Formation Control of Nonholonomic Mobile Robots with Omnidirectional Visual Servoing and Motion Segmentation

René Vidal
Center for Imaging Science
Johns Hopkins University

Omid Shakernia Shankar Sastry
Department of EECS, UC Berkeley
Motivation

- Formation control is ubiquitous
 - Safety in numbers
 - Decreased aerodynamic drag
 - Higher traffic throughput
 - Applications in defense, space exploration, etc
Previous Work

Formation control has a very rich literature (short list):

- **String stability for line formations [Swaroop et.al. TAC96]**
 - Formation can become unstable due to error propagation

- **Mesh stability of UAVs [Pant et.al. ACC01]**
 - Generalization of string stability to a planar mesh

- **Input-to-state stability [Tanner et.al ICRA02]**
 - Structure of interconnections and amount of information communicated affects ISS

- **Feasible formations [Tabuada et.al. ACC01]**
 - Differential geometric conditions on feasibility of formations under kinematic constraints of mobile robots

- **Vision-based formation control [Das et.al. TAC02]**
 - Leader position estimated by vision; Formation control in task space
Our Approach

- Distributed formation control (no explicit communication)
- Formation specified in image plane of each follower
- Multi-body motion segmentation to estimate leader position
- Followers employ tracking controller in the image plane
- Naturally incorporate collision avoidance by exploiting geometry of omni-directional images
Outline

- Omnidirectional vision
 - Central panoramic cameras, back-projection ray
 - Central panoramic optical flow equations
 - Multi-body motion segmentation

- Distributed formation control
 - Leader-follower dynamics in image plane
 - Feedback linearization control design
 - Collision avoidance using navigation functions

- Experimental results
 - Motion segmentation of robots in real sequence
 - Vision-based formation control simulations
Central Panoramic Camera

- Catadioptric camera is lens-mirror combination
- Central panoramic: single effective focal point
 - Parabolic mirror, orthographic lens
 - Hyperbolic camera, perspective lens
- Efficiently compute back-projection ray associated with each pixel in image
Central Panoramic Optical Flow

Optical flow induced by a planar camera motion with velocities $\Omega = (0, 0, \Omega_z)^T$ and $V = (V_x, V_y, 0)^T$

Central Panoramic Projection Model

$$
\begin{bmatrix}
 x \\
 y
\end{bmatrix} = \frac{1}{-Z + \xi \sqrt{X^2 + Y^2 + Z^2}}
\begin{bmatrix}
 X \\
 Y
\end{bmatrix}
$$

Central Panoramic Optical Flow

$$
\begin{bmatrix}
 \dot{x} \\
 \dot{y}
\end{bmatrix} = \begin{bmatrix}
 -y \\
 x
\end{bmatrix} \Omega_z + \frac{1}{\lambda} \begin{bmatrix}
 1 - \rho x^2 & -\rho xy \\
 -\rho xy & 1 - \rho y^2
\end{bmatrix}
\begin{bmatrix}
 V_x \\
 V_y
\end{bmatrix}
$$

$\rho = \frac{\xi}{1 + z}$
Central Panoramic Motion Segmentation

- Optical flows of pixels $i = 1, \ldots, n$ in frames $j = 1, \ldots, m$ live in a 5 dimensional subspace.
- Optical flows can be factorized into structure and motion:

$$\begin{bmatrix} \dot{x}_{ij} & \dot{y}_{ij} \end{bmatrix} = S_i M_j^T$$

\[
S_i = \begin{bmatrix}
x_i & -y_i & \frac{1-\rho_i x_i^2}{\lambda_i} & -\rho_i x_i y_i & \frac{1-\rho_i y_i^2}{\lambda_i}
\end{bmatrix} \in \mathbb{R}^{1 \times 5}
\]

\[
M_j = \begin{bmatrix}
0 & \Omega_{zj} & V_{xj} & V_{yj} & 0 \\
\Omega_{zj} & 0 & V_{xj} & V_{yj} & 0
\end{bmatrix} \in \mathbb{R}^{2 \times 5}.
\]

- Given k independent motions,

$$W \triangleq \begin{bmatrix}
\dot{x}_{11} & \dot{y}_{11} & \cdots & \dot{x}_{1m} & \dot{y}_{1m} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\dot{x}_{n1} & \dot{y}_{n1} & \cdots & \dot{x}_{nm} & \dot{y}_{nm}
\end{bmatrix} = \begin{bmatrix}
S_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & S_k
\end{bmatrix} \begin{bmatrix}
M_1^T \\
M_2^T \\
\vdots \\
M_k^T
\end{bmatrix} = SM^T$$

- Number of independent motions is obtained as:

$$k = \frac{1}{5} \text{rank}(W)$$
Central Panoramic Motion Segmentation

Independent motions live in 5 dimensional subspaces of a higher-dimensional subspace. Motion segmentation can be solved using Generalized Principal Component Analysis.

- Project onto a subspace of dimension 6.
- Apply GPCA: fit and differentiate a polynomial.

\[b_1 \sim D_{p_n}(\mathbf{z}_1) \]
\[b_2 \sim D_{p_n}(\mathbf{z}_2) \]

\[L = \{ \mathbf{z}_0 + tv \} \]

\[p_n(x) = 0 \]

\[b_1^T x = 0 \]
\[b_2^T x = 0 \]
Image Leader-Follower Dyr

- Kinematic model \[
\begin{bmatrix}
\dot{X} \\
\dot{Y}
\end{bmatrix}
= \begin{bmatrix}
\cos \theta \\
\sin \theta
\end{bmatrix} v, \quad \dot{\theta} = \omega
\]

- Inputs \(v \in \mathbb{R}, \omega \in \mathbb{R} \)

- Leader position \((x, y)^T\) in follower’s camera

Central panoramic leader-follower dynamics

\[
\begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix}
= -\begin{bmatrix}
1 - \rho x^2 & -y \\
-\rho xy & -x
\end{bmatrix} \begin{bmatrix}
v_f \\
\omega_f
\end{bmatrix}
+ \begin{bmatrix}
1 - \rho x^2 & -\rho xy & -y \\
-\rho xy & 1 - \rho y^2 & -x
\end{bmatrix} \begin{bmatrix}
F_{\ell f} \\
\omega_{\ell}
\end{bmatrix}
\]

- Write as drift-free control system:

\[
\begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix}
= H(x, y)u_f + d_{\ell f}
\]

- Recover leader velocity using optical flow of background

\[
d_{\ell f} = \begin{bmatrix}
\dot{x}_\ell \\
\dot{y}_\ell
\end{bmatrix}
- H(x_\ell, y_\ell)H(x_w, y_w)^{-1} \begin{bmatrix}
\dot{x}_w \\
\dot{y}_w
\end{bmatrix}
\]
Omnidirectional Visual Servoing

- Controlling in Cartesian coordinates, leader trajectory intersects circle
- Controlling in polar coordinates, follower mostly rotates
- Trajectory passing through inner circle is a collision
Omnidirectional Visual Servoing

- Leader position \((\alpha, r)\), desired leader position \((\alpha_d, r_d)\)

Feedback Linearization Control Law in Polar Coordinates

\[
u_f = \begin{bmatrix}
\frac{\lambda}{(1-\rho r^2) \cos(\alpha)} \\
\frac{\sin(\alpha)}{r(1-\rho r^2) \cos(\alpha)} \\
0
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\left[
\begin{bmatrix}
k_1(r - r_d) \\
k_2(\alpha - \alpha_d)
\end{bmatrix} + \ddot{d}_{\ell f}
\right]
\]

Degenerate configurations

- \(\cos(\alpha) = 0\) due to nonholonomy of mobile robot
- Robot can not move sideways instantaneously
- \(r = 1\) due to geometry of central panoramic cameras
- Corresponds to horizon points at infinity
Omnidirectional Visual Servoing

- Can avoid degenerate configurations with pseudo-feedback linearizing control law

\[
u_f = \begin{bmatrix}
\frac{\lambda \cos(\alpha)}{(1-pr^2)} & 0 \\
\frac{\sin(\alpha) \cos(\alpha)}{r(1-pr^2)} & 1
\end{bmatrix}
\left(
\begin{bmatrix}
k_1(r - r_d) \\
k_2(\alpha - \alpha_d)
\end{bmatrix}
+ \tilde{d}_l_f
\right)
\]

- However, the formation is only Input-to-State Stable (ISS)
- Can easily modify control law to achieve collision avoidance by using a Navigation Function
Experimental Results

- Multi-body motion segmentation
Wedge Formation

- Green follows red \(r_d = 1/\sqrt{2}, \quad \theta_d = \pi/6 \)
- Blue follows red \(r_d = 1/\sqrt{2}, \quad \theta_d = -\pi/6 \)
Wedge Formation

Distance to leader (in pixels)

Angle to leader (in degrees)
String Formation

- Green follows red \(r_d = \frac{1}{\sqrt{2}}, \quad \theta_d = 0 \)
- Blue follows green \(r_d = \frac{1}{\sqrt{2}}, \quad \theta_d = 0 \)
String Formation

Distance to leader (in pixels)

Angle to leader (in degrees)
Conclusions

- A framework for distributed formation control in the omni-directional image plane
- An algorithm for multi-body motion segmentation in omni-directional images

Future work
- Generalize formation control to UAV dynamics
- Hybrid theoretic formation switching control
- Implement on BEAR fleet of UGVs and UAVs