Chapter Four

Arithmetic

- Where we've been:
- Performance (seconds, cycles, instructions)
- Abstractions:

Instruction Set Architecture
Assembly Language and Machine Language

- What's up ahead:
- Implementing the Architecture

Numbers

- Bits are just bits (no inherent meaning)
- conventions define relationship between bits and numbers
- Binary numbers (base 2)

000000010010001101000101011001111000 1001...
decimal: 0...2n-1

- Of course it gets more complicated: numbers are finite (overflow) fractions and real numbers negative numbers e.g., no MIPS subi instruction; addi can add a negative number)
- How do we represent negative numbers? i.e., which bit patterns will represent which numbers?

Possible Representations

- Sign Magnitude: One's Complement Two's Complement

$$
000=+0 \quad 000=+0 \quad 000=+0
$$

$001=+1$

$$
001=+1
$$

$$
1=+1
$$

$010=+2$

$$
010=+2
$$

$$
010=+2
$$

$$
011=+3
$$

$$
011=+3
$$

$$
011=+3
$$

$$
100=-0
$$

$$
100=-3
$$

$$
100=-4
$$

$$
101=-1
$$

$$
101=-3
$$

$$
110=-2
$$

$$
110=-1
$$

$$
111=-3
$$

$111=-0$
$111=-1$

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

MIPS

- 32 bit signed numbers:

```
0000 0000 0000 0000 0000 0000 0000 0000 two = 0
0000 000000000000 00000000 0000 0001 two = + 1 1 te
```



```
0 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 0 ~ t w o ~ = ~ + ~ 2 , 1 4 7 , 4 8 3 , 6 4 6 ~ t e n ~ < ~ m a x i n t ~
0111 1111 1111 1111 1111 1111 1111 11111 two = + 2,147,483,647 ten
1000 0000 0000 0000 0000 0000 0000 0000 two = - 2,147,483,648ten
```



```
1000 0000 0000 0000 0000 0000 0000 0010 two two =-2,147,483,646 ten
1111 1111 1111 1111 1111 1111 1111 1101 (two = - 3 ten
1111 1111 1111 1111 1111 1111 1111 1110 two = - 2 ten
1111 1111 1111 1111 1111 1111 1111 1111 two = - 1 1ten
```


Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
- remember: "negate" and "invert" are quite different!
- Converting \mathbf{n} bit numbers into numbers with more than \mathbf{n} bits:
- MIPS 16 bit immediate gets converted to 32 bits for arithmetic
- copy the most significant bit (the sign bit) into the other bits

$$
\begin{array}{llll}
0010 & \rightarrow & 0000 & 0010 \\
1010 & \rightarrow> & 1111 & 1010
\end{array}
$$

- "sign extension" (lbu vs. lb)

Addition \& Subtraction

- Just like in grade school (carry/borrow 1s)

0111	0111	0110
+0110	0110	-0101

- Two's complement operations easy
- subtraction using addition of negative numbers

0111
$\begin{array}{r}1010 \\ \hline\end{array}$

- Overflow (result too large for finite computer word):
- e.g., adding two n-bit numbers does not yield an n-bit number

0111
+0001 note that overflow term is somewhat misleading, 1000 it does not mean a carry "overflowed"

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
- overflow when adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive and get a negative
- or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A-B
- Can overflow occur if B is 0 ?
- Can overflow occur if A is 0 ?

Effects of Overflow

- An exception (interrupt) occurs
- Control jumps to predefined address for exception
- Interrupted address is saved for possible resumption
- Details based on software system / language
- example: flight control vs. homework assignment
- Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu
note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

Review: Boolean Algebra \& Gates

- Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true Output E is true if exactly two inputs are true Output F is true only if all three inputs are true

- Show the truth table for these three functions.
- Show the Boolean equations for these three functions.
- Show an implementation consisting of inverters, AND, and OR gates.

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions

- we'll just build a 1 bit ALU, and use 32 of them

- Possible Implementation (sum-of-products):

Review: The Multiplexor

- Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!
- Lets build our ALU using a MUX:

Different Implementations

- Not easy to decide the "best" way to build something
- Don't want too many inputs to a single gate
- Don't want to have to go through too many gates
- for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

$$
\begin{aligned}
& c_{\text {out }}=a b+a c_{\text {in }}+b c_{i n} \\
& \text { sum }=a \text { xor } b \text { xor } c_{i n}
\end{aligned}
$$

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction $(a-b)$?

- Two's complement approch: just negate band add.
- How do we negate?
- A very clever solution:

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
- remember: slt is an arithmetic instruction
- produces a 1 if rs <rt and 0 otherwise
- use subtraction: (a-b) < 0 implies $\mathbf{a}<\mathrm{b}$
- Need to support test for equality (beq \$t5, \$t6, \$t7)
- use subtraction: (a-b) $=0$ implies $\mathbf{a}=\mathrm{b}$

Supporting slt

Test for equality

- Notice control lines:
$000=$ and
$001=$ or
010 = add
$110=$ subtract
111 = slt
-Note: zero is a 1 when the result is zero!

Conclusion

- We can build an ALU to support the MIPS instruction set
- key idea: use multiplexor to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
- all of the gates are always working
- the speed of a gate is affected by the number of inputs to the gate
- the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
- Clever changes to organization can improve performance
(similar to using better algorithms in software)
- we'll look at two examples for addition and multiplication

