
Designing for Change

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt



Designing for maintainability

1. Integrating software components
2. Sharing data and message passing
3. Using design patterns to integrate

2



Designing for maintainability

1. Integrating software components
2. Sharing data and message passing
3. Using design patterns to integrate

3



Modern software is connected
Modern programs rarely live in isolation

- they interact with other programs on the same computer
- they use shared library modules

- They communicate with programs on different computers
- Data is shared among multiple computing devices

Web applications communicate across a network
Mobile applications live in a complex ecosystem
Web services connect dynamically during execution

Distributed computing is now common

4



Why integration is hard
Networks are unreliable
Networks are slow

- multiple orders of magnitude slower 
than a function call

Programs on different computers are diverse
- different languages, operating systems, 
data formats…
- connected through diverse hardware and 
software applications

Change is inevitable and continuous
- programs we connect with change
- host hardware and software changes

5

Distributed software must use extremely low coupling



Extremely loose coupling
Tight coupling: dependencies encoded in logic

- changes in A may require changing logic in B
- This used to be common

Loose coupling: dependencies encoded in the structure and data flows
- changes in A may require changing data uses in B
- goal of data abstraction and object-oriented concepts

Extremely loose coupling (ELC): dependencies encoded only in the data 
contents

- changes in A only affects the contents of B’s data
- motivating goal for distributed software and web apps

The issues are about how we share data…
6



XML supports extremely loose 
coupling

Data is passed directly between components
Components must agree on format, types, and structure
XML allows data to be self-documenting

7

Schema

P1
P2

Parser

XML
File

P3 <book>
<author>Steve Krug</author>
<title>Don’t Make Me Think</title>

</book>
<book>

<author>Don Norman</author>
<title>Design of Every Day Things</title>

</book>

P1, P2, and P3 can see the 
format, contents, and 
structure of the data

Free parsers are available



Discussion
Discuss in groups

• Explain coupling to each other
• Have you used tight coupling?
• Have you used loose coupling?

• Have you used extremely loose coupling?
8



Designing for maintainability

1. Integrating software components
2. Sharing data and message passing
3. Using design patterns to integrate

9



General ways to share data
1. Transferring files

- one program writes to a file that another later reads
- both programs need to agree on:

file name, location, and format
timing for when to read and write it

2. Sharing a database
- replace a file with a database
- most decisions are encapsulated in the table design

3. Remote procedure invocation
- one program calls a method in another application
- communication is real-time and synchronous
- Data are passed as parameters

4. Message passing
- one program sends a message to a common message channel
- other programs read the messages at a later time
- programs must agree on the channel and message format
- communications is asynchronous
- XML is often used to implement encoded messages 10



Message passing

Message passing is asynchronous and very loosely coupled

Telephone calls are synchronous
This introduces restrictions:

- other person must be there
- communication must be real time

Voicemail and texts are asynchronous
- messages left for later retrieval
- real-time aspects less important

11



Benefits of message passing
Message-based software is easier to change and reuse

- better encapsulated than shared database

- more immediate than file transfer
- more reliable than remote procedure invocation

Software components depend less on each other
Several engineering advantages:

- reliability
- maintainability & changeability
- security
- scalability

12



Message passing disadvantages
Programming model is different – and complex

- universities seldom teach event-driven software (SWE 432)
- logic is distributed across several software components
- harder to develop and debug

Sequencing is harder
- no guarantees for when messages will arrive
- messages sent in one sequence may arrive out of sequence

Some programs require applications to be synchronized
- shopping requires users to wait for responses
- most web apps are synchronized

Ajax allows asynchronous communications
Message passing is slower, but good middleware helps

13



Discussion
Discuss in groups

• Have you used message passing?
• Have you learned about message passing?

• If yes, describe to other members of the group
• If not, do you understand message passing?

14



Designing for maintainability

1. Integrating software components
2. Sharing data and message passing
3. Using design patterns to integrate

15



Enterprise applications
Enterprise systems contain hundreds or thousands of separate 
applications

- custom-built, third party vendors, legacy systems…
- multiple tiers with different operating systems

Enterprise systems often grow from disjoint pieces
- just like a town or city grows together and slowly integrates

Companies want to buy the best package for each task
- then integrate them!

Thus, integrating diverse programs into a coherent enterprise 
application will be a challenge for years to come

16



Information portals
Information portals aggregate information from 

multiple sources into a single display to avoid making 
the user access multiple systems

17

Answers are pulled from different 
places

- e.g., grade sheets, syllabus, 
transcript…

Information portals divide the 
screen into different zones
They should make it easy to move 
data between zones



Data replication
Making data needed by multiple applications available 

where it’s needed

18

Multiple business systems often need the 
same data

- e.g., student email address is needed by 
professors, registrar, department, IT…

- when email is changed in one place, all 
copies must change

Data replication can be implemented in many 
ways

- built into the database

- export data to files, re-import them to 
other systems

- use message-oriented middleware

replicate



Shared business functions
Same functions used by several applications

19

Multiple users need the same function
- e.g., whether a particular course is 
taught this semester

- student, instructor, admins

Each function should only be implemented 
once
If the function only accesses data to return 
result, duplication is simple

If function modifies data, race conditions 
can occur



Service-oriented architectures 
(SOA)

A service is a well-defined function that is 
available from anywhere

20

Managing a collection of useful services is a 
critical function

- service directory
- each service needs to describe its interface
in a generic way

A mixture of integration and distributed
application



Business-to-business integration
Integration between two separate businesses

21

Business functions are available from outside suppliers or 
business partners

- e.g., online travel agents use credit card service
Integration may occur “on-the-fly”

- a customer may seek the cheapest price on a given day
Standardized data formats are critical



Summary: coupling, coupling, coupling
We have always known coupling is important
Goal is to reduce the assumptions about exchanging data

- loose coupling means fewer assumptions
A local method call is very tight coupling

- same language, same process, typed params, return value
Remote procedure call has tight coupling, but with the complexity 
of distributed processing

- the worst of both worlds
- results in systems that are hard to maintain

Message passing has extremely loose coupling

Message passing systems are easy to maintain 22


