previous example

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

How many tests do we need to satisfy ACoC?

7

ISP Criteria – Each choice
We should try at least one value from each block

Number of tests is the number of blocks in the largest
characteristic:

8

Each Choice Coverage(ECC) : One value from each block for
each characteristic must be used in at least one test case.

Max Q
i=1(Bi)

In-class exercise
Each choice criterion (ECC)

Write ECC tests for our previous example

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

1. How many tests do we need?
2. Write the (abstract) tests

9

ISP Criteria – Base Choice (BCC)
ECC is simple, but very few tests
The base choice criterion recognizes that

- Some blocks are more important than others
- Using diverse combinations can strengthen testing

Let testers bring in domain knowledge of the program

Number of tests is one base test + one test for each “non-
base” other block:

10

Base Choice Coverage(BCC) : A base choice block is chosen
for each characteristic, and a base test is formed by using
the base choice for each characteristic. Subsequent tests

are chosen by holding all but one base choice constant and
using each non-base choice in each other characteristic.

1 + åQ
i=1 (Bi -1)

Base choice notes
The base test must be feasible

- That is, all base choices must be compatible

Base choices can be
- Most likely from an end-use point of view
- Simplest
- Smallest
- First in some ordering

Happy path tests often make good base choices
The base choice is a crucial design decision

- Test designers should document why the choices were made

11

In-class exercise
Base choice criterion (BCC)

Write BCC tests for our previous example

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

1. How many tests do we need?
2. Pick base values and write one base test

3. Write remaining tests
12

ISP Criteria – Multiple Base Choice
We sometimes have more than one logical base choice

If M base tests and mi base choices for each characteristic:

13

Multiple Base Choice Coverage (MBCC) At least one, and
possibly more, base choice blocks are chosen for each

characteristic, and base tests are formed by using each
base choice for each characteristic at least once.

Subsequent tests are chosen by holding all but one base
choice constant for each base test and using each non-

base choice in each other characteristic

M + åQ
i=1 (M * (Bi - mi))

For our example: Two base tests: a1, b1, c1 a2, b2, c2

Tests from a1, b1, c1: a1, b1, c3; a1, b3, c1; a3, b1, c1

Tests from a2, b2, c2: a2, b2, c3; a2, b3, c2; a3, b2, c2

ISP Coverage Criteria Subsumption

14

Each Choice
Coverage

ECC

All
Combinations

Coverage
ACoC

T-Wise
Coverage

TWC

Multiple Base
Choice Coverage

MBCC

Pair-Wise
Coverage

PWC

Base
Choice

Coverage
BCC

Input Space Partitioning Summary

Fairly easy to apply, even with no automation

Convenient ways to add more or less testing

Equally applicable to all levels of testing – unit, class, integration,
system, etc.

Based only on the input space of the program, not the
implementation

Simple, straight-forward, effective, and widely used
15

