Syllabus & Assignments: Fall 2021, INFS 501, Section 001 Discrete and Logical Structures for Information Systems

Instructor: Prof. William D. Ellis, <u>wellisl@gmu.edu</u> Office Hours: By appt.

"Blackboard" Syllabus/HW updates, sample problems, solutions, notes etc. Web Site: are delivered via Blackboard: <u>http://mymason.gmu.edu</u>.

- Schedule: 14 Classes 7:20-10:00 PM Music/Theater Bldg, Room 1006 • Mondays 8/23 thru 11/29, except: (a) No class Labor Day 9/6, and (b) The Oct. 11 class is moved to TUESDAY Oct. 12, 2021. • The Final Exam is Monday Dec. 13, 2021 from 7:30-10:15 PM
- Prerequisite: You'll need a working knowledge of algebra. See text pgs A1-A2.
- Topics: Logic, Set Theory, Recursion, Number Theory, Proofs, and Probability. We'll follow the textbook in this order: Chapters 5, 4, 9, 6-8, 2, and 3. We will focus on solving problems, using fundamental definitions, theorems, and algorithms. Examples include: RSA cryptography, Fibonacci numbers, birthday attacks, Benford's Law, SHA-256 hash function, and the P vs. NP problem.
- Equipment: You'll need (1) A calculator that can display 10 digits and raise numbers to powers. Really. Homework, quizzes, and exam are doable with your calculator; (2) A webcam on your home computer to use if a lecture moves on-line for a snow-closure or any other emergency. The GMU bookstore has a \$30 webcam.
- Textbook: Discrete Mathematics with Applications, 5th ed. By Susanna S. Epp, ISBN-10: 1337694193; ISBN-13: 978-1337694193; Cengage (Boston MA). <u>No</u> e-book may used be during any quiz or exam, but you may print and bring pages from an e-book.
- - No partial credit for an attempt at proving a false statement.
 - Exam and Quiz calculations must be based on your calculator
 - and may <u>not</u> be derived from a computer or the Internet.
 - Do not use or display cellphones or computers.
- Homework: H/W is assigned one day <u>after</u> each of the first 13 classes. H/W won't be accepted late. Only the 12 highest scores count in your grade. Submit on paper, or if you prefer, email a black/white pdf. Free smart phone apps produce good pdfs nowadays.

Final grade is45% Final Exam,the weighted40% Hour Exams: 20% for each of two (2) Hour Exams,average of15% Homework and 2 Quizzes: 5% each for Quizzes and for the H/W.letter grades:Final Grades will be posted on Patriot Web, not on Blackboard.

Help: Questions? Send me an e-mail! Use the ^ symbol for exponents, * for multiplication. Or, we may chat via Blackboard Collaborate.

- Honor Code: Honor Code violations are reported to the Honor Committee. The Honor Code is at https://oai.gmu.edu/mason-honor-code/. For INFS501 this semester, submitting homework based on collaboration and/or classroom discussion is permitted.
- E-mail: You must use your GMU email account for all emails about your work at GMU. I will respond only to a GMU email account.

Syllabus & HW assignments are posted <u>after</u> each class. Rev 7/27/2021 7:45 AM

Page 2 of 9

Semester Schedule

Class	Date	Event	Details and dates are subject to change
(1)	Aug 23, 2021	1st class	
(2)	Aug 30, 2021		
	Sep 6, 2021	Holiday	No Class!
(3)	Sep 13, 2021		
(4)	Sep 20, 2021	Quiz 1 & Lecture	
(5)	Sep 27, 2021		
(6)	Oct 4, 2021		
(7)	Oct 12, 2021		Tuesday!
(8)	Oct 18, 2021	Hour Exam 1 & Lecture	
(9)	Oct 25, 2021		
(10)	Nov 1, 2021	Quiz 2 & Lecture	
(11)	Nov 8, 2021		
(12)	Nov 15, 2021		
(13)	Nov 22, 2021		
(14)	Nov 29, 2021	Hour Exam 2 & Lecture	
(15)	Dec 13, 2021	FINAL EXAM	7:30-10:15 PM

Page 3 of 9

Row	Ş	Homework is from the textbook or as cited below.	Due	
(1)	1.2	#7(b),(e),(f); #9(c)-(h) (page 14) Hint: See textbook pages 7-8 and Examples 1.2.1, 1.2.4, and 1.2.8 on Blackboard.	HW-1 due 8/30/2021	
(2)	5.1	7, 16, 32, 57 [*] , 61 (pages 273-274) * #57: Simply calculate the sum for n=5. Don't bother with the part about "changing variable."		
(3)	5.2	<pre>#23, 27, 29. (pg 288) Hint on #23: • Compare with Example 5.2.2 (pg 281) Hints on #27, 29: • Compare Example 5.2.4 (pg 285) • Try the word formula in "Notes On Defining and Summing Sequences" on Blackboard.</pre>		
(4)	5.1	True or False Why? " \forall " means "for all." $\sum_{k=1}^{n} (8k^3 + 3k^2 + k) = n(n+1)^2(2n+1) \forall n \in \mathbb{Z}^+$	HW-1 due 8/30/2021	
(5)	 Notes on Row (4): If the statement in the box happens to be FALSE, we can determine that fact by finding an example of integer n for which the formula in the statement fails. (A contradictory example is called a "counterexample.") If the statement is TRUE, we can determine that by confirming the formula for 5 different values of n. This problem is about understanding summation symbols and using logic - it's not about proofs. We'll see later how such a statement, if it's TRUE, may be proved by math induction. To simply establish whether s is TRUE or FALSE, it happens we need to check 5 (=3+2) values for n because 3 = the highest power of k in a_k = 8k³+3k²+2. 			
(6)	1.2	12. Hint: See the solution to 1.2.11 on Blackboard.		
(7)	5.1	83 (pg 275) Hint: See #5.1.81 on Blackboard.		
(8)	5.2	Express $S = \sum_{k=29}^{k=123} (16)^* \left(\frac{25}{24}\right)^{-k}$ as a decimal number with at least two decimal digits of accuracy. For example, your answer might look like "S = 52.33." Hints: • You're adding 95 actual numbers. Compute a few of them to judge the sum's approximate size. • Use Theorem 5.2.2 on page 283, or use the word- formula on page 4 of the BlackBoard pdf "Notes On Defining and Summing Sequences."		
(9)	5.6	 8, 14 (pages 337) Hints: • 5.6.8 is like Example 5.5.6 on Blackboard. • 5.8.14: See hint on Blackboard and Example 5.6.13 		
(10)	5.7	2(b)&(d), 4, 25 (pages 350-351) Hint: Blackboard has a hint on 5.7.2(d) plus solved examples 5.7.1(c) & 5.7.7.		
(11)	5.8	12, 14 (page 363)		

Page 4 of 9

Row	Ş	Homework is from the textbook or as cited below.	Due	
(12)	<pre>Hints: #5.6.14 is like 5.6.13 solved on Blackboard #5.8.12 & #5.8.14 are like the problems #6 and #8 on Sample Quiz 1. #5.8.12 & #5.8.14 use Theorems 5.8.3 (pg 357) and 5.8.5 (pg 361). Tips on how to factor a Characteristic Equation are in the hint to #7 on Sample Quiz 1. (Factoring is easiest using standard methods instead of using the recursion/Excel like we may do in class.)</pre>			
(13)	1.3	#15(c), (d), &(e). $#17 (pg 23)Hint: We already discussed 1.3.15 in class. Also, see Example 1.3.13 on Blackboard.$		
(14)	4.1	4, 9, 13(b) (pages 171-172) Hint #4.1.13(b) is similar to #4.1.14 on Blackboard		
(15)	4.2	<pre>2, 9, 13, 19, 27 (page 181-182). Hints: • For 4.2.9: (i) Call the given integer n. (ii) Use the hypothesis on n (i.e., the information given on n) to write an equation: (n-1) = (iii) Now factor (n-1). (iv) Explain, like in 4.2.14, why each factor > 1, thereby showing (n-1) cannot prime. • For 4.2.19: (i) Identify the error, then state also whether the "Theorem" is TRUE or FALSE, then explain why. (ii) Find the error by comparing the given "proof" with the Blackboard pdf "Bogus proof that 8=10." • For 4.2.13: See the 4.2.14 solution on Blackboard</pre>		
(16)	4.1, 4.2	Hint: In rows $(14)-(15)$, use the even/odd definitions 162, not the familiar even/odd properties shown on pa (in § 4.3). They are derived from the page-162 definitions	ages 186-187	
(17)	4.3	7 (pg. 187) Hint: Mimic 4.3.6 solved on Blackboard.		
(18)	4.4	28, 41 (pages 198-199)		
(19)	4.5	6, 21 (pages 209-210) Hint: #21 is like #4.5.25 on Blackboard.		
(20)	4.10	16, 23(b). For 23(b), see the Hint on Blackboard. Also, syntax isn't important in 23(b). In plain English, describe in separate bullets this algorithm's: • input, • action (what it does with the input), and • output.		
(21)	4.10	Find GCD(98741, 247021)		
(22)	4.10	Observe: 247,710 ² - 38,573 ² = 61,360,244,100 - 1,487,876,329 = 59,872,367,771 = 260,867*229,513. Now factor 260,867 in a non-trivial way. Blackboard has a hint, and the spreadsheet "Excel: Euclidean Algorithm" may ease your calculations.		

Page 5 of 9

Row	Ş	Homework is from the textbook or as cited below.	Due
(23)	4.10 5.8	Write the Fibonacci no. F_{400} in scientific notation, e.g. $F_{30} \approx 1.35 \times 10^6$. Use Epp's definition $F_0=1$, $F_1=1$, on page 333. Or the Problem 5.6.33 formula (pg 339). [Beware: You may find the Fibonacci numbers indexed differently on-line: $F_1=1$, $F_2=1$, $F_3=2$,]	
(24)	6.3	#24(d)-(f) (pg 413)	
(25)	9.1	<pre>#4, #8, #14(b)-(c) (page 571). Also redo #14(b)-(c) assuming the infection probabilities are 30% for Mr. A, 60% for Mr. B, and 40% for Mr. C. Hints: Mimic Blackboard Examples #3, #7, #10, #12.</pre>	
(26)	9.2	<pre>#7, #12, #17(a)-(d), #33, #36 Hints: • #7: See Example 9.2.6 on BB. You may instead find the 9.2.6 "Alternate Solution" easier. • #17(a)-(c): Build a possibility tree starting at the leftmost digit. But 17(d) is tricky! First choose the rightmost digit (5 choices). Choose second the leftmost (8 choices), [Why would starting at the left be bad?] • #33, #36: See the formula on page 582 and the solutions to #35 and #39 on Blackboard.</pre>	
(27)	1.2, 6.1, 6.3	Sample Exam-1 #16.	
(28)	9.3	#32 Hint: See Blackboard "Example: Birthday- Collision Probabilities (based on 366 days)."	
(29)	7.2	The birthday hash-function BD: {All people} -> {1,2,,366} by mapping x -> the 3-digit Julian date of x's birthday. For example, BD(x)=61 if x is born on March 1, 2020; and BD(x)=60 if x is born on March 1, 2021. Question: The BD function produces a "collision" for which 2 members of this subset of the domain: {Charles Darwin, Albert Einstein, Mahatma Gandhi, Abraham Lincoln}?	
(30)	9.5	 7(a)-(b), 10, 12, 16, 20 Hints: 9.5.7(a)-(b): We did a similar problem, 9.5.6 in class. 9.5.6 is also solved in the textbook. 9.5.12: Count separately the subsets where: (1) both elements are even, and (2) both are odd. 9.5.16: 9.5.14 on Blackboard similarly adds and subtracts C(n,r) values. 9.5.20: See Example 9.5.19 on Blackboard. 	
(31)	9.6	<pre>#4 Hint: • C(r+n-1,r) = C(r+n-1,n-1) is the number of ways for selecting r objects (repetitions allowed) from among n varieties. Note: The theorem on page 636 doesn't differentiate r and n very clearly! • See the Blackboard solution to 9.6.3.</pre>	
(32)	9.6	#13 Hint: See the Blackboard solution to 9.6.12.	

Syllabus & HW assignments are posted <u>after</u> each class. Rev 7/27/2021 7:45 AM

Page 6 of 9

Row	Ş	Homework is from the textbook or as cited below.	Due
(33)	9.7	#27, 32, 34. Hint: See Examples 9.7.23, 9.7.26	
(34)	9.7	An unfair coin is flipped 8 times. The probability of landing Heads is 75% on each flip. Question: What is the probability of landing exactly 3 Heads? Hint: See "Example of Binomial Trials: Flipping fair and unfair coins" on Blackboard.	
(35)	9.8	Read "Expected Value of a Binomial Distribution" on Blackboard. Then do problem #3 on Sample Quiz 2.	
(36)	9.8	#17, #20 (textbook); #6 (Sample Quiz 2). Hints: Mimic 9.8.18, or 9.8.19.	
(37)	9.9	 #2, #12. Hints: For #2, see the Blackboard solution to 9.9.1 For #12, see the Blackboard solution to 9.9.11 and/or the "viral infections" example. 	
(38)	9.9	Do problem #4 on Sample Quiz #2. Hint: It's similar to the "yellow birds" example in Blackboard/Week 8.	
(39)	6.1	<pre>#7b; #10(f)-(h); #12(a),(b),(g),(h),(j) (pg 388) Hints: #7,#10: See 6.1.4, 6.1.10(a)-(e) on Blackboard. #12: Simplify with Interval Notation (page 382). #12(g): You may use #12(a) and De Morgan laws § 6.2 (pg 395). Epp puts this problem in § 6.1 so we appreciate the De Morgan laws when we get to § 6.2.</pre>	
(40)	6.1	Of a population of students taking 1-3 classes each, exactly: 19 are taking English, 20 are taking Comp Sci, 17 are taking Math, 2 are taking only Math, 8 are taking only English, 5 are taking all 3 subjects, and 7 are taking only Computer Science. How many are taking exactly 2 subjects?	
(41)	6.2	#13. Prove \forall sets A, B, C, (A-B) \cup (C-B)=(A \cup C)-B. Use any of the 3 methods of proof in Example 6.2.9.	
(42)	6.3	<pre>#2, #4, #7 Hints: • Hints for 6.3.2, 6.3.4 are on Blackboard. • Venn-Diagram shading is not acceptable. Shading alone is usually confusing & unconvincing. • Numbered Venn-Diagram regions are good - they're best for verifying or finding a counterexample to a "∀ sets" identity. See Examples 6.2.9(I) and 6.3.5. • An "is-an-element-of" proof [like the HW-8 solution to 6.1.7(b)] will also verify a "∀ sets" identity. But, "is-an-element-of" proofs are often confusing., e.g. see version (iii) in Example 6.2.9</pre>	
(43)	6.3	<pre>Prove or disprove each of these 2 Claims: • ∃ sets A, B & C such that (A-B)-C=(A-C)-(B-C), • ∀ sets A, B & C, (A-B)-C = (A-C)-(B-C). A proof may use any method, including I-III in Ex. 6.2.9, except do not use Venn-Diagram shading. Hint: • See the 6.3.13 Example on Blackboard.</pre>	

Syllabus & HW assignments are posted <u>after</u> each class. Rev 7/27/2021 7:45 AM

Page 7 of 9

Row	Ş	Homework is from the textbook or as cited below.	Due
(44)	7.1	#2, #5; #12, #51(d),(e), and (f) (pgs 436-439) Note: #51 Will be used in RSA encryption.	
(45)	7.2	13, 17 Hint: Use the "1-1" definition on page 440; mimic the solutions to Example #16, #18 on Blackboard.	
(46)	7.3	2, 4, 14 On #14 see the Blackboard Hint: Calculate H(H(x))	
(47)	1.3	#4 Hint: Example 1.3.3	
(48)	8.1	#3(c)-(d). (page 493) Hint: See 8.1.1, solved on Blackboard.	
(49)	8.2	Read page 17 about the Circle relation. #10 (page 503). A big <u>Hint</u> is on Blackboard.	
(50)	8.3	<pre>#9 [Call 0 = the sum of the elements in φ.]; #15(b),(c),(d) (page 521) Hints: • #9 See Blackboard Examples 8.3.8, 8.3.10, 8.3.12 • #15: Use modular-equivalence definition on pg 518</pre>	
(51)	8.4	#4 and read Example 8.4.7. Hint: 8.4.4 is like Example 8.4.3	
(52)	8.4	# Calculate 2 ³⁷³ (mod 367).	
(53)	8.4 pg 544	2, 12b, 13b Hint on #12-13: If x has three base-10 digits, call $x's 100s-digit = ``h,'' its 10s-digit ``t,'' and 1s- digit ``u.'' Then x=h*10^2+t*10+u. 12b: We can reducex \pmod{9} using 10\equiv1 \pmod{9}; 13b: Reduce x (mod11) using 10\equiv-1 \pmod{11}. Now use the sameapproach even if x has more than 3 digits.$	
(54)	8.4	17, 18 <u>Hint</u> : See Blackboard solutions, 8.4.16 and 2 ³⁷³ (mod 367) [Line (52), Week 10].	
(55)	8.4	#20 Hint: See Example 8.4.21 on Blackboard. Convert WELCOME into a string of integers like in #2. Next, reduce each integer $x \rightarrow e(x) = x^3$ (mod 55), e.g., L \rightarrow 12 \rightarrow 12^3 \equiv 23 (mod 55). This problem mimics Example 8.4.9 on page 537.	
(56)	8.4	#37 Hint: This problem is like 8.4.20, only now Convert COME into a string of integers like in #2. Next, reduce each integer $x \rightarrow e(x) = x^{43}$ (mod 713), e.g., C \rightarrow 3 \rightarrow 3^43 = 675 (mod 713).	
(57)	8.4	Solve for x: $1014*x \equiv 7 \pmod{4,157}$, $0 \le x \le 4,156$. Hint: See the Blackboard Examples: (1), 8.4.27, or (2) Solve $122x \equiv 9 \pmod{7919}$, or (3) Solving 136y = 14 (mod 7919).	
(58)	8.4	#38 Hint: This problem is like Line (57), only now we're asked to solve $43 \times x \equiv 1 \pmod{660}$.	

Page 8 of 9

Row	Ş	Homework is from the textbook or as cited below.	Due
(59)	8.4	40 (page 545) Hints: Example 8.4.10 on pg 538 and Problem 8.4.23 on Blackboard decrypt x -> d(x) \equiv x^27 (mod 55)-> letter equivalent. #40 is like 8.4.23, but now the public modulus is 713 = 23*31 & encryption e(x) =x^43. $\varphi(713) = 22*30 = 660$ is the secret Little Fermat modulus. 307 is the secret decryption exponent because we solved 43*307=1 (mod 660) in 8.4.38 [HW 11]. Interchanging e & d values so (e=307,d=43) also works for RSA (mod 713)	
(60)	8.4	Find the RSA decryption exponent d when: p=13, q=17, n=221, and e=37 is the encryption exponent. Hint: See "Creating an RSA Encryption-Decryption Pair" on Blackboard	
(61)	8.4	HW: $x = 63826456536845958448$. What is the remainder when x is divided by 11?	
(62)	2.1	15, 37 (pgs 52-53) Hints: #43 is like #2.1.41 on Blackboard. #37 is like #2.1.33 on Blackboard.	
(63)	2.2	4, 15, 27 (pgs 63-64). Hint on 2.2.4: See the first problem in the Week 12 Lecture Notes on Blackboard.	
(64)	2.2	See Blackboard Week #12 for a little HW problem on Satisfiability ("SAT"). [Determining whether SAT has a "polynomial time" solution summarizes the million- dollar "P vs. NP" problem.]	
(65)	4.5	Suppose we are given an integer x. Now call the statement $s = "(x^2-x)$ is exactly divisible by 3." Choose exactly <u>one</u> of the answers A, B, or C and: (A) Prove s is TRUE; <u>or</u> (B) Prove s is FALSE; <u>or</u> (C) Explain why (A) and (B) are impossible	
(66)	2.2	See Blackboard Week #13 for a HW problem on Informal English.	
(67)	2.3	 9, 11 (pg 77) Hints: These problems are like Sample Exam-2 #4. Epp's shortcut method and the common-sense method for determining validity are compared in Table 5 of "Truth Tables, Arguments Forms & Syllogisms." 	
(68)	3.1	12, 18(c)-(d), 28(a)&(c), 32 (pgs 119-121) • Hint for 3.1.18(c)-(d): See "Example 3.1.18 (a),(b),&(e)" on Blackboard.	

Page 9 of 9

Row	S	Homework is from the textbook or as cited below.	Due
(69)	3.2	 #10, 25(b)-(c), 38 (pages 130-131). Also, ∀ and ∃ are the only quantifiers that may be used. Do not put any slashes through a quantifier, e.g. do not us a ∄. No negation symbol (¬) may appear outside a quantifier or an expression involving logical connectives, e.g. instead of "¬(∀x.(P(x)->Q(x)))," write "∃x.(P(x) ∧¬Q(x))." Hint On #38, <i>Discrete Mathematics</i> refers to the phrase "Discrete Mathematics." <u>not</u> to the entire subject of Discrete Mathematics. 	
(70)	3.3	<pre>Let s := (∀x.(P(x) ∧∃y∃z.Q(x,y,z))) -> (∃x∃y.R(x,y)). Negate s and simplify ¬s so: • No negation symbol (¬) appears outside a quantifier or an expression involving logical connectives. • Use only the ∀ and ∃ quantifiers. Do not put any slashes through a quantifier, e.g. do <u>not</u> us a ∄. <u>Hint</u>: See "Example: Negating a Multiply-quantified statement" on Blackboard.</pre>	
(71)	3.3	<pre>#41(c),(d),(g),(h) (page 145) Hints: (1) See "Order of Quantifiers" on textbook page 138. (2) The solution to Sample Final Exam #32 (L(x,y) := "x loves y," on Blackboard) may also help.</pre>	
(72)	9.1	<pre>#20 (Modified Monty Hall) Hints: • #14 Mimic Example 9.1.12 on Blackboard • #20: The first guess will be correct 1/5 (20%) of the time. If we switch, the remaining 80% chance of success must still be divided among 3 doors.</pre>	