
Intro to Software Testing
Chapter 7.2

Graph Coverage Criteria Overview

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Testing and Covering Graphs (7.2)
We use graphs in testing as follows:

- Develop a model of the software as a graph
- Require tests to visit or tour specific sets of nodes, edges, or

subpaths

Test requirements (TR): Describe properties of test paths
Test Criterion: Rules that define test requirements
Satisfaction: Given a set TR of test requirements for a
criterion C, a set of tests T satisfies C on a graph if and only
if for every test requirement in TR, there is a test path in
path(T) that meets the test requirement tr.

Structural Coverage Criteria: Defined on a graph just in
terms of nodes and edges

2

Node and Edge Coverage
The first (and simplest) two criteria require that each node
and edge in a graph be executed.

This statement is a bit cumbersome, so we abbreviate it in
terms of the set of test requirements.

3

Node Coverage (NC) : Test set T satisfies node
coverage on graph G iff for every syntactically
reachable node n in N, there is some path p in
path(T) such that p visits n.

Node Coverage (NC) : TR contains each reachable
node in G.

Node and Edge Coverage
Edge coverage is slightly stronger than node coverage

The phrase “length up to 1” allows for graphs with one node
and no edges
NC and EC are only different when there is an edge and
another subpath between a pair of nodes (as in an “if-else”
statement)

4

Edge Coverage (EC) : TR contains each reachable
path of length up to 1, inclusive, in G

2

3

1
Node Coverage : ?

Edge Coverage : ?

TR = { 1, 2, 3 }
Test Path = [1, 2, 3]

TR = { (1, 2), (1, 3), (2, 3) }
Test Paths = [1, 2, 3]

[1, 3]

In-class group exercise
Graph criteria EC

5

1

2 3

4

5

7

6

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edge-pair

coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path

coverage.
5. List test paths that satisfy prime path coverage.

In-class group exercise
Graph criteria EC

6

1

2 3

4

5

7

6

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.

[1, 2, 4]
[1, 3, 5, 6, 3, 4]
[1, 3, 5, 7]

Node and Edge Coverage
A graph with only one node will not have any edges

It may seem trivial, but formally, Edge Coverage needs to
require Node Coverage on this graph
Otherwise, Edge Coverage will not subsume Node Coverage

- So we define “length up to 1” instead of simply “length 1”

We have the same issue with graphs that have only one
edge – for Edge-Pair Coverage…

7

1

2

1

Covering Multiple Edges
Edge-pair coverage requires pairs of edges, or subpaths of
length 2

The phrase “length up to 2” is used to include graphs that
have less than 2 edges

The logical extension is to require all paths…
8

Edge-Pair Coverage (EPC) : TR contains each
reachable path of length up to 2, inclusive, in G

2

3

5

6

1

4

Edge-Pair Coverage : ?

TR = { [1,4,5], [1,4,6], [2,4,5],
[2,4,6], [3,4,5], [3,4,6] }

In-class group exercise
Graph criteria EPC

9

1

2 3

4

5

7

6

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edge-pair

coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path

coverage.
5. List test paths that satisfy prime path coverage.

In-class group exercise
Graph criteria EPC

10

1

2 3

4

5

7

6

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edge-pair

coverage.
3. List test paths that satisfy edge-pair coverage.

TR = {[1, 2, 4], [1, 3, 4], [1, 3, 5], [3, 5, 6], [5, 6, 3], [6, 3, 4], [6, 3, 5],
[3, 5, 7]}
Test paths = [1, 2, 4]; [1, 3, 4]; [1, 3, 5, 6, 3, 4]; [1, 3, 5, 6, 3, 5, 7]

Covering Multiple Edges

Unfortunately, this is impossible if the graph has a loop, so
a weak compromise make the tester decide which paths:

11

Complete Path Coverage (CPC): TR contains all paths in G.

Specified Path Coverage (SPC): TR contains a set S of test
paths, where S is supplied as a parameter.

Covering Multiple Edges

12

7

1

3

2

4 5

6

Node Coverage
TR = { 1, 2, 3, 4, 5, 6, 7 }
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 6, 5, 7]

Edge Coverage
TR = { (1,2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 7), (5, 6), (5, 7), (6,
5) }
Test Paths: [1, 2, 3, 4, 7] [1, 3, 5, 6, 5, 7]

Edge-Pair Coverage
TR = { [1,2,3], [1,3,4], [1,3,5], [2,3,4], [2,3,5], [3,4,7],

[3,5,6], [3,5,7], [5,6,5], [6,5,6], [6,5,7] }
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 3, 4, 7]

[1, 3, 5, 6, 5, 6, 5, 7]

Complete Path Coverage
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 2, 3, 5, 6, 5, 7]
[1, 2, 3, 5, 6, 5, 6, 5, 7] [1, 2, 3, 5, 6, 5, 6, 5, 6, 5, 7] …

Write down
the TRs and
Test Paths
for these
criteria

Handling Loops in Graphs
If a graph contains a loop, it has an infinite number of paths

Thus CPC is not feasible

SPC is not satisfactory because the results are subjective
and vary with the tester

Attempts to “deal with” loops:
- 1970s: Execute cycles once
- 1980s: Execute each loop, exactly once
- 1990s: Execute loops 0 times, once, more than once
- 2000s: Prime paths (touring, sidetrips, detours)

13

Simple Paths and Prime Paths
Simple path: A path from node ni to nj is simple if no node
appears more than once, except possible the first and last
nodes are the same

- No internal loops
- A loop is a simple path

Prime path: A simple path that does not appear as a proper
subpath of any other simple path

14

2 3

1

4

5

Write down the
simple and
prime paths for
this graph

Simple Paths :

Prime Paths :

[1,2,4,5], [1,3,4,2], [1,3,4,5], [1,2,4],
[1,3,4], [2,4,2], [2,4,5], [3,4,2], [3,4,5], [4,2,4], [1,2],
[1,3], [2,4], [3,4], [4,2], [4,5], [1], [2], [3], [4], [5]

[1,2,4,5], [1,3,4,2], [1,3,4,5], [2,4,2], [4,2,4]

Simple Paths and Prime Paths
What if we change the graph?

15

2 3

1

4

Write down the
simple and
prime paths for
this graph

Simple Paths :

Prime Paths :

[1,2,4,1], [1,3,4,1], [2,4,1,2], [2,4,1,3],
[3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4], [1,2,4], [1,3,4],
[2,4,1], [3,4,1], [4,1,2], [4,1,3], [1,2], [1,3], [2,4], [3,4],
[4,1], [1], [2], [3], [4]

[1,2,4,1], [1,3,4,1], [2,4,1,2], [2,4,1,3],
[3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4]

Prime Path Coverage
A simple, elegant and finite criterion that requires loops to
be executed as well as skipped

Will tour all paths of length 0, 1,…
That is, it subsumes node and edge coverage
PPC almost, but not quite, subsumes EPC…

16

Prime Path Coverage (PPC): TR contains each prime path in G.

In-class group exercise
Graph criteria PPC

17

1

2 3

4

5

7

6

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edge-pair

coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path

coverage.
5. List test paths that satisfy prime path coverage.

In-class group exercise
Graph criteria PPC

18

1

2 3

4

5

7

6

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edge-pair

coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path

coverage.
5. List test paths that satisfy prime path coverage.

TR = {[1, 2, 4], [1, 3, 4], [1, 3, 5, 7], [3, 5, 6, 3], [6, 3, 5, 6], [5, 6, 3,
5], [1, 3, 5, 6], [6, 3, 5, 7]}
Test paths = [1, 2, 4], [1, 3, 4], [1, 3, 5, 7], [1, 3, 5, 6, 3, 5, 6, 3, 5, 7]

PPC Does Not Subsume EPC
If a node has an edge to itself (self edge), EPC requires [n, n,
m] and [m, n, n]

[n, n, m] is not prime

Neither [n, n, m] nor [m, n, n] are simple paths (not prime)

19

2

3

1 EPC Requirements : ?

TR = { [1,2,3], [1,2,2], [2,2,3], [2,2,2] }

PPC Requirements : ?

TR = { [1,2,3], [2,2] }

Prime Path Example
The previous example has 38 simple paths
Only nine prime paths

20

7

1

3

2

4 5

6

Write down all
9 prime paths

Prime Paths

[1, 2, 3, 4, 7]
[1, 2, 3, 5, 7]
[1, 2, 3, 5, 6]

[1, 3, 4, 7]
[1, 3, 5, 7]
[1, 3, 5, 6]

[6, 5, 7]
[6, 5, 6]
[5, 6, 5]

Execute loop
once

Execute loop more
than once

Execute loop 0
times

Touring, Sidetrips, and Detours
Prime paths do not have internal loops … test paths might
Tour: A test path p tours subpath q if q is a subpath of p
Tour with sidetrips: A test path p tours subpath q with
sidetrips iff every edge in q is also in p in the same order

- The tour can include a sidetrip, as long as it comes back to the
same node

Tour with detours: A test path p tours subpath q with detours
iff every node in q is also in p in the same order

- The tour can include a detour from node ni, as long as it comes
back to the prime path at a successor of ni

21

Sidetrips and Detours Example

22

1 32 6

4

5

1 32 6

4

5

Touring with a
sidetrip

1 32 6

4

5

Touring with a
detour

1 2 5 6

3 4

1 2 5

3
4

1 2 3 4

Touring the prime path
[1, 2, 3, 5, 6] without
sidetrips or detours

Infeasible Test Requirements
An infeasible test requirement cannot be satisfied.

- Unreachable statement (dead code)
- Subpath that can only be executed with a contradiction (x > 0 and x < 0)

Most test criteria have some infeasible test requirements

It is usually undecidable whether all test requirements are feasible

When sidetrips are not allowed, many structural criteria have more
infeasible test requirements
However, always allowing sidetrips weakens the test criteria

23

Practical recommendation—Best Effort Touring
– Satisfy as many test requirements as possible without sidetrips
– Allow sidetrips to try to satisfy remaining test requirements

Simple & Prime Path Example

24

7

1

3

2

4 5

6

Simple
paths

Write
paths of
length 0

Len 0
‘!’ means

path
terminates[1]

[2]
[3]
[4]
[5]
[6]
[7] !

Simple & Prime Path Example

25

7

1

3

2

4 5

6

Simple
paths

Write
paths of
length 1

Len 1
[1, 2]
[1, 3]
[2, 3]
[3, 4]
[3, 5]
[4, 7] !
[5, 7] !
[5, 6]
[6, 5]

Simple & Prime Path Example

26

7

1

3

2

4 5

6

Simple
paths

Write
paths of
length 2

Len 2

[1, 2, 3]
[1, 3, 4]
[1, 3, 5]
[2, 3, 4]
[2, 3, 5]
[3, 4, 7] !
[3, 5, 7] !
[3, 5, 6] !
[5, 6, 5] *
[6, 5, 7] !
[6, 5, 6] *

‘*’ means
path cycles

Simple & Prime Path Example

27

7

1

3

2

4 5

6

Simple
paths

Write
paths of
length 3

Len 3
[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 3, 4, 7] !
[1, 3, 5, 7] !
[1, 3, 5, 6] !
[2, 3, 4, 7] !
[2, 3, 5, 6] !
[2, 3, 5, 7] !

Simple & Prime Path Example

28

7

1

3

2

4 5

6

Simple
paths

Write
paths of
length 4

Len 4
[1, 2, 3, 4, 7] !
[1, 2, 3, 5, 7] !
[1, 2, 3, 5, 6] !

Simple & Prime Path Example

29

7

1

3

2

4 5

6

Simple
paths

Len 0
[1]
[2]
[3]
[4]
[5]
[6]
[7] !

Len 1
[1, 2]
[1, 3]
[2, 3]
[3, 4]
[3, 5]
[4, 7] !
[5, 7] !
[5, 6]
[6, 5]

Len 2

[1, 2, 3]
[1, 3, 4]
[1, 3, 5]
[2, 3, 4]
[2, 3, 5]
[3, 4, 7] !
[3, 5, 7] !
[3, 5, 6] !
[5, 6, 5] *
[6, 5, 7] !
[6, 5, 6] *

Len 3
[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 3, 4, 7] !
[1, 3, 5, 7] !
[1, 3, 5, 6] !
[2, 3, 4, 7] !
[2, 3, 5, 6] !
[2, 3, 5, 7] !

Len 4
[1, 2, 3, 4, 7] !
[1, 2, 3, 5, 7] !
[1, 2, 3, 5, 6] !

Prime Paths ?

Round Trips
Round-Trip Path: A prime path that starts and ends at the same
node

These criteria omit nodes and edges that are not in round trips

Thus they do not subsume edge-pair, edge, or node coverage
30

Simple Round Trip Coverage (SRTC): TR contains at least one
round-trip path for each reachable node in G that begins and

ends a round-trip path.

Complete Round Trip Coverage (SRTC): TR contains all round-
trip paths for each reachable node in G.

Graph Coverage Criteria Subsumption

31

Simple Round Trip
Coverage

SRTCNode
Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Prime Path
Coverage

PPC

Complete Path
Coverage

CPC

Complete Round
Trip Coverage

CRTC

All-DU-Paths
Coverage

ADUP

All-uses
Coverage

AUC

All-defs
Coverage

ADC

Summary 7.1-7.2
Graphs are a very powerful abstraction for designing tests

The various criteria allow lots of cost/benefit tradeoffs

These two sections are entirely at the “design abstraction
level” from chapter 2

Graphs appear in many situations in software
- As discussed in the rest of chapter 7

32

