
Introduction to Software Testing
Maintenance & Evolution Overview

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Software Maintenance
“When the transition from development to evolution is not seamless, the process of

changing the software after delivery is often called software maintenance.”
Sommerville, 2004

Modifying a program after it has been put into use
Maintenance does not normally involve major changes to software
architecture
Changes are implemented by modifying existing components and adding
new components to the system
Maintenance requires program understanding

2

Why is maintenance important?
Organizations have huge investments in their
software systems – they are critical business assets

To maintain the value of these assets to the business,
they must be changed and updated

Large portion of software budget in large
companies goes to modifying existing software

3

Also, software change is inevitable
We cannot avoid changing software
 - new requirements emerge when software is used
 - The business environment changes
 - Faults must be repaired
 - New computers and equipment is added to the system
 - The performance or reliability may have to be improved

Software is tightly coupled with the environment.

A key problem for organizations is implementing and managing
change to their existing software.

4

Management myths
Myth: We already have a book that’s full of standards and procedures for building software, won’t
that provide my people with everything they need to know?

Reality:
 - Book of standards may exist, but is it used?
 - Are software practitioners aware of its existence?
 - Does it reflect modern SE practice?
 - Is it complete?
 - Is it streamlined to improve time to delivery while still maintaining focus on quality?

5

Management myths
Myth: If we get behind schedule, we can add more programmers and catch up
 Reality: Software development is not a mechanistic process like manufacturing. As Brooks

said: “adding people to a late software project makes it later”

Myth: If I decide to outsource the software project to a third party, I can just relax and
let them build it.
 Reality: If an organization does not understand how to manage and control software
 projects internally, it won’t be able to outsource effectively.

6

Customer myths
Myth: A general statement of objectives is enough to start writing programs – we can
fill in the details later.
 Reality: A poor upfront definition is the major cause of failed software efforts. If you don’t

know what you want at the beginning, you won’t get it.

7

Myth: Project requirements continually change, but
change can be easily accommodated because
software is flexible.
 Reality: It is true that software requirements

change, but the impact of change varies with
the time at which it is introduced.

Definition Development After release

1x

1.5-6x

60-100x
Cost of fixing faults

Practitioner myths
Myth: Once we write the program and get it to work, our job is done.
 Reality: Someone once said that “the sooner you begin ‘writing code’, the longer it’ll take
you to get done.” Industry data indicate that 60-80% of all effort expended on software will
expended after it is delivered to the customer.

8

Practitioner myths
Myth: Until I get the program “running” I have no way to assess its quality
 Reality: One of the most effective software quality assurance mechanisms can be

applied from the inception of a project – the formal technical review. Software
reviews are more effective than testing for finding certain classes of software defects.

Myth: Software engineering will make us create voluminous and unnecessary
documentation and will always slow us down
 Reality: Software engineering is not about creating documents. It is about creating quality.

Better quality leads to reduced rework. And reduced rework results in faster delivery times.
9

What makes maintenance hard?

Most computer systems are difficult and expensive to maintain

Software changes are poorly designed and implemented

The repair and enhancement of software often injects new

faults that must be repaired.

10

Maintenance costs
Usually greater than development costs (2 – 100 times depending on the application)

Affected by both technical and non-technical factors

Increases as software evolves
 Maintenance corrupts the software structure, making further maintenance more difficult

Aging software can have high support costs (old languages, compilers, etc.)
11

Maintenance cost factors
Team stability
 Maintenance costs are lower if the same staff stay involved
Contractual responsibility
 If the developers of a system are not responsible for maintenance, there is no incentive to

design for future change
Staff skills
 Maintenance staff are often inexperienced and don’t have much domain knowledge
Program age and structure
 As programs age, changes degrade the code, design, and structure and they become harder

to understand and change
12

Additional maintenance terms

Maintainability: The ease with which software can be modified
Impact analysis: Understanding how changes in one software component can impact
other components
Ripple effect: How changes transfer through the system, primarily through data and
control flow connections
Traceability: The degree to which a relationship can be established between two or more
software artifacts
Legacy systems: A software system that is still in use but the development team is no
longer active

13

I’m sorry to say, but…
Much of the previous data comes from publications in the 1990s…

Based on knowledge from the 1980s…

When our software was “single-building size”!

How out of date is this information for building
software of today??

VERY!!
14

Updated expectations

https://standards.ieee.org/ieee/1012/5609/

published in 2017 15

https://standards.ieee.org/ieee/1012/5609/

Getting in our own way
When considering the goal of software maintainability, it’s important to not let

overconfidence lead to overengineering.

Elegant, well-designed systems are easy to maintain.
Large, unnecessarily complex systems are not.

16

Maintenance vs. Evolution
Software Maintenance

Activities required to keep a software system
operational after it is deployed

18

Software Evolution

Continuous changes from a lesser, simpler,
or worse system to a higher or better system

Software evolution
”Software development does not stop when a system is delivered but continues throughout

the lifetime of the system”
Sommerville, 2004

The system changes related to changing needs – business and user

The system evolves continuously throughout its lifetime

Modern agile processes emphasize getting a few (core) functionalities running,
then adding new behaviors over time.

19

Lehman’s Laws of Software Evolution
1. Law of Continuing Change (1974)
 Software that is used in a real-world environment must change or become less and

less useful in that environment
2. Law of Increasing Complexity (1974)
 As evolving program changes, its structure becomes more complex, unless active

efforts are made the avoid this phenomenon
3. Law of Self Regulation (1974)
 Program evolution is a self-regulating process. System attributes such as size, time

between releases, and the number of reported errors are approximately invariant for
each system release

20

Lehman’s Laws of Software Evolution
4. Law of Conservation of Organizational Stability (1980)
 Over a program’s lifetime, its rate of development is approximately constant and

independent of the resources devoted to system development
5. Law of Conservation of Familiarity (1980)
 Over the lifetime of a system, the incremental system change in each release is

approximately constant

6. The Law of Continuing Growth (1980)
 The functionality offered by systems has to continually increase to maintain user

satisfaction
21

Lehman’s Laws of Software Evolution
7. The Law of Declining Quality (1996)
 The quality of systems will appear to be declining unless they are adapted to

changes in their operational environment
8. The Feedback System Law (1996)
 Evolution processes incorporate multi-agent, multi-loop feedback systems and you

have to treat them as feedback systems to achieve significant product improvement

 .

22

The pace of change is increasing
Hardware advances leads to new, bigger software
The rate of change (that is, new features) is increasing

How can we deal with the spiraling need to handle change??
23

