Spring 2022: Data Mining [CS484]
-
Professor:
Carlotta Domeniconi, Rm 4424 ENG, carlotta\AT\cs.gmu.edu. Office hours: TBD
-
Teaching Assistant: TBD
-
Prerequisites:
CS310 and STAT344 (C or better in both).
Students should be familiar with
basic probability and statistics concepts, and linear algebra.
Programming experience in Python preferred.
Java or C will work as well, but the assignments will use the Python framework. Please expect lots of programming in all the assignments.
-
Location and Time:
We meet in Horizon Hall 2009, MW 12:00pm - 1:15pm
-
Textbook:
P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, Pearson.
Book's companion website
-
Course Web Page
General Description and Preliminary List of Topics
Data mining is the process of automatically discovering useful information in large data repositories. The course covers key concepts and algorithms at the core of data mining.
Topics include: classification, clustering, association analysis, anomaly detection.
Outcomes
- The ability to apply computing principles, probability and statistics relevant to the data mining discipline to analyze data.
- A thorough understanding of model programming with data mining tools, algorithms for estimation, prediction, and pattern discovery.
- The ability to analyze a problem, identifying and defining the computing requirements appropriate to its solution: data collection and preparation, functional requirements, selection of models and prediction algorithms, software, and performance evaluation.
- The ability to understand performance metrics used in the data mining field to interpret the results of applying an algorithm or model, to compare methods and to reach conclusions about data.
- The ability to communicate effectively to an audience the steps and results followed in solving a data mining problem (through a term project).
Grading
Assignments: 50%
Midterm: 25%
Final: 25%
Extra credit: participation; competition winners for homework
Exams are in class and closed book. A missed exam cannot be made up. All assignments must be performed individually unless otherwise specified.
Honor Code Statement
The
GMU Honor Code is in effect at all times. In addition, the CS department has its own Honor Code policies regarding programming assignments. Any deviation from the GMU or the CS department Honor Code is considered a Honor Code violation.
Disabilities
If you have a documented learning disability or other condition which may affect academic performance, make sure this documentation is on file with the
Office of Disability Services and come talk to me about accommodations.