
Introduction to Software Testing
(Ch. 1)

Why Do We Test Software?

Brittany Johnson

Adapted from slides by Paul Ammann & Jeff Offutt

Testing in the 21st Century
Software defines behavior

- network routers, finance, switching networks, etc.
Today’s software market:

- is much bigger
- is much more competitive
- has more users

Embedded Control Applications
- airplanes - spaceships
- watches - our homes
- cell phones - automobiles

Agile processes put increased pressure on testers
- unit testing critical (with no training or education!)
- Tests are key to functional requirements – but who builds these tests?

2

Industry is going through a
revolution in what testing means to

success of software products.

3

Software is EVERYWHERE!

4

Software faults, errors, & failures
Software fault: A static defect in the software

Software error: An incorrect internal state that is the
manifestation of some fault

Software failure: External, incorrect behavior with respect to
the requirements or other description of expected behavior

Faults in software are equivalent to design mistakes in
hardware.

Software does not degrade.
5

Failure, fault, and error example
(non-technical)

A patient gives a doctor a list of symptoms
- Failures

The doctor tries to diagnose the root cause (ailment)
- Fault

The doctor may look for abnormal internal conditions (high
blood pressure, irregular heartbeat)

- Errors
Most medical problems result from external attacks

(bacteria, viruses) or degradation as we age.
Software faults are put there (or were always there) and do

not “appear” when a part gets old or wears out.
6

A concrete example
Fault: Should start
searching at 0, not 1

Test 1
[2, 7, 0]
Expected: 1
Actual: 1

Test 2
[0, 2, 7]
Expected: 1
Actual: 0

Error: i is 1, not 0, on
the first iteration
Failure: none

Error: i is 1, not 0
Error propagates to the variable
count
Failure: count is 0 at the return
statement 7

The term “bug”

”Bug” is used informally
- sometimes a fault, sometimes
error, sometimes failure

This course will try to avoid using this
word so that we understand the precise
terminology

Though you’ll probably use or encounter
the term bug informally or at work quite
often J

8

Spectacular Software Failures

NASA’s Mars lander
September 1999; crashed due to unit
integration fault

THERAC-25 radiation machine
1980s; poor testing of safety critical
software can cost lives : 3 patients killed

9

Spectacular Software Failures

Ariane 5 explosion
Millions of $$ lost from exception
handling bug

Intel Pentium FDIV fault
public relations nightmare

10

Spectacular Software Failures

Boeing A220
Engines failed after software
updated allowed excessive
vibrations

Boeing 737 Max
Crashed due to overly
aggressive software flight
overrides

11

Spectacular Software Failures

Toyota brakes
Dozens dead, thousands of
crashes

Heathcare.gov website
Crashed repeatedly on launch –
never load tested

12

We need our software to be
dependable.

Testing is one way to assess
dependability.

Software testers try to find faults
before the faults find users.

13

Costly Software Failures
NIST report, “The Economic Impacts of Inadequate
Infrastructure for Software Testing” (2002)

- Inadequate software testing cost US alone between $22 and
$59 billion annually

Huge losses due to web app failures
- Financial services: $6.5 million per hour (just in US!)

- Credit card sales apps: $2.4 million per hour (in US)

Symantec (2007) says that most security vulnerabilities are
due to faulty software

14

Costly Software Failures

Northeast blackout
2003; 50 million people, $6 billion
USD lost because of power
overload (alarm system failed)

Amazon BOGO no-go
Dec 2006; amazon.com’s BOGO
offer turned into a double
discount

15

World-wide monetary loss due to
poor software testing and

maintenance is staggering!

16

Testing in the 21st Century
More safety critical, real-time software
Embedded software is ubiquitous
Enterprise applications means bigger programs, more users
Paradoxically, free software increases our expectations
Security is now all about software faults

- secure software is reliable software

The web offers new deployment platform
- Very competitive and very available to more users

- Web apps are distributed
- Web apps must be highly reliable

17

Industry desperately needs our
interventions and help!

18

The true cost of a software failure
Analysis of news articles in 2016 revealed:

606 reported software failures

Impacted half the world’s population
Cost a combined $1.7 trillion US dollars

Poor software is a drag on the world’s economy

Also…super frustrating

19

So what does this mean?

Software testing is getting more important.

What are we trying to do when we test?
What are our goals?

20

Validation & Verification (IEEE)

Validation: The process of evaluating software at the end of
software development to ensure compliance with intended
usage

Verification: The process of determining whether the
products of a given phase of the software development
process fulfills the requirements established during the
previous phase

IV&V stands for “independent verification & validation”
21

Test goals based on
test process maturity

Level 0: There’s no difference between testing and debugging

Level 1: The purpose of testing is to show correctness

Level 2: The purpose of testing is to show that the software

doesn’t work.

Level 3: The purpose of testing is not to prove anything specific,

but to reduce the risk of using the software

Level 4: Testing is a mental discipline that helps all IT professionals

develop higher quality software
22

Level 0 explained

Testing is the same as debugging

Does not distinguish between incorrect behavior and

mistakes in the program

Does not help develop software that is reliable and safe

This is what we typically teach undergraduate CS majors.

23

Level 1 explained
Purpose is to show correctness

Correctness is impossible to achieve

What do we know if no failures?
- Good software or bad/not enough tests?

Test engineers have no:
- Strict goal

- Real stopping rule

- Formal test technique

- Test managers are powerless

This is what hardware engineers often expect. 24

Level 2 explained
Purpose is to show failures

Looking for failures is a negative activity

Puts testers and developers into an adversarial relationship

What if there are no failures?

This describes most software companies.

How can we move to a team approach??

25

Level 3 explained
Testing can only show the presence of failures

Whenever we use software, we incur some risk

Risk may be small and consequences unimportant

Risk may be great and consequences catastrophic

Testers and developers cooperate to reduce risk

This describes handful of “enlightened” software companies.
26

Level 4 explained
A mental discipline that increases quality

Testing is only one way to increase quality

Test engineers can become technical leaders of project

Primary responsibility to measure and improve software

quality

Their expertise should help the developers

This is the way “traditional” engineering works.
27

Where are you?

Are you at level 0, 1, or 2?

Is your organization at work at level 0, 1, or 2?

Or maybe 3?

We hope to teach you to become “change agents”…

Advocates for level 4 thinking

28

Tactical goals: why each test?

If you don’t know why you’re conducting each test,

it won’t be very helpful.

Written test objectives and requirements must be
documented

What are your planned coverage levels?

How much testing is enough?

Common objective = spend the budget … test until
the ship date…

- sometimes called the “date criterion”
29

Why each test?

If you don’t start planning for each test when the functional
requirements are formed, you’ll never know why you’re

conducting the test.

1980: ”The software shall be easily maintainable:

Threshold reliability requirements?

What fact does each test try to verify?

Requirements definition teams need testers!

30

Cost of not testing

Poor program managers might say:
“Testing is too expensive.”

Testing is the most time consuming and expensive part of
software development

Not testing is even more expensive

If we have too little testing effort early, the cost increases

Planning for testing after development is prohibitively
expensive

31

Cost of late testing

32

60

50

40

30

20

10

0

Require
m

ents

Pro
g / U

nit
Test

Desig
n

In
te

gra
tio

n Test

Fault origin (%)

Fault detection (%)

Unit cost (X)

Software Engineering Institute; Carnegie Mellon University; Handbook CMU/SEI-96-HB-002

Assume $1000 unit cost, per fault, 100 faults

$6K

$13K

$20K

$360K

$250K

Syste
m

 Test

Post-D
eplo

ym
ent

$100K

Summary:
Why do we test software?

A tester’s goal is to eliminate faults as early as possible.

Improve quality
Reduce cost

Preserve customer satisfaction

33

