CS 530 Syllabus & Assignments: Spring 2017

Instructor: Office Hours:	Prof. William D. Ellis By appt. Wed. 5-6 PM	E-mail: wellis1@gmu.edu 5321 Engineering Bldg.
Web Site:	Syllabus updates, sample problems & solution are posted weekly after class at $http://$	tions, lecture notes etc. /mymason.gmu.edu.
Schedule:	14 Classes 7:20-10:00 PM I • Wednesdays 1/25/2017 - 5/3/2017 except • The Final Exam will be Wednesday May 1	Innovation Hall, Room 136 March 15, 2017 10, 2017, 7:30-10:15 PM
Prerequisite:	(1) Math 125 or INFS 501, and (2) STAT 3	344
Topics:	We will study the mathematical foundati basic mathematical structures, mathematic theory. We will apply these concepts to p reasoning. Students will get signifi including through the use of computation	ons of Computer Science: cal logic, and probability problem solving and formal cant hands-on practice nal tools.
Textbooks:	Our 4 textbooks are available free on-li (1) ("AHO"): Foundations of Computer Sci and Jeffrey D. Ullman (Lehn) (<u>http://infolab.stanford.edu/~ullman/foc</u> (2) "LEHMAN": Mathematics for Computer S F.T. Leighton and A.R. Meyer, rev. Wed.	ine. Lence by Alfred V. Aho <u>cs.html</u>) Science by E. Lehman, 28th September, 2016

(new) (https://courses.csail.mit.edu/6.042/spring16/mcs.pdf)
(3) "LIFSCHITZ": Lecture Notes on Mathematical Logic by
Vladimir Lifschitz
(https://www.cs.utexas.edu/users/vl/teaching/388Lnotes.pdf)
(4) "WEBER": Probability course notes by Richard Weber
(http://www.statslab.cam.ac.uk/~rrw1/prob/prob-weber.pdf)
- Additional material will be provided by the instructor.

- Exams: We will have: (i) 2 Quizzes, (ii) 2 Hour Exams, and (iii) a comprehensive Final Exam (Wednesday May 10, 2016). Exams and Quizzes will be given only one time no makeup exams. I often give partial credit when grading. However, <u>no</u> partial credit will be given for a purported proof to a false statement. During an exam or quiz: Use all available classroom space, and do not sit next to a friend or close to anyone else.
- Grades: 1 Final Exam: 45% of final grade. 2 Hour Exams: 40% of the final grade (20% each) 2 Quizzes and Homework together: 15% of final grade.

Help: Questions? Send me an e-mail! Use the ^ symbol for exponents, *
for multiplication. You may also e-mail a scanned image
(black/white) or a pdf.

Homework: Homework assignments will be on the weekly Syllabus updates. See http://mymason.gmu.edu. Homework will never be accepted late. However, of the 13 Homework assignments, only the 12 with the highest percentage scores will be counted toward your grade.

Honor Code: Honor Code violations are reported to the Honor Committee. See http://cs.gmu.edu/wiki/pmwiki.php/HonorCode/CSHonorCodePolicies

E-mail: To comply with privacy rules, please use your Mason email for all e-mails with me. You may forward your campus email elsewhere, but I may respond only to a Mason email account.

Assignments are updated on Blackboard <u>after</u> each class. Rev. 1/25/2017

Page 2 of 4

1. Foundations

- Set Theory: Sets, relations and functions, composition, inversion
- Algebra of sets, binary relations, and graphs
- Induction and recursion
- Structural inductions, inductive definitions
- Recurrence Relations, solving recurrence relations and generating functions
- Number Theory

2. <u>Mathematical Logic</u>

• Propositional logic (syntax and semantics; transforming English specification into logical statements and creating proofs; consistence and completeness w/out proofs)

Predicate logic w/examples (syntax and semantics; transforming English specification into logical statements; consistence and completeness w/out proofs)
Practice/problem solving by proving theorems/finding counterexamples; hand vs. mechanized proofs and counterexamples; theorem proving vs. model checking

• Practice with computing applications

3. Probability Theory

- Sample spaces, possibility trees, probability set function and axioms
- Discrete and continuous random variables
- Joint, marginal, and conditional probabilities
- Bayes' theorem
- Expectations, mean, variance, covariance
- Independent events and independent random variables
- Univariate and multivariate normal (Gaussian) distribution
- Other distributions: Poisson, Exponential, Bernoulli, Binomial,
- Multinomial, Exponential, and Benford's Law
- Biased and unbiased estimators
- Maximum likelihood estimation
- Bayesian inference (e.g. for the Gaussian)
- Examples of applications in Computer Science

Page 3 of 4

Semester Schedule: Hour-Exam and Quiz Dates Are Subject to Change

Class	Date	Event	Details	
(1)	Jan 25, 2017	1st Class		
(2)	Feb 1, 2017			
(3)	Feb 8, 2017			
(4)	Feb 15, 2017	Quiz 1	The quiz will cover everything through Homework 2.	
(5)	Feb 22, 2017			
(6)	Mar 1, 2017			
(7)	Mar 8, 2017	Hour Exam & Lecture	The exam will cover everything that was covered in class through Class (7).	
	Mar 15, 2017	- no class	Spring Vacation!	
(8)	Mar 22, 2017			
(9)	Mar 29, 2017			
(10)	Apr 5, 2017			
(11)	Apr 12, 2017	Quiz 2		
(12)	Apr 19, 2017			
(13)	Apr 26, 2017			
(14)	May 3, 2017	Hour Exam & Lecture		
(15)	May 10, 2017	FINAL EXAM	The Final Exam will cover everything that was covered during the entire semester.	

Row	Text	Homework Assignments	Due
(1)	LEHMAN	Read §§ (sections) 1.1, 1.2 on proofs and predicates. Solve problem #1.4 (page 21). Read the tiny § 3.6.1 on quantifiers (page 62).	2/1/2017
(2)	LEHMAN	Read § 4.1 (pg 101) on set theory. Solve problems $#4.1$ (page 108), $#4.3$, $#4.5$. On problems 4.3 and 4.5, verity the propositional equivalences using truth tables. Prove the set equalities like in Theorem 4.1.2.	2/1/2017
(3)	АНО	Read §§ 7.2, 7.3, 7.7 on the algebra of sets. Solve problems #7.3.2 (pg 350), #7.7.1 (pg 373), #7.7.4, #7.7.6. (For 7.3.2, number Venn-Diagram regions, do <u>not</u> use shading.)	2/1/2017
(4)	LEHMAN	Read §§ 4.3-4.5 on Functions, and Relations Solve #4.17 (page 114), #4.18(a,c,d), #4.19	2/1/2017

Assignments are updated on Blackboard <u>after</u> each class. Rev. 1/25/2017

Page 4 of 4

Row	Text	Homework Assignments	Due
(5)	LEHMAN	Do problems #4.20, #4.22, #4.23, #4.24, #4.27.	
(6)	LEHMAN	Read §§ 5.1, 5.2, 5.3 on Mathematical Induction. - Prove $(16^n - 7^n)$ is divisible by 9 for every positive integer <i>n</i> . Solve #5.3, #5.4, #5.8, #5.12.	
(7)	LEHMAN	Read §§ 7.1, 7.4, 7.5 on Recursive Data types Solve #7.9, #7.17, #7.27, #7.28, #7.30.	
(8)	LEHMAN	Read §§ 10.1, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11 on Directed Graphs, Partial Orders, and Equivalence Relations Solve #10.8, #10.26(a,b), #10.32, #10.33, #10.37, #10.42, #10.37 (except c, d), #10.45.	
(9)	LIFSCHITZ	Read § 1 and pages 15-18. Solve #1.3, #1.4, #1.5, #1.6, #1.7, #3.1	
(10)	Obtain JSONiq (Zorba) installation at: <u>http://mason.gmu.edu/~mnachawa/resources/jsoniq-environment.</u> <u>html</u> See the JSONiq manual at: <u>http://www.jsoniq.org/docs/JSONiq/html/index.html</u>		
(11)	WEBER	Read §§ 4.1-4.3 on the probability axioms	
(12)	WEBER	Read §§ 5.2-5.5 on independence and important distributions.	
(13)	WEBER	Read §§ 6.1-6.4 on conditional probability and Bayes Theorem	
(14)	WEBER	Read §§ 7.1-7.5 on discrete random variables	
(15)	WEBER	Read §§ 8.1-8.2 on expectation and variance	
(16)	WEBER	Read §§ 9.1-9.2 on independent radom variables	
(17)	WEBER	Read §§ 13.1-13.2 on conditional distributions and condition expectations	
(18)	WEBER	Read §§ 16.1-16.2 on continuous random variables	
(19)	WEBER	Read §§ 17.1, 17.2, and 17.4 on functions of a continuous random variable.	