Overview

OBJECTIVE:
This class will be a detailed study of the concepts and engineering principles of software component and component-based software systems. After the course, students should be prepared to create large-scale component-based Web applications.

CONTENT:
SWE 645 covers some of the topics related to the software development models that are used to support component-based software systems. We will be studying the software design and development side of component-based software that includes design principles to architect resilient, highly available, performance oriented, and secure applications in AWS cloud. The course content will largely focus on server-side software design and development. We will learn technologies such as a crash course in HTML and CSS, Python Programming, DevOps Practices and Containerized Microservices,

We will use a cloud computing platform: Amazon Web Services (AWS) to deploy applications developed as programming projects for the course.

Though SWE 619 is the only required prerequisite, other topics such as web based Java programming (HTML, CSS, JavaScript, Servlets, JSPs) and database programming (JDBC) as a background knowledge will be helpful. SWE 642, though not a required prerequisite, is a great background course for these topics. The class will be very practical (how to build things) and require extensive programming assignments.

Textbook and Readings

- The Definitive Guide to JSF in Java EE 8: Building Web Applications with JavaServer Faces by by Bauke Scholtz (Author), Arjan Tijms, ASIN: B07DDBQX7Q
- Core JavaServer Faces (4th Edition), David Geary, Cay S. Horstmann, Marty Hall, Prentice Hall. (Recommended)
- Mastering JavaServer Faces 2.2, Kindle edition, Anghel Leonard, PACKT Publishing. (Recommended)
- Java: How to Program, Nineth edition, Deitel and Deitel, Prentice Hall. (Recommended)
- Core Servlets and JavaServer Pages, Second Edition, Volume 1: Core Technologies by Marty Hall and Larry Brown (Recommended)

In addition to above, we will read from various sources on the web, and slides that will be made available during the class.

Grading

EXAMS:

There will be a midterm and a final exam, both in class. The final exam will focus on material covered after the midterm.
Phone Use Policy: Phones should be switched off during the mid-term and final exams. No phone of any kind, especially smart phones with Internet access and camera is allowed to be on person during exams.

HOMEWORKS:
A number of homework assignments will be given. I will discuss each in class and make the assignment available on the Blackboard web site. You will submit your solutions by placing links to the executables on your class web sites and submitting the source files through blackboard. Your solution should contain a zip file containing all of your code and a readme file detailing any installation procedures, or dependencies. I reserve the right to deduct points if the readme and/or zip file is not included with the homework. Please read ALL of the assignment requirements, as they will contain important information, such as procedures, naming conventions, and how the assignment should be deployed. Points can, and will, be deducted from the assignments if it doesn't work, or if the source code is not supplied. Please review your submission before you submit it. Be sure that you are able to access Blackboard, as refinements and hints for the assignments will be posted there.

Changing an assignment after the due date without prior permission will be treated as a late submission. Late submissions carry an automatic 10 percent deduction in grade for each week that it is late. Late assignments will not be accepted after 2 weeks. No homework will be accepted after the start of the last lecture of the semester. Assignments will be graded on the correctness of the code and the adherence to the requirements. A more detailed description on the homework grading will be included with the homework requirements when assigned. I also expect to be able to deploy your assignment on my local laptop. We will use combination of AWS cloud computing platform, Tomcat, and Docker Containers to deploy your homework(s) in Amazon Web Services cloud.

Programs will be graded on style and formatting as well as correctness.

INDIVIDUAL PROJECT/PRESENTATION:
Each student will work on an individual project/presentation on a topic related to Web application development, cloud computing, Big Data, or Machine Learning. The exact topic will be determined by consulting with the professor. The first draft of the presentation will be due during the 4th week after the midterm exam. The final presentation will be due during the last week of class.

MAKEUPS and LATE ASSIGNMENTS:
Unless arrangements are worked out in advance, missed tests cannot be made up, and 10 percent per class meeting will be deducted for late homework submissions. Under no circumstances will any assignment be accepted after the official end of classes (the start of finals week).

GRADING:
Grades will be (approximately): 33% the midterm, 34% the final, 25% the programming assignments, and 8% individual project presentation.

Final averages are assigned a letter grade according to the following ranges:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>[99, 100]</td>
<td>A+</td>
</tr>
<tr>
<td>[92, 98]</td>
<td>A</td>
</tr>
<tr>
<td>[90, 91]</td>
<td>A-</td>
</tr>
<tr>
<td>[88, 89]</td>
<td>B+</td>
</tr>
<tr>
<td>[82, 87]</td>
<td>B</td>
</tr>
<tr>
<td>[80, 81]</td>
<td>B-</td>
</tr>
<tr>
<td>[78, 79]</td>
<td>C+</td>
</tr>
<tr>
<td>[72, 77]</td>
<td>C</td>
</tr>
<tr>
<td>[70, 71]</td>
<td>C-</td>
</tr>
<tr>
<td>[60, 69]</td>
<td>D</td>
</tr>
<tr>
<td>[0, 59]</td>
<td>F</td>
</tr>
</tbody>
</table>

Schedule (subject to change; check regularly)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture topic</th>
<th>Readings</th>
<th>Announcements</th>
</tr>
</thead>
</table>
| 1 | 1/24 | **Course overview**
Introduction to Component-based Software Development | • Chapters 1, 2, 3 | HW1 |
| 2 | 1/31 | **Computing Platform**
Introduction to Amazon Web Services (AWS) cloud:
Designing Resilient Architectures in AWS
Demo using Amazon EC2 and Amazon S3, and Tomcat | • https://www.youtube.com/watch?v=98ya1LiEU00&t=83s&spfreload=5
• https://aws.amazon.com/documentation/ec2/
• https://aws.amazon.com/documentation/s3/ | |
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 3 | 2/07 | **Presentation Layer**
Crash course in HTML, CSS; Python Programming | • Class notes
• https://www.w3schools.com
| | | **MVC-based Java EE Web Development Framework: Java Server Faces (JSF2)**
Managed Beans, Page Navigation, and Expression Language | • Class notes,
https://javaserverfaces.java.net/
| 4 | 2/14 | **MVC-based Java EE Web Development Framework**
JSF2 Input Validation and Variable Length Results
JSF2 Ajax Support | • Class notes,
https://javaserverfaces.java.net/
| | | **Rich Internet Applications**
PrimeFaces
Project Discussion | • http://primefaces.org/
| 5 | 2/21 | **Service Tier**
REST Architecture & RESTful Web Services | • Class notes
• JHTP Chapter 31
| 6 | 2/28 | **Spring Break** | No Class
| 8 | 3/14 | **Midterm exam**
(7:20 pm - 10:00 pm) | In the class room
| 10 | 3/28 | **Persistence Layer**
Java Persistence Model (JPA 2.0), Entity Manager, Hibernate | • Chapters 9, 10
| | | **Persistence Layer (Contd.)**
JPA Entity Relationships, Java Persistence API Query Language (JPA QL) | • Chapters 11, 13
| 11 | 4/04 | **Persistence Layer (Contd.)**
NoSQL Databases/ Amazon DynamoDB | • Class notes,
https://aws.amazon.com/documentation/dynamodb/
| 12 | 4/11 | | **HW5**
<p>|</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
</table>
| 13/4/18 | Service Tier (Contd.) | XML/XML Schema, SOAP-based Web Services
| 15/5/02 | Project Presentation | Final Exam Review
| 16/5/09 | Final exam (7:20 pm - 10:00 pm) | In the class room

Note: JHTP refers to chapters in Java How to Program book

Academic Integrity

George Mason's [policy](http://www.w3schools.com) concerning student conduct applies. Although students are encouraged to discuss the topics covered in class, all homework assignments, exams, and projects are to be completed individually, unless joint work is explicitly authorized by the instructor. If joint work is authorized, all contributing students must be listed on the submission. Any deviation from this is considered an Honor Code violation, and, as a minimum, will result in failure of the submission and, as a maximum, failure of the class.

Please note that there are two honor code policies: an abstract GMU policy and a more specific departmental policy with regard to code plagiarism, test-taking, etc. The students can find them here: [Honor Code Policies](http://www.w3schools.com)

Disabilities

If you are a student with a disability and you need academic accommodations, please see me and contact the Disability Resource Center (DRC) at 993-2474. All academic accommodations must be arranged through the DRC.