Intro to Software Testing
Chapter 8.1.1

Logic Coverage

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt



Semantic Logic Criteria (8.1)

Logical expressions can come from many sources
- Decisions in programs
- Decisions in UML activity graphs and finite state machines
- Requirements, both formal and informal
- SQL queries

Covering logic expressions is required by the US Federal
Aviation Administration for safety critical software

- Used by other transportation industries

Used by Electronc Arts (EA) game company
- FIFA, Battlefield, ...

Tests are intended to choose some subset of the total
number of truth assignments to the expressions



Logic Predicates and Clauses

A predicate is an expression that evaluates to a boolean
value

Predicates can contain
- boolean variables
- non-boolean variables that contain >, <, ==, >=, <=, =
- boolean function calls

Internal structure is created by logical operators
- - or!—the negation operator
- Aor & —the and operator
- v or | —the or operator
- > —the implication operator
@ or xor — the exclusive or operator
- & —the equivalence operator

A clause is a predicate with no logical operators



Example

P=(a&(b]|c))
P has three clauses:
1. a
2.b
3.C

Most predicates have few clauses
- 88.5% have 1 clause
- 9.5% have 2 clauses
- 1.35% have 3 clauses
- Only 0.65% have 4 or more'!



Logic Coverage Criteria (8.1.1)

We use predicates in testing as follows :
Develop a model of the software as one or more predicates
Require tests to satisfy some combination of clauses

Predicate Coverage (PC) : For each p in P, TR contains two
requirements: p evaluates to true, and p evaluates to false.

PC: Each full predicate evaluates to true and false (2 tests)

Clause Coverage (CC) : For each cin C, TR contains two
requirements: c evaluates to true, and c evaluates to false.

CC: Each clause in each predicate evaluates to true and
false (at least 2 tests per predicate



In-Class Exercise

P=(a&(b]c))

Give predicate coverage (PC) and clause coverage
(CC) abstract tests for our example predicate.

"Abstract tests” include truth assignments for
each clause, for example:

a = true



In-Class Exercise

P=(a&(b]c))

/PC: a=true, b=true, c=true
a=f, b=f, c=f
CC:a, b, !Ic
1a, b, c
Any format is fine, the answers

for CC are more compact

N

~

/

Give predicate coverage (PC) and clause coverage
(CC) abstract tests for our example predicate.

"Abstract tests” include truth assignments for
each clause, for example:

a = true



Problems with PC and CC

PC does not fully exercise all the clauses, especially in the
presence of short circuit evaluation

CC does not always ensure PC

- That is, we can satisfy CC without causing the predicate to be
both true and false

- This is definitely not what we want !

The simplest solution is to test all combinations ...



Combinatorial Coverage (CoC)

CoC requires every possible combination
Sometimes called Multiple Condition Coverage (MCC)

Every possible combination of truth values
- 2N possibilities, where N is the number of clauses

Combinatorial Coverage (CoC) : ForeachpinP, TR
has test requirements for the clauses in Cp to
evaluate to each possible combination of truth

values.




In-Class Exercise

P=(a&(b]c))

Give abstract tests to satisfy combinatorial
coverage (CoC) for our example predicate.

Hint: There should be 8



In-Class Exercise

P=(a&(b]c))

Give abstract tests to satisfy combinatorial
coverage (CoC) for our example predicate.

Hint: There should be 8

CoC

a=true, b=true,
c=true

a=f, b=t, c=f

albc

alblc

labc

lab!lc

lalbc

lalblc

11




Combinatorial Coverage

This is simple, neat, clean, and comprehensive ...
But can be expensive
— Impractical for predicates with more than 3 or 4 clauses
The literature has lots of suggestions — some confusing
The general idea is simple:

Test each clause independently from the other clauses

Getting the details right is hard
What exactly does "independently” mean ?
The book presents this idea as "making clauses active" ...

12



