
Intro to Software Testing
Chapter 8.1.1

Logic Coverage

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt



Semantic Logic Criteria (8.1)
Logical expressions can come from many sources

- Decisions in programs
- Decisions in UML activity graphs and finite state machines
- Requirements, both formal and informal
- SQL queries

Covering logic expressions is required by the US Federal 
Aviation Administration for safety critical software

- Used by other transportation industries

Used by Electronc Arts (EA) game company
- FIFA, Battlefield, …

Tests are intended to choose some subset of the total 
number of truth assignments to the expressions

2



Logic Predicates and Clauses
A predicate is an expression that evaluates to a boolean
value
Predicates can contain

- boolean variables
- non-boolean variables that contain >, <, ==, >=, <=, !=
- boolean function calls

Internal structure is created by logical operators
- ¬ or ! – the negation operator
- Ù or & – the and operator
- Ú or | – the or operator
- ® – the implication operator
- Å or xor – the exclusive or operator
- « – the equivalence operator

A clause is a predicate with no logical operators
3



Example

4

P = (a & (b | c))

P has three clauses:
1. a
2. b
3. c

Most predicates have few clauses
- 88.5% have 1 clause
- 9.5% have 2 clauses
- 1.35% have 3 clauses
- Only 0.65% have 4 or more !



Logic Coverage Criteria (8.1.1)
We use predicates in testing as follows :
Develop a model of the software as one or more predicates
Require tests to satisfy some combination of clauses

PC: Each full predicate evaluates to true and false (2 tests)

CC: Each clause in each predicate evaluates to true and 
false (at least 2 tests per predicate

5

Predicate Coverage (PC) : For each p in P, TR contains two 
requirements: p evaluates to true, and p evaluates to false.

Clause Coverage (CC) : For each c in C, TR contains two 
requirements: c evaluates to true, and c evaluates to false.



In-Class Exercise

6

P = (a & (b | c))

Give predicate coverage (PC) and clause coverage 
(CC) abstract tests for our example predicate.

“Abstract tests” include truth assignments for 
each clause, for example:

a = true



In-Class Exercise

7

P = (a & (b | c))

Give predicate coverage (PC) and clause coverage 
(CC) abstract tests for our example predicate.

“Abstract tests” include truth assignments for 
each clause, for example:

a = true

PC: a=true, b=true, c=true
a=f, b=f, c=f

CC: a, !b, !c
!a, b, c

Any format is fine, the answers 
for CC are more compact



Problems with PC and CC
PC does not fully exercise all the clauses, especially in the 
presence of short circuit evaluation

CC does not always ensure PC
- That is, we can satisfy CC without causing the predicate to be 

both true and false
- This is definitely not what we want !

The simplest solution is to test all combinations …

8



Combinatorial Coverage (CoC)
CoC requires every possible combination

Sometimes called Multiple Condition Coverage (MCC)

Every possible combination of truth values
- 2N possibilities, where N is the number of clauses

9

Combinatorial Coverage (CoC) : For each p in P, TR 
has test requirements for the clauses in Cp to 
evaluate to each possible combination of truth 

values.



In-Class Exercise

10

P = (a & (b | c))

Give abstract tests to satisfy combinatorial 
coverage (CoC) for our example predicate.

Hint: There should be 8



In-Class Exercise

11

P = (a & (b | c))

Give abstract tests to satisfy combinatorial 
coverage (CoC) for our example predicate.

Hint: There should be 8

CoC
a=true, b=true, 

c=true
a=f, b=t, c=f
a !b c
a !b !c
!a b c
!a b !c
!a !b c
!a !b !c 



Combinatorial Coverage

12

This is simple, neat, clean, and comprehensive …
But can be expensive

– Impractical for predicates with more than 3 or 4 clauses

The literature has lots of suggestions – some confusing
The general idea is simple:

Test each clause independently from the other clauses

Getting the details right is hard
What exactly does “independently” mean ?
The book presents this idea as “making clauses active” …


