
1

Chapter Four

2

Arithmetic

• Where we've been:
– Performance (seconds, cycles, instructions)
– Abstractions:

Instruction Set Architecture
Assembly Language and Machine Language

• What's up ahead:
– Implementing the Architecture

32

32

32

operation

result

a

b

ALU

3

• Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

• Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
decimal: 0...2n-1

• Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number)

• How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Numbers

4

• Sign Magnitude: One's Complement Two's Complement
000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

• Issues: balance, number of zeros, ease of operations
• Which one is best? Why?

Possible Representations

5

• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

maxint

minint

MIPS

6

• Negating a two's complement number: invert all bits and add 1

– remember: “negate” and “invert” are quite different!

• Converting n bit numbers into numbers with more than n bits:

– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits
0010 -> 0000 0010
1010 -> 1111 1010

– "sign extension" (lbu vs. lb)

Two's Complement Operations

7

• Just like in grade school (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

• Two's complement operations easy
– subtraction using addition of negative numbers

0111
+ 1010

• Overflow (result too large for finite computer word):
– e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”

Addition & Subtraction

8

• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative
– or, adding two negatives gives a positive
– or, subtract a negative from a positive and get a negative
– or, subtract a positive from a negative and get a positive

• Consider the operations A + B, and A – B
– Can overflow occur if B is 0 ?
– Can overflow occur if A is 0 ?

Detecting Overflow

9

• An exception (interrupt) occurs
– Control jumps to predefined address for exception
– Interrupted address is saved for possible resumption

• Details based on software system / language
– example: flight control vs. homework assignment

• Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

Effects of Overflow

10

• Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

• Show the truth table for these three functions.

• Show the Boolean equations for these three functions.

• Show an implementation consisting of inverters, AND, and OR gates.

Review: Boolean Algebra & Gates

11

• Let's build an ALU to support the andi and ori instructions
– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b

a

operation

result

op a b res

An ALU (arithmetic logic unit)

12

• Selects one of the inputs to be the output, based on a control input

• Lets build our ALU using a MUX:

S

C
A
B

0

1

Review: The Multiplexor

note: we call this a 2-input mux
even though it has 3 inputs!

13

• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?
• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a cin + b cin
sum = a xor b xor cinS u m

C a rr yIn

C arr yO u t

a

b

14

Building a 32 bit ALU

b

0

2

R esult

O peration

a

1

Carry In

CarryO ut

R esult31
a31

b31

R esult0

C arryIn

a0

b0

R esult1
a1

b1

R esult2
a2

b2

O perat io n

A LU 0

C arry In

C arryO u t

A LU 1

C arry In

C arryO u t

A LU 2

C arry In

C arryO u t

A LU 3 1

C arry In

15

• Two's complement approch: just negate b and add.
• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

16

• Need to support the set-on-less-than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction: (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS

Supporting slt
0

3

R es ult

O pera tion

a

1

C arryIn

C arryO u t

0

1

B inve rt

b 2

L ess

0

3

R esu lt

O p eration

a

1

C arryIn

0

1

B inve rt

b 2

Less

S e t

O ve rflo w
de tec tion O ve rflow

a .

b.

18

S et
a3 1

0

A L U 0 R es ult0

C a rryIn

a0

R es ult1
a1

0

R es ult2
a2

0

O p era tio n

b3 1

b0

b1

b2

R es ult31

O ve rflo w

B in ve rt

C a rry In

Le ss

C a rryIn

C a rryO u t

A L U 1
Le ss

C a rryIn

C a rryO u t

A L U 2
Le ss

C a rryIn

C a rryO u t

A L U 31
Le ss

C a rryIn

19

Test for equality

• Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

•Note: zero is a 1 when the result is zero!

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

20

Conclusion

• We can build an ALU to support the MIPS instruction set
– key idea: use multiplexor to select the output we want
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the gate
– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)
• Our primary focus: comprehension, however,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication

