[ntroduction to Software Testing
Chapter 1: Why do we test?

Software Testing & Maintenance Dr. Brittany Johnson-Matthews
SWE 437 (Dr. B for short)

http://go.gmu.edu/swe437

Software in the 21st Century

Software defines behavior

- network routers, finance, switching networks, etc.
Today's software market:

-Is much bigger

-5 much more competitive

-Nas more users

Systems are constantly and rapidly evolving.

Testing in the 21st Century

With rapid development of innovative tech comes higher need for
effective validation of software systems.

Agile processes put increased pressure on testers

- unit testing critical (with no training or education!)
-Tests are key to functional requirements - but who builds these tests?

Industry is going through a revelution in what
testing means to success of software products.

Back<in my day

Y. .
N -

-
—

. ‘ @Mk

¢

there was no testing;

Software is EVERYWHERE...

& in everything we do.

Software is embedded in:
- personal devices

- motor vehicles

- criminal justice

-and so much more!

Software faults, errors, & failures

Fault: A static defect in the software
Error: An incorrect internal state that is the manifestation of some fault

Failure: External, incorrect behavior with respect to the requirements or
other description of expected behavior

Faults in software are equivalent to design mistakes in hardware.
Software does not degrade.

Failure, fault, error (non-technical)

A patient gives a doctor a list of symptoms
- Failures
The doctor tries to diagnose the root cause (ailment)

- Fault

The doctor may look for abnormal internal conditions (high blood pressure, irreqular
heartbeat)

- Errors

However...
most medical problems result from external attacks (bacteria, viruses) or degradation.

Software faults are put there (or were always there) and
do not “appear” when a part gets old or wears out.

public static int numZero (int [] arr)
// Effects: If arr is null throw e
// else return the number o#f

{

A concrete example

1nt CQk

if (arr [1] == 0)
{
count++;
}
}

return count;

1 < arr.length; 1++)

Test 1
arr=[2,7,0]
Expected: 1
Actual: 1

Fault: Should start searching at 0, not 1]

Error:iis 1, not 0, on the

Failure: none

{fi rst iteration

]

PointerException
occurrences of @ in arr

Test 2
arr=[0,2,7]
Expected: 1
Actual: 0

r

.

~N
Error: iis1,not0
Error propagates to the variable count
Failure: countis 0 at the return statement
8
y,

The term “bug”

"Bug"” is used informally

- sometimes a fault, sometimes error,
sometimes failure

This course will try to avoid using this word so that
we understand the precise terminology

Though you'll probably use or encounter the term
bug informally or at work quite often ©

Infamous software failures

NASA's Mars lander

September 1999; crashed due to unit
integration fault

THERAC-25 radiation machine

1980s; poor testing of safety critical
software can cost lives : 3 patients killed

10

Infamous software failures

| i

Ariane 5 explosion

Millions of $$ lost from exception
handling bug

Intel Pentium FDIV fault
public relations nightmare

Infamous software failures

Boeing A220

Engines failed after software updated
allowed excessive vibrations

Boeing 737 Max

Crashed due to overly aggressive software
flight overrides

12

Infamous software failures

Toyota brakes
Dozens dead, thousands of crashes

Heathcare.gov website

Lo
Crashed repeatedly on launch - never load tested o

Jk \'\e p

\

We need our software fo be
dependable.

Testing is one way to assess dependability.

Software testers try to find faults before the
faults find users.

Software failures are expensive!

NIST report, “The Economic Impacts of Inadequate Infrastructure for
Software Testing” (2002)

- Inadequate software testing cost US alone between $22 and $59 billion annually
Huge losses due to web app failures

- Financial services: $6.5 million per hour (just in US!)
- Credit card sales apps: $2.4 million per hour (in US)

Symantec (2007) says that most security vulnerabilities
are due to faulty software.

(ostly software failures

Northeast blackout

2003; 50 million people, $6 billion USD
lost because of power overload (alarm
system failed)

Amazon BOGO no-go

Dec 2006; amazon.com’'s BOGO
offer turned into a double discount

loss due to poor software

enance is staggering!

Testing in the 21t century

More safety critical, real-time software
Embedded software is ubiquitous
Enterprise applications means bigger programs, more users [& higher impact!]

Paradoxically, free software increases our expectations.

Testing in the 21t century

Security is now all about software faults
- secure software is reliable software
The web offers new deployment platform

- \lery competitive and very available to more users
-Web apps are distributed and must be highly reliable

And now we have software that relies on artificial intelligence
(unclear if and to what extent existing techniques scale)

Testing in the 21t century

The potential for detrimental impact is increasing by the day.

Software used in life-altering scenarios
- criminal justice
- healthcare

But is this software being adequately tested?
recent article points out some aren't!

Marc Canellas, New York University

As part of an alarming trend, IEEE Standard 1012 for
independent software and hardware verification and validation
is under attack in U.S. federal criminal court. If scientists

and engineers do not engage, courts will continue to allow
unreliable scientific evidence to deprive people of their rights.

NA evidence is “devastating in court.”! Prose-
cutors and defense attorneys know that DNA
evidence all but guarantees a jury’s conviction
regardless of actual guilt or innocence. There-
fore, just the prospect of unfavorable DNA evidence
can convince a defendant to plead guilty. But DNA evi-
dence is not an infallible science that catches only the
bad guys and exonerates the innocent. Traditional
DNA analysis has caused people to be wrongly accused,
coerced into false confessions, convicted, and even
given the death penalty because prosecutors and courts
did not account for the possibility of errors.? Nevertheless,

ifier 10.1109/MC 20203038630
ersion: 4 June 2021

modern DNA analysis through probabilistic genotyping
(PG) software is supercharging these catastrophic con-
sequences through trade-secret-protected, “internally vali-
dated” black-box technologies.

Traditional DNA analysis uses a one-to-one comparison
of directly sampled biological material, such as blood and
saliva, to determine identity and familial relationships. It
is influential because it is one of the only forensic science
disciplines developed independently of law enforcement.
A landmark report published by the National Research
Council (NRC), in 2009, dismissed most forensic evidence
as unproven but singled out traditional DNA evidence gath-
ering as the one forensic science worthy of the name.> The
NRC explained that most other techniques were “devel-
oped heuristically [meaning] they are based on observatio)

https://ieeexplore.ieee.org/document/9447421

https://ieeexplore.ieee.org/document/9447421

[ndustry desperately needs our
interventions and help!

AVl

The 7rve cost of a software failure

Analysis of news articles in 2016 revealed:
606 reported software failures
Impacted half the world's population
Cost a combined $1.7 trillion US dollars

Poor software can have real ramifications.

Also...it's super frustrating.

So what does this mean?

Software testing is getting more important.

What are we trying to do when we test?
What are our goals?

Validation & Verification (IEEE)

Validation: The process of evaluating software at the end of software development
to ensure compliance with intended usage

Verification: The process of determining whether the products of a given phase of
the software development process fulfills the requirements established during the
previous phase

IV&V stands for “independent verification & validation”.

Test goals based on test process maturity

Level O: There's no difference between testing and debugging
Level 1: The purpose of testing is to show correctness
Level 2: The purpose of testing is to show that the software doesn't work.

Level 3: The purpose of testing is not to prove anything specific, but to reduce
the risk of using the software

Level 4: Testing is a mental discipline that helps all IT professionals develop
higher quality software

Level 0 explained

Testing = debugging

Does not distinguish between incorrect behavior and mistakes in the program

Does not help develop software that is reliable and safe

This is (unfortunately) what we typically learn as undergraduate CS majors.

Level 1 explained

Purpose is to show correctness

NOT SURE IF QUALITY IS REALLY

Correctness is impossible to achieve

What do we know if no failures?
- Good software or bad/not enough tests?

Test engineers have no:
- Strict goal

- Real stopping rule

-Formal test technique OR TESTING WAS REALLY LOUSY

-Test managers are powerless

This is what hardware engineers often expect.

27

Level 2 explained

Purpose is to show failures @ AL
| abere) C okt
Looking for failures is a negative activity [N &= |
—T)@g% [N |
Puts testers and developers into an adversarial relationship B e A 22N
: \T\r ‘

What if there are no failures?

This describes most software companies.

How can we move to a team approach??

Level 3 explained

Testing can only show the presence of failures
Whenever we use software, we incur some risk
Risk may be small and consequences unimportant
Risk may be great and consequences catastrophic

Testers and developers cooperate to reduce risk

This describes handful of “enlightened” software companies.

Level § (a mental discipline) explained

Testing is only one way to increase quality
Test engineers can become technical leaders of project
Primary responsibility to measure and improve software quality

Their expertise should help the developers

This is the way “traditional” engineering works.

Where are you?

Are you at level 0, 1, or 27
|s your organization at work at level 0, 1, or 2?

Or maybe 37

We hope to teach you to become “change agents”
who advocate for level 4 thinking.

Tactical goals: why each test?

If you don’t know why you're conducting each test,
itwon't be very helpful.

Written test objectives and requirements must be documented
What are your planned coverage levels?
How much testing is enough?

(Clommon objective = spend the budget ... test until the ship
ate...

-sometimes called the “date criterion”

Why each test?

If you don't start planning for each test when the functional
requirements are formed, you'll never know why you're
conducting the test.

1980: "The software shall be easily maintainable.”
Threshold reliability requirements?

What fact does each test try to verify?
Requirements definition teams need testers!

(ost of not testing

Poor program managers might say:
"Testing is too expensive.”

Testing is the most time consuming and expensive part of software
development

Not testing is even more expensive
It we have too little testing effort early, the cost increases
Planning for testing after development is prohibitively expensive

(ost

of late testing

60
50
40
30
20
10

Assume $1000 unit cost, per fault, 100 faults

Ml Fault origin (%)

Fault detection (%)

M Unit cost (X)

1 T00 LIKETO,LIVE

L P

DANGEROUSLY,

Software Engineering Institute; Carnegie Mellon University; Handbook CMU/SEI-96-HB-002 —

Summary: Why do we test software?

A tester's goal is to eliminate faults as early as possible.

mprove quality/ d :e: 3»3

@é aroun
Reduce cost ”
Preserve customer satisfaction / ‘ :

