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What is DNF?
Disjunctive Normal Form (DNF) is a common representation for Boolean functions

Slightly different notation and terminology
Literal: a clause or the negation of a clause: 𝑎, "𝑎
Term: is a set of literals connected by logical and, represented by adjacency, for example:

𝒂 ∧ 𝒃 becomes 𝒂𝒃
¬𝒂 ∧ 𝒃 becomes %𝒂𝒃
¬𝒂 ∧ ¬𝒃 becomes 𝒂𝒃

Terms are also called implicants, because if a single term is true, it implies that the entire 
predicate is true 
Predicate: a set of terms connected by or, which is represented by +, for example:

𝒂 ∨ 𝒃 becomes 𝒂 + 𝒃
3



DNF Fault Classes
There are 9 types of syntactic faults on DNF predicates; we want criteria that are 
guaranteed to find them.
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Fault Class
Intended Expression Faulty

Expression

ENF: expression negation fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃 + 𝒄
TNF: term negation fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃 + 𝒄
TOF: term omission fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃
LNF: literal negation fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂'𝒃 + 𝒄
LRF: literal reference fault 𝒇 = 𝒂𝒃 + 𝒃𝒄𝒅 𝒇 = 𝒂𝒅 + 𝒃𝒄𝒅
LOF: literal omission fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂 + 𝒄
LIF: literal insertion fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃 + 𝒃𝒄
ORF+: operator reference fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃𝒄
ORF*: operator reference fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂 + 𝒃 + 𝒄



DNF Fault Class Subsumption
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LIF: Literal Insertion 
Fault

ENF: Expression 
Negation Fault

TNF: Term Negation 
Fault

LNF: Literal Negation 
Fault

LRF: Literal Reference 
Fault

LOF: Literal Omission 
Fault

ORF+: Operator 
Reference Fault

ORF*: Operator 
Reference Fault

TOF:  Term Omission 
Fault

Together, these
subsume
all others

Subsumed by all others

If we can find LIF and
LOF faults, we will find 

all faults 



Implicant Coverage
An obvious coverage thought is to make each implicant (term) evaluate to true

This only tests true cases for the predicate 𝒇, so we include DNF negation of the entire 
predicate 𝒇

Examples: 𝑓 = 𝑎𝑏 + 𝑏 ̅𝑐, ̅𝑓 = )𝑏 + )𝑎𝑐
Implicants: {𝑎𝑏, 𝑏 ̅𝑐, .𝑏, .𝑎𝑐}

Possible test set: { TTF, FFT }
IC is a relatively weak criterion, not guaranteed to find any of the DNF fault classes 
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Implicant Coverage (IC) – Given DNF representation of a
predicate 𝒇 and its negation .𝒇, for each implicant in 𝒇 and .𝒇, TR
contains the requirement that the implicant evaluate to true.
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Improving on Implicant Coverage
Additional definitions:

Proper subterm: a term with one or more clauses removed
𝒂𝒃𝒄 has proper subterms, 𝒂, 𝒃, 𝒄, 𝒂𝒃, 𝒂𝒄, 𝒃𝒄

Prime implicant: an implicant such that no proper subterm is an implicant
Given 𝒇 = 𝒂𝒃 + 𝒂%𝒃𝒄, 𝒂𝒃 is a prime implicant, but 𝒂%𝒃𝒄 is not, because proper subterm𝒂𝒄 is an 
implicant (because the predicate can be simplified to 𝒇 = 𝒂𝒃 + 𝒂𝒄, and we’ll soon see how to 
determine that)

Redundant implicant: an implicant that can be removed without changing the value of the 
predicate

Given 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃.𝒄, implicant 𝒂𝒃 is redundant because the predicate can be simplified to 
𝒂𝒄 + 𝒃.𝒄 (again, we’ll soon see how to determine that)
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Simplifying Predicates
We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄
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Values use Grey code 
ordering (rather than binary 
counting) where only one 

truth value changes at a time 
across columns or down rows.

Populate the truth table where 
true values are listed as “t”; 

false values are (by 
convention) simply left blank.

Group clauses into pairs (or 
one pair and one single 
clause) and populate the 

possible values of the 
clauses.
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Simplifying Predicates
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We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄
Simplifies to 𝒇 = 𝒂𝒄 + 𝒃)𝒄



Simplifying Predicates
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Select maximal rectangles 
in the table, sized 2m by 2n

(1x1, 1x2, 2x2, 2x4, 4x4, 
4x8, etc.); it’s okay if they 

overlap

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄
Simplifies to 𝒇 = 𝒂𝒄 + 𝒃)𝒄
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K-Maps are Toroidal

15

K-Maps are a torus, not a plane
The bottom row wraps around to the top row
The right column wraps around to the left column

By Jochen Burghardt - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=28286441



K-Maps are Toroidal
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Given the predicate 𝒇 = 𝒃𝒅

Draw the K-map
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K-Maps are Toroidal
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Given the predicate 𝒇 = 𝒃𝒅

Draw the K-map
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These 4 true values are a 
single 2x2 rectangle!



Prime Implicants
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Given the predicate 𝒇 = 𝒂𝒃𝒄 + 𝒂𝒃*𝒅 + *𝒂𝒃𝒄𝒅 + 𝒂*𝒃𝒄*𝒅 + 𝒂𝒄𝒅

Draw the K-map
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Prime Implicants
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Given the predicate 𝒇 = 𝒂𝒃𝒄 + 𝒂𝒃*𝒅 + *𝒂𝒃𝒄𝒅 + 𝒂*𝒃𝒄*𝒅 + 𝒂𝒄𝒅

Draw the K-map
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Not prime implicants:
𝒂𝒃#𝒅 (part of 𝒂#𝒅)
#𝒂𝒃𝒄𝒅 (part of 𝒃𝒄𝒅)
𝒂#𝒃𝒄#𝒅 (part of 𝒂#𝒅)
𝒂𝒄𝒅 (part of 𝒂#𝒅)

All these have proper subterms that are implicants

Minimal DNF representation: 𝒇 = 𝒂%𝒅 + 𝒃𝒄𝒅



Minimal Representation
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A minimal DNF representation is one with only prime, non-redundant implicants 
Not minimal: 𝒇 = 𝒂𝒃𝒄 + 𝒂𝒃%𝒅 + %𝒂𝒃𝒄𝒅 + 𝒂%𝒃𝒄%𝒅 + 𝒂𝒄𝒅

Minimal (simplified) equivalent from previous slide: 𝒇 = 𝒂*𝒅 + 𝒃𝒄𝒅

t t

00 01 11 10

00

01

ab

cd
t t

t t

11

10



Determination
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Given predicate 𝒇 = 𝒃 + 𝒂𝒄 + 𝒂𝒄, suppose we want to identify when 𝒃 determines 𝒇

Draw K-map

t t t
t t t
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Determination
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Given predicate 𝒇 = 𝒃 + 𝒂𝒄 + 𝒂𝒄, suppose we want to identify when 𝒃 determines 𝒇

Draw K-map

t t t
t t t

00 01 11 10

0

1

ab
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If two cells adjacent to the 
boundary have different 

values for f, then b determines 
f for those two cells.

Identify the boundaries 
where b changes value.

𝒃 determines 𝒇 for 𝒂.𝒄 + %𝒂𝒄



Predicate Negation
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Given predicate 𝒇 = 𝒂𝒃 + 𝒃𝒄, suppose we want to negate 𝒇
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Draw the K-map for 
f.
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Negate all the cells in 
the K-map.

Write down the result: .𝒇 = %𝒃 + 𝒂𝒄



True and False Points
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Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
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True points      are those cells in 
the K-map where the value of the 
predicate is true

False points      are those where 
the value is false



Unique True Points
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A unique true point (UTP) with respect to a given implicant is an assignment 
of truth values such that

The given implicant is true
All other implicants are false

Thus a unique true point test focuses on only one implicant



Unique True Points (UTPs)
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Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
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Unique true points for 𝒂𝒃
TTFF, TTFT, TTTF

Unique true points for 𝒄𝒅
FFTT, FTTT, TFTT

TTTT is a true point, but not a 
unique true point



Multiple Unique True Point Coverage
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A minimal representation guarantees the existence of at least one unique true point for 
each implicant.

Multiple Unique True Point Coverage (MUTP) – Given a
minimal DNF representation of a predicate f, for each implicant i,
choose unique true points (UTPs) such that clauses not in i are true
and false.
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Multiple Unique True Points
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Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
Choose unique true points for each implicant such that literals not in the implicant take on 
values true and false 
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For implicant 𝒂𝒃, choose 
TTFT and TTTF

For implicant 𝒄𝒅, choose 
FTTT and TFTT

MUTP test set:
{ TTFT, TTTF, FTTT, TFTT }



MUTP Infeasibility
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Given the predicate 𝒇 = 𝒂𝒃 + 𝒃)𝒄
Implicants are { 𝒂𝒃, 𝒃.𝒄 }

Both implicants are prime
Neither implicant is redundant
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MUTP Infeasibility
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Unique true points required by MUTP
𝒂𝒃: {TTT} causes 𝒂𝒃 to be true and 𝒃.𝒄 to be false

But there’s no way to also make clause c both true and false while keeping the implicants true and false as required by MUTP, so 
MUTP is infeasible

𝒃.𝒄: {FTF} causes 𝒂𝒃 to be false and 𝒃.𝒄 to be true
But there’s no way to also make clause a both true and false while keeping the implicants true and false as required by MUTP, so 
MUTP is infeasible

t t
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MUTP Fault Detection
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LIF: Literal Insertion 
Fault

ENF: Expression 
Negation Fault

TNF: Term Negation 
Fault

LNF: Literal Negation 
Fault

LRF: Literal Reference 
Fault

LOF: Literal Omission 
Fault

ORF+: Operator 
Reference Fault

ORF*: Operator 
Reference Fault

TOF:  Term Omission 
Fault

When feasible, MUTP 
finds all literal insertion 

faults (LIFs)

Now we need a way to find all 
literal omission faults (LOFs) 

and/or operator reference 
faults (ORF*s)



Near False Points and CUTPNFP
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A near false point (NFP) with respect to a clause c in implicant i is an assignment of 
truth values such that f is false, but if c is negated and all other clauses are left unchanged, 
then i and thus f evaluates to true

At a near false point, c determines f

Corresponding Unique True Point and Near False Point
Pair Coverage (CUTPNFP) – Given a minimal DNF
representation of a predicate f, for each clause c in each implicant i,
TR contains a unique true point for i and a near false point for c
such that the points differ only in the truth value of c.DE
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CUTPNFP Example
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Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose a unique true point for i and a near false point for c
in i such that only the value of c changes
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For clause a in ab, choose UTP and NFP
TTFF and FTFF, or
TTFT and FTFT, or
TTTF and FTTF

For clause b in ab, choose UTP and NFP
TTFF and TFFF, or
TTFT and TFFT, or
TTTF and TFTF

We don’t have to pick the same UTP for a and b, 
but we can to reduce test cases.



CUTPNFP Example (cont’d)
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Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose a unique true point for i and a near false point for c
in i such that only the value of c changes
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For clause c in cd, choose UTP and NFP
FFTT and FFFT, or
FTTT and FTFT, or
TFTT and TFFT

For clause d in cd, choose UTP and NFP
FFTT and FFTF, or
FTTT and FTTF, or
TFTT and TFTF

We don’t have to pick the same UTP for c and d, 
but can to reduce test cases.
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CUTPNFP Example (cont’d)
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Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose a unique true point for i and a near false point for c
in i such that only the value of c changes

For clause a in ab, choose UTP and NFP
TTFT and FTFT

For clause b in ab, choose UTP and NFP
TTFT and TFFT

For clause c in cd, choose UTP and NFP
FTTT and FTFT

For clause d in cd, choose UTP and NFP
FTTT and FTTF

TR = { TTFT, FTFT, TFFT, FTTT, FTTF }



CUTPNFP Fault Detection
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LIF: Literal Insertion 
Fault

ENF: Expression 
Negation Fault

TNF: Term Negation 
Fault

LNF: Literal Negation 
Fault

LRF: Literal Reference 
Fault

LOF: Literal Omission 
Fault

ORF+: Operator 
Reference Fault

ORF*: Operator 
Reference Fault

TOF:  Term Omission 
Fault

When feasible, 
CUTNPFP finds all 

literal omission faults 
(LOFs)

Is there a way to increase the 
feasibility so that more 

predicates can be adequately 
tested?



Multiple Near False Point Coverage
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We saw earlier that MUTP can easily be infeasible in its entirety, and the same is 
true of CUTPNFP.

Multiple Near False Point Coverage (MNFP) – Given a
minimal DNF representation of a predicate f, for each clause c in
each implicant i, TR contains near false points for c such that the
clauses not in i take on values true and false.DE
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MNFP Example
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Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose near false points such that the clauses not in i take 
on values true and false. 
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For clause a in ab, choose NFP FTFT and 
NFP FTTF
For b in ab, choose TFFT and TFTF
For c in cd, choose FTFT and TFFT
For d in cd, choose FTTF and TFTF

MNFP test set:
{ TFTF, TFFT, FTTF, TFTF }



MUMCUT
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We can combine the previous three criteria (MUTP, CUTPNFP, and MNFP)

This combination detects all fault classes even when one (or more) of the 
constituent criteria are infeasible

However, this is a very expensive criterion 

MUTP, MNFP, and CUTPNFP Coverage (MUMCUT) – Given
a minimal DNF representation of a predicate f, apply MUTP,
CUTPNFP, and MNFP.DE

FI
N

IT
IO

N



Minimal-MUMCUT Criterion
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Minimal-MUMCUT uses 
feasibility analysis, and adds 
CUTPNFP and MNFP only 
when necessary

Guarantees detection of LIF, 
LRF, and LOF  fault types, thus 
covers all 9 fault types

For each term

MUTP 
Feasible?

For each literal in 
term

Test set = MUTP 
+ MNFP

CUTPNFP 
Feasible?

Test set = MUTP 
+ CUTPNFP

Test set = MUTP 
+ MNFP

YES

NO

NO

YES


