
Intro to Software Testing
chapter 6

Input Space Coverage

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

More software in the news
NASA finds ‘fundamental’ software problems in Boeing’s Starliner spacecraft

Investigators probing the botched flight of Boeing’s Starliner spacecraft in December have found widespread and
“fundamental” problems with the company’s software that could have led to a disastrous outcome more grievous
than previously known, the agency said Friday.

Boeing is now reviewing all 1 million lines of code in the capsule’s computer systems, officials said. How long
that review will take is uncertain, Boeing officials said. […]

"We don’t know how many software errors we have — if we have just two or many hundreds,” Loverro said. In
an interview, he added that the “bottom line is that industry is very bad at doing software.”

-Washington Post, 2/7/2020

Boeing added a second unmanned test launch to the schedule as a result of these problems. As of
September 2021, that second launch has not occurred.

2

Input Space Coverage

3

Structures for
Modeling Software

Input Space Graphs

Source

Design

Specs

Use Cases

Logic

Source

FSMs

Specs

DNF

Syntax

Source

Models

Integration

Input

Benefits of ISP
Can be equally applied at several levels

- Unit testing

- Integration testing

- System testing

Relatively easy to apply without automation

Easy to adjust to get more or fewer tests

No implementation knowledge is needed, just an understanding of the

input domain (“black box”)

4

Partitioning Domains
Given domain D, there is a partition scheme q of D such that:

• Partition q defines a set of blocks

Bq = b1, b2, …, bQ

• The partition must satisfy two properties

• Blocks must be disjoint (no overlaps)

• Blocks must be complete (cover the domain D)

5

b1

b3

b2

Partitioning Assumptions
Choose a value from each block

All possible values in a block are assumed to be equally useful for testing

That’s not just a coincidence, it’s why we construct the blocks the way that we do

Application to testing

Find characteristics in the inputs: parameters, semantic descriptions, etc.

Choose tests by combining values from characteristics

Example characteristics:

- Input X is null

- Order of the input file F (sorted, reverse sorted, random, etc.)

- Input device (DVD, CD, HDMI, etc.)
6

Choosing Partitions
Choosing (defining) partitions seems easy, but it’s easy to get wrong

Consider the order of file F

b1 = sorted in ascending order

b2 = sorted in descending order

b3 = random order

But what about a file of length 1?

The file will be in all three blocks, and the disjointness property will not be satisfied

7

Properties of Partitions

If the partitions are not complete and disjoint, then they haven’t
been considered carefully enough

Like any design, partitioning should be reviewed carefully and
different alternatives should be considered

8

Modeling the Input Domain
Step 1/5: Identify the testable functions.

- Individual methods have one testable function

- Methods in a class often have the same characteristics

- Programs have more complicated characteristics, modeling documents

like UML can be used to design characteristics

- Systems of integrated hardware and software components can have many

testable functions – devices, operating systems, hardware

platforms, browsers, etc.

9

Modeling the Input Domain
Step 2/5: Find all the parameters

- Often straightforward or mechanical

• Preconditions and postconditions

• Relationships among variables

• Special values (zero, null, etc.)

- Do not use program source code, characteristics should be based on
the input domain

- Methods: parameters and state variables

- Components: parameters to methods and state variables

- Systems: all inputs, including files and databases
10

Modeling the Input Domain
Step 3/5: Model the input domain

- The domain is scoped by the parameters

- The structure is defined by characteristics

- Each characteristic is partitioned into sets of blocks

- Each block represents a set of values

- This is the most creative design step in ISP

• Better to have more characteristics and fewer blocks; leads to fewer
tests

• Strategies include valid/invalid/special values, boundary values,
“normal” values 11

Modeling the Input Domain
Step 4/5: Apply a test criterion to choose combinations of values

- A test input has one value for each parameter

- There is one block for each characteristic

- Choosing all combinations is usually infeasible

• Coverage criteria allow subsets to be chosen

12

Modeling the Input Domain
Step 5/5: Refine combinations of blocks into test inputs

- Choose appropriate values for each block

- Combinatorial test optimization tools can help

These tools dramatically reduce the number of tests

13

Two Approaches to IDM
Interface-based approach

• Develop characteristics directly from individual input parameters

• Simplest application of IDM

• Can often be automated, at least partially

Functionality-based approach

• Develop characteristics from a behavioral view of the program under test

• Harder to develop and requires more design effort

• May result in better tests, or fewer tests that are just as effective

14

Interface-Based Approach
Mechanically consider each parameter in isolation

This is a simple technique based on syntax

Some domain and semantic information won’t be used, which can lead to

an incomplete IDM

Ignore relationships between parameters

15

Interface-Based Example
Consider the TriangleType.triang() method

The IDM for each parameter is identical because the types and semantics

are identical

A candidate characteristic: “relation of side to zero”

16

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid };

// side1, side2, and side3 represent the lengths of the sides,
// returns corresponding Triangle enum value
public static Triangle triang (int side1, int side2, int side3) {
... };

Interface-Based Example

• Maximum 3*3*3 = 27 tests – (1,1,1), (1,1,0), (1,1,-1), (1,0,1), …
• Most of the resulting triangles are invalid – maybe a shortcoming
• We can refine the characterization (with special case bn=1) to get more tests with more

valid triangles…

Now we have 4*4*4 = 64 tests – (2,2,2), (2,2,1), (2,2,0), (2,2,-1), … 17

Characteristic b1 b2 b3

q1 = “relation of side 1 to zero” > 0 = 0 < 0

q2 = “relation of side 2 to zero” > 0 = 0 < 0

q3 = “relation of side 3 to zero” > 0 = 0 < 0

Characteristic b1 b2 b3 b4

q1 = “length of side 1” > 1 = 1 = 0 < 0

q2 = “length of side 2” > 1 = 1 = 0 < 0

q3 = “length of side 3” > 1 = 1 = 0 < 0

Functionality-Based Approach
Identify characteristics that correspond to the intended functionality

Requires more design effort from the tester

Can incorporate domain and semantic knowledge

Can use relationships between parameters

Modeling can be based on requirements, not implementation

The same parameter may appear in multiple characteristics, making it harder to
translate values into test cases

18

Functionality-Based Example
Consider TriangleType.triang() again

All three parameters together represent a triangle

The IDM can combine all parameters

• A candidate characteristic: “type of triangle”

19

Functionality-Based Example
A semantic characterization could use the fact that the three integers represent a
triangle

But there’s a problem here – equilateral triangles are also isosceles, so the blocks are
not disjoint; let’s reconsider

This results in only 4 tests – among the infinitely many possible values are (4,5,6),
(3,3,4), (3,3,3), (3,4,99)

20

Characteristic b1 b2 b3 b4

q1 = “triangle classification” scalene isosceles equilateral invalid

Characteristic b1 b2 b3 b4

q1 = “triangle classification” scalene

isosceles but

not equilatera

l

equilateral invalid

Functionality-Based Example
A different approach would be to break the single geometric characterization
into four separate characterizations

We can then apply constraints to ensure that

• Equilateral = true --> isosceles = true

• Valid = false --> scalene = isosceles = equilateral = false

For this IDM, this approach is probably not beneficial
21

Characteristic​ b1 b2

q1 = “scalene”​ True​ False​

q2 = “isosceles”​ True​ False​

q3 = “equilateral”​ True​ False​

q4 = “valid”​ True​ False​

Multiple IDMs
Some programs have tens or hundreds of parameters.

Create several small IDMs

• Different parts of the software can be tested with different amounts of rigor

using different IDMs

• It’s okay if the IDMs overlap; the same variable may appear in more than one

IDM

22

ACoC Criterion for Choosing Values
We can use criteria to choose effective subsets of values

The most obvious criterion is to choose all combinations

23

All Combinations Coverage (ACoC)

– all combinations of blocks from all

characteristics must be covered

D
EF
IN
IT
IO
N

Number of ACoC TRs

24

The number of test requirements is the product of the number of blocks
in each characteristic.

, where:
• Q is the number of characteristics

• Bi is the number of blocks in characteristic i

For triang() using length of each side (>1, 1, 0, <0), this is 4*4*4 =
64... too many?
• And only 8 of the 64 are valid combinations with side >0, which hints this

may not be very good partitioning

ACoC Example

25

TR = { (a1, b1, c1), (a1, b1, c2),
(a1, b2, c1), (a1, b2, c2),
(a2, b1, c1), (a2, b1, c2),
(a2, b2, c1), (a2, b2, c2),
(a3, b1, c1), (a3, b1, c2),
(a3, b2, c1), (a3, b2, c2) }

Characteristic Blocks

A a1 a2 a3

B b1 b2 --

C c1 c2 --

ECC Criterion for Choosing Values

26

We can reduce the number of combinations by taking one value

from each block

Each Choice Coverage (ECC) – one value

from each characteristic must be used in

at least one test

D
E

F
IN

IT
IO

N

Number of ECC TRs

27

The number of test requirements is the number of blocks in the
largest characteristic

For triang() using length of each side (>1, 1, 0, <0), this is 4… too few?

Example values:

(2,2,2), (1,1,1), (0,0,0), (-1,-1,-1)

Do these look like especially effective tests?

ECC Example

28

TR = { (a1, b1, c1),

(a2, b2, c2),

(a3, b2, c1) }

Since all values of B and C have already

been used, we can randomly select

values to use here.

Characteristic​ Blocks​

A​ a1​ a2​ a3​

B​ b1​ b2​ --

C​ c1​ c2​ --

PWC Criterion for Choosing Values

29

We can combine values from one block with values from other blocks

Pair-Wise Coverage (PWC) – a value from

each block for each characteristic must be

combined with a value from each block of

every other characteristic

D
E

F
IN

IT
IO

N

Number of PWC TRs

30

The number of test requirements is at least the product of the two
largest characteristics

• For triang() using length of each side (>1, 1, 0, <0), this is 4*4 = 16 …

perhaps just right?

• Example values: (2,2,2), (2,1,1), (2,0,0), (2,-1,-1), (1,2,2), (1,1,1), (1,0,0),

(1,-1,-1), …

• At a glance, this looks like a more varied and interesting set of tests,

though many will still be invalid

PWC Example

31

TR = { (a1, b1, c*), (a1, b2, c*),
(a1, b*, c1), (a1, b*, c2),
(a2, b1, c*), (a2, b2, c*),
(a2, b*, c1), (a2, b*, c2),
(a3, b1, c*), (a3, b2, c*),
(a3, b*, c1), (a3, b*, c2),
(a*, b1, c1), (a*, b1, c2),
(a*, b2, c1), (a*, b2, c2) }

We can satisfy all these TRs with

optimized combinations:

TR = { (a1, b1, c1),

(a1, b2, c2),

(a2, b2, c1),
(a2, b1, c2),

(a3, b1, c2),

(a3, b2, c1) }

(other combinations are possible)

Characteristic Blocks

A a1 a2 a3

B b1 b2 --

C c1 c2 --

TWC Criterion for Choosing Values

32

An extension of PWC is to require combinations of t values instead of 2

t-Wise Coverage (TWC) – a value from

each block for each group of t

characteristics must be combined

D
E

F
IN

IT
IO

N

Number of TWC TRs

33

The number of test requirements is at least the product of
the t largest characteristics

• If t is equal to the number of characteristics, as it is with

the triang() example, then t-wise is equivalent to ACoC

TWC Criterion for Choosing Values

34

Fault detection increases as t increases, but with diminishing returns
(while the number of tests increases dramatically)

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910001

BCC Criterion for Choosing Values

35

Use domain knowledge of the program to identify important values

Base Choice Coverage (BCC) – a base choice block is chosen for each

characteristic, and a base test is formed by using the base choice for

each characteristic. Subsequent tests are chosen by holding all but one

base choice constant and using each non-base choice in each other

characteristic.

D
E

F
IN

IT
IO

N

Number of BCC TRs

36

The number of tests in one base test plus one test for each other block

where:

• Q is the number of characteristics

• Bi is the number of blocks in characteristic i

For triang() using length of each side (>1, 1, 0, <0), this is 10

• Examples: (2,2,2), (2,2,1), (2,2,0), (2,2,-1), (2,1,2), (2,0,2), (2,-1,2),

(1,2,2), (0,2,2), (-1,2,2)

BCC Criterion for Choosing Values

37

The base test must be feasible, that is, all values in the base choice must be
compatible

Base choices can be:

• The most likely or most common values

• The simplest values

• The smallest values

• The first values in some logical ordering

Happy path tests make good base choices

The base choice is a crucial design decision

• Test designers should document why the base choice was selected

• A poor base choice can result in many infeasible combinations

BCC Example

38

TR = { (a1, b1, c1),

(a2, b1, c1),

(a3, b1, c1),

(a1, b2, c1),

(a1, b1, c2) }

Base test

Variations on A

Variation on B

Variation on C

Characteristic Blocks

A a1 a2 a3

B b1 b2 --

C c1 c2 --

Base choices

MBCC Criterion for Choosing Values

39

There can sometimes be more than one logical base choice for each
characteristic

Multiple Base Choice Coverage (MBCC) – at least one, and possibly

more, base choice blocks are chosen for each characteristic, and base

tests are formed by using each base choice for each characteristic at

least once. Subsequent tests are chosen by holding all but one base

choice constant and using each non-base choice in each other

characteristic.

D
E

F
IN

IT
IO

N

Number of MBCC TRs

40

The number of tests is no more than

where:
• Q is the number of characteristics
• M is the number of base tests

• Bi is the number of blocks in characteristic i
• mi is the number of base choices for characteristic i

Informally, the process is:
• Pick a base choice from each characteristic to create a base test
• Vary the characteristic one at a time, but skip other choices for the

characteristic that are also base choices
• Repeat for next set of base choices

MBCC Example

41

TR = { (a1, b1, c1),

(a2, b1, c1),

(a3, b1, c1),

(a1, b2, c1),

(a1, b1, c2),

(a3, b1, c2),

(a1, b1, c2),

(a2, b1, c2),

(a3, b2, c2),

(a3, b1, c1) }

Characteristic Blocks

A a1 a2 a3

B b1 b2 --

C c1 c2 --

Multiple base choicesMultiple base choices

Base choice #1

Variations on A

Variation on B

Variation on C

Base choice #2

Variations on A

Variation on B

Variation on C

Substituting a3 in place

of a1 is not necessary
because a3 is also a
base choice and will

show up in a later TR

Substituting a3 in place

of a1 is not necessary
because a3 is also a
base choice and will

show up in a later TR

Constraints Among Characteristics

42

Some combinations are infeasible

• Can’t have “less than zero” and “scalene”

This is represented as constraints

Two general types of constraints

• A block from one characteristic cannot be combined with a specific block
from another

• A block from on characteristic can only be combined with a specific block
from another

Handling constraints depends on the criterion used

• ACC, PWC, TWC – drop the infeasible pairs

• BCC, MBCC – change a value to another non-base choice to find a feasible
combination

Characteristic​ b1 b2 b3 b4 b5 b6

A: size and contents​ list=null​ size=0​ size=1​
size>1​
varied​

unsorted​

size>1​
varied​
sorted​

size>1​
all same​

B: match​
Element n
ot found​

Element f
ound once​

Element
found m
ore than

once​

-- -- --

Infeasible combinations: (Ab1, Bb2), (Ab1, Bb3), (Ab2, Bb2), (Ab2, Bb3), (Ab3, Bb3), (Ab6,Bb2)​

Constraints Example

43

public boolean findElement (List list, Object element) {
// Effects: if list or element is null throw NullPointerException
// else element is in list return true
// else return false
...

}

Element cannot be
in a 1-element list

more than once

If a list has many of the
same element, we can’t

find it just once

Element cannot be in
a 0-element list once
(or more than once)

Element cannot be
in a null list once (or

more than once)

ISP Criteria Subsumption

44

A test criterion C1 subsumes C2 if

and only if every set of test cases

that satisfies criterion C1 also

satisfies C2D
E

F
IN

IT
IO

N A ll Combinations

Coverage
(ACoC)

t-Wise

Coverage
(TWC)

Multiple Base Choice

Coverage
(MBCC)

Pair-Wise

Coverage
(PWC)

Base Choice

Coverage
(BCC)

Each Choice

Coverage
(ECC)

Subsumes all others

Subsumed by all others

ISP Summary

45

Fairly easy to apply, even with no automation

Convenient ways to increase or decrease test cases

Applicable to all levels of testing

Based on the input space of the program, not the implementation

Simple, straightforward, effective, and widely used!

