Chapter Four

Arithmetic

* Where we've been:
— Performance (seconds, cycles, instructions)

— Abstractions:
Instruction Set Architecture
Assembly Language and Machine Language

 What's up ahead:
— Implementing the Architecture

operation

) 32
[result
b 32

Numbers

e Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

e Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
decimal: 0...2n-1
« Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number)

e How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Possible Representations

. Sign Magnitude: One's Complement Two's Complement
000 = +0 000 = +0 000 = +0
001 =+1 001 =+1 001 =+1
010 = +2 010 = +2 010 = +2
011 =+3 011 =+3 011 =+3
100=-0 100 =-3 100 =-4
101=-1 101 =-2 101 =-3
110=-2 110=-1 110=-2
111 =-3 111=-0 111 =-1

e Issues: balance, number of zeros, ease of operations
« Which oneis best? Why?

MIPS

e 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000,
0000 0000 0000 0000 0000 0000 0000 0001,
0000 0000 0000 0000 0000 0000 0000 0010,

o

ten

1

ten

o n
+

ten

0111 1111 1111 1111 1111 1111 1111 1110,
0111 1111 1111 1111 1111 1111 1111 1111,
1000 0000 0000 0000 0000 0000 0000 0000,
1000 0000 0000 0000 0000 0000 0000 0001,
1000 0000 0000 0000 0000 0000 0000 0010,

+ 2,147, 483,646,,, _ maxint
+ 2,147,483, 647, -

2,147, 483, 648, , -

- 2,147, 483, 647,,, > Minint

— 2,147, 483, 646

ten

1111 1111 1111 1111 1111 1111 1111 1101,
1111 1111 1111 1111 1111 1111 1111 1110,
1111 1111 1111 1111 11211 1111 1111 1111

-3

ten

ten

ten

Two's Complement Operations

* Negating atwo's complement number: invert all bits and add 1
— remember: “negate” and “invert” are quite different!

e Converting n bit numbers into numbers with more than n bits:
— MIPS 16 bit immediate gets converted to 32 bits for arithmetic

— copy the most significant bit (the sign bit) into the other bits
0010 -> 0000 0010

1010 -> 1111 1010

— "sign extension" (lbu vs. Ib)

Addition & Subtraction

e Just like in grade school (carry/borrow 1s)
0111 0111 0110
+ 0110 - 0110 - 0101

« Two's complement operations easy

— subtraction using addition of negative numbers
0111
+ 1010

e Overflow (resulttoo large for finite computer word):
— e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat miseading,
1000 it does not mean a carry “ overflowed”

Detecting Overflow

* No overflow when adding a positive and a negative number
* No overflow when signs are the same for subtraction
e Overflow occurs when the value affects the sign:

— overflow when adding two positives yields a negative

— or, adding two negatives gives a positive

— or, subtract a negative from a positive and get a negative

— or, subtract a positive from a negative and get a positive
e Consider the operations A+ B, and A—B

— Can overflow occur if Bis 0 ?

— Can overflow occur if Ais 0 ?

Effects of Overflow

e An exception (interrupt) occurs

— Control jumps to predefined address for exception

— Interrupted address is saved for possible resumption
« Details based on software system / language

— example: flight control vs. homework assignment

« Don't always want to detect overflow
— new MIPS instructions: addu, addi u, subu

note: addi u till sign-extends!
note: sltu, sltiu for unsigned comparisons

Review: Boolean Algebra & Gates

« Problem: Consider alogic function with three inputs: A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output Fis true only if all three inputs are true

e Show the truth table for these three functions.
« Show the Boolean equations for these three functions.

« Show an implementation consisting of inverters, AND, and OR gates.

10

An ALU (arithmetic logic unit)

e Let's build an ALU to support the andi and ori instructions
— we'll just build a 1 bit ALU, and use 32 of them

operation opja|bjres

a —> ,» result

b >

e Possible Implementation (sum-of-products):

ainme e

1

Review: The Multiplexor

« Selects one of the inputs to be the output, based on a control input

note: we call thisa 2-input mux
A5, even though it has 3 inputs!

B—

e Lets build our ALU using a MUX:

12

Different Implementations

* Not easy to decide the “best” way to build something
— Don't want too many inputs to a single gate
— Don’t want to have to go through too many gates
— for our purposes, ease of comprehension is important

¢ Let's look at a 1-bit ALU for addition:

Carryln
A — p—
Cot = ab+ac,+bcg,
+ > sum sum = a xor b xor c;,
b —»|
CarryOut

¢ How could we build a 1-bit ALU for add, and, and or?
¢« How could we build a 32-bit ALU?

13

Building a 32 bit ALU

Carryln Operation

a0 —{ Carryln

ALUO

Resulto

Operation CarryOu

Carryln ' 1 >
|

al —»{ Carryln

ALU1

Resultl

bl ——»
CarryOu

a2 —»| Carryln

ALU2

Result2

b2 —»

CarryOu

1 :

a3l —»| Carryln

ALU31

CarryOut

Result31
b31 —»

14

What about subtraction (a—Db) ?

« Two's complement approch: just negate b and add.
« How do we negate?

« Avery clever solution:

Binvert Operation
Carryin
|

CarryOut

15

Tailoring the ALU to the MIPS

* Need to support the set-on-less-than instruction (slt)
— remember: sltis an arithmetic instruction
— produces alifrs<rtand 0otherwise
— use subtraction: (a-b) <Oimpliesa<b

« Need to support test for equality (beq $t5, $t6, $t7)

— use subtraction: (a-b) =0impliesa=b

16

Supporting slt

Binv Operation
carryin
|

Less

CarryOut

Binvert Operation

carryin
|

Less

Overflow
detection Overflow

Binvert

Carryln

Operation

b0

1L

—
—

Carryln
ALUO
Less

CarryOut]

Resulto

al
bl

11

—

Carryln
ALU1
Less

CarryOut]

Resultl

a2
b2

11

—

—

Carryln
ALU2
Less

CarryOut]

Result2

a3l
b31

iy

—
—
—

Carryln
ALU31
Less

=~ Resul3l

Set

Overflow

18

Test for equality

*Note: zeroisa 1l when theresultiszero!

Notice control lines:

1|

a0 —+Carryin

Result0

000 = and b0 —» /E:;Jso 1

001 = or Carryout

010 = add 11

110 = subtract a7 e Resus

111 = slt 0—] Less |

— o—r
CarryOut T Zero

1

a2 —{ Carryin
b2 —» ALU2
0—] Less

CarryOul

a31 — Carryin
b31 —» ALU3L Set
00— Less Overflow

Result2

19

Conclusion

We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
Important points about hardware
— all of the gates are always working
— the speed of a gate is affected by the number of inputs to the gate
— the speed of a circuit is affected by the number of gates in series
(on the “ critical path” or the “ deepest level of logic”)
Our primary focus: comprehension, however,

— Clever changes to organization can improve performance
(similar to using better algorithms in software)

— we'll look at two examples for addition and multiplication

20

