
Spring 2022 Software Architectures (SWE 443)

Syllabus

Professor: Mike Reep, Ph.D.

E-mail: mreep@gmu.edu

Class Hours: Wednesday, 4:30-7:10 pm

Class Location: Planetary Hall 206

Prerequisites: CS 321, CS 421, SWE 321, or SWE 421

Office Hours: After class by appointment or advance notice

Text

The text is available via GMU library in addition to the bookstore or Packt directly. However,

eBook versions are often available from Packt on sale (sometime as low as for $5) as a PDF

version to avoid the one-page at a time view from the library access.

• Software Architect’s Handbook, Joseph Ingeno, Packt Publishing, Aug 2018 (Required)

Catalog Description

Teaches how to design, understand, and evaluate software systems at an architectural level of

abstraction.

By end of course, students will be able to:

• recognize major architectural styles in existing software systems

• describe a system's architecture accurately

• generate architectural alternatives to address a problem and choose from among them

• design a medium-size software system that satisfies a specification of requirements

• use existing tools to expedite software design

• evaluate the suitability of a given architecture in meeting a set of system

requirements.

Outcomes

These additional learning outcomes provide a focus on current industry activity and the growing

use of cloud infrastructure.

Students will be able to:

• explain the role and function of software architecture and the software architect in

modern team environments and development methodologies

• use domain driven design to model core business concepts

• identify and write appropriate software quality attributes and requirements

mailto:mreep@gmu.edu

• document software architectures using correctly formed and appropriate UML

diagrams

• use agile approaches to complete software development projects

• design and develop code for implementing software architecture patterns

• articulate and implement the core software development principles and practices

• incorporate security considerations into software architectures

• describe the impact and adjustments in developing systems using a cloud

environment

• explain approaches for modernizing legacy systems

Class Format

The class is being conducted using a hybrid approach - asynchronous for covering new material

and in-person for a review of key points plus in-class group exercises. The goal is to leverage the

in-person time for gaining a better understanding of the material, the application of the material,

and facilitating group project coordination.

Each week recorded videos and supplemental material(s) are provided on Blackboard for the

next set of learning objectives by Friday. Reading assignments in the textbook and in the

Blackboard weekly folder along with watching posted videos or links must be completed before

the weekly class time period. The videos after the first week will have an embedded quiz

question to encourage viewing and evaluate comprehension. These quizzes are included in the

overall quiz grade for the class grade.

Exercises are a key component of most class sessions and incorporate material from the reading

assignment. These will generally be small groups exercises focusing on the group project

although some may be individual or full class exercises. The exercises are announced in class

and points are only earned in class. Each class is worth 2 points for the participation grade and

watching the required videos before class plus an overall assessment of participation throughout

the semester.

Discussion Board

The Blackboard Discussion Board is used to maintain communications between classroom

sessions, post a current topics assignment (see below) and allow students the opportunity to

interact with each other on the group project. An "Ask the Professor" is provided for any

questions or topics that may be of interest to the entire class. These types of inquiries are not

accepted by email and must be posted on the Discussion Board for all to see. (Personal or

sensitive topics are still handled via email.)

All electronic postings must be professional, respectful, positive and courteous. The Core Rules

of "Netiquette" provide guidelines on how to carefully craft your communications in the online

classroom to avoid misinterpretation.

http://www.albion.com/netiquette/corerules.html
http://www.albion.com/netiquette/corerules.html

Quizzes

We will have weekly quizzes starting the second week. Quizzes are available on Blackboard

from Noon until 4:00 pm on Wednesday before class with a 20 minute timeline. (Quizzes are

closed-book, closed notes, and no other assistance allowed.) The quizzes will focus on the

assigned readings for that class with a emphasis on the weekly learning objectives plus an extra

question or two on the technical material. However, material from previous classes may also be

included. The quizzes consist of a combination of multiple-choice, true/false, and fill-in-the-

blank to evaluate understanding of the terms and concepts. There are no-retakes or make-up

quizzes but the lowest four scores are dropped.

Current Topics in Software Architecture

As part of the participation grade, each student is required to read a recent (last 2 years) paper or

article on a topic of interest related to software architecture. You will then post a summary of the

paper and an associated URL onto the associated Blackboard discussion board. The article is

accompanied with an explanation of why the article was of interest and key points for the other

class members to take away. The summary and explanation must be at least 200 words although

more is encouraged. A rubric will be posted with the discussion thread to provide the basis for

grading. You will not be able to read other students postings until you post your own.

Each student is required to read at least two of the posted articles and reply to the discussion

thread with their own insights, ideas, commentary or questions for class consideration. These

reviews are due as listed in the schedule.

Group Project

A group project is a key component of moving from theory to practice. Each group goes through

the stages of software architecture from initial problem statement on to requirements, design and

implementation. Software Architects must present their work products to be successful so

presentations are done at the end of the semester by the entire team. Selected groups will present

their material for peer-review and input as part of the in-class discussions. Each group member

is expected to participate in all aspects of the effort including coding and presenting. Interim

deliverables are scheduled to validate continual progress is being made.

Mid-Term Exam

The mid-term exam will be available on-line for remote access during the assigned class

period. The mid-term will focus on the course learning outcomes listed in the syllabus and the

weekly learning outcomes posted in Blackboard. A study guide will be provided prior to the

previous class sessions to facilitate preparation. The exam is closed book, notes, phone, tablet or

any other type of assistance.

Final Exam

The final exam will focus on the material and learning objectives since the mid-term to the extent

possible. (The material builds upon the previous topics so it is not possible to completely

eliminate any overlap.) A laptop will also be needed to complete the on-line exam during the

assigned time period. A study guide will be provided prior to the end of the scheduled class

sessions to facilitate preparation. The exam is closed book, notes, phone, tablet or any other type

of assistance.

Grading

• Participation: 10%

• Quizzes: 15%

• Group Project: 30%

• Mid-Term: 20%

• Final Exam: 25%

Submission Deadlines

All assignments listed on the schedule are due by 4:00 pm that day unless otherwise noted on the

schedule or assignment listing. Late submissions are subject to a 10% penalty for missing the

deadline and not accepted after 24 hours without permission prior to the due date. Assignments

will be submitted in Blackboard either through Discussion Board forum postings or via the

Assignment feature. You are expected to verify your own Blackboard responses by returning to

the appropriate place in Blackboard after the work has been posted.

E-mail

I will occasionally send important announcements to your Mason email account. If I am running

late for the class or have some other issue that will impact the class, I will make that

announcement through Blackboard. Emails sent to the me should start the subject line with

“SWE 443”and then include a topic. Questions about the technical material, class policies,

discussions or other topics of interest to the entire class must be posted on the associated

Blackboard discussion board or Ask the Professor discussion board and not sent by email.

My goal is to answer emails and board postings within 48 hours. However, please note that in

general I am not able to receive or respond to emails and postings during the business day. If I

will be away from email for more than one day, I will post an announcement in the Blackboard

course folder. In accordance with GMU policy, all email communication will be sent only to

your Mason email account.

Before sending an email, please check the following (available on the Blackboard course menu)

unless the email is of a personal nature:

1. Syllabus

2. Ask the Professor discussion board

3. On-demand Blackboard videos on how to use Blackboard features, and

Technical Requirements.

Feel free to respond to other students in the Ask the Professor forum if you know the answer.

Schedule

Every attempt is made to adhere to the original schedule. Changes are made to facilitate learning

and provide opportunities to thoroughly address topics within the class. Changes are announced

via Blackboard and the revised schedule is posted on the site.

Technology

You will need a reliable computer, functional camera and microphone, and internet access to

view course materials in Blackboard, take the quizzes and exams, complete the coding for the

group project, and record assignments for the group project which captures the screen and voice.

Social Media

I accept LinkedIn requests from current and former students – please be sure to include the class

and year in the request. In general, I do not accept other social media requests on my personal

accounts from school or work.

Office of Disabilities

If you need academic accommodations, please see me and contact the Disability Resource Center

(DRC) at 993-2474. All academic accommodations must be arranged through the DRC and you

must inform me, in writing, at the beginning of the semester. All academic accommodations

must be arranged through that office. Please note that accommodations MUST BE MADE

BEFORE assignments or exams are due. I cannot adjust your grade after the fact.

Religious Holidays

If you need accommodations for a religious holiday, it is your responsibility to let me know the

dates of major religious holidays on which you will be absent or unavailable due to religious

observances within the first two weeks of the semester. The university calendar is available at

https://ulife.gmu.edu/religious-holiday-calendar/ for your reference.

Safe Return to Campus Statement

All students are required to follow the university’s public health and safety precautions and

procedures outlined on the university Safe Return to Campus webpage

(https://www2.gmu.edu/safe-return-campus). Similarly, all students must also complete the

Mason COVID Health Check prior to class. The COVID Health Check system uses a color code

system and students will receive either a Green, Yellow, Red, or Blue email response. Only

students who receive a “green” notification are permitted to attend class. If you suspect that you

are sick or have been directed to self-isolate, please quarantine or get testing. Faculty are allowed

to ask you to show them that you have received a Green email and are thereby permitted to be in

class.

https://ulife.gmu.edu/religious-holiday-calendar/
https://www2.gmu.edu/safe-return-campus

Students are required to follow Mason's current policy about facemask-wearing. All students are

required to wear a facemask in all indoor settings, including classrooms. An appropriate

facemask must cover your nose and mouth at all times in our classroom. If this policy changes,

you will be informed; however, students who prefer to wear masks will always be welcome in

the classroom.

Honor Code Statement

As with all GMU courses, SWE 443 is governed by the GMU Honor Code. In this course, all

quizzes and exams carry with them an implicit statement that it is the sole work of the author,

unless joint work is explicitly authorized. When joint work is authorized, all contributing

students must be listed on the submission and must not include students who did nto participate.

Any deviation from this is considered an Honor Code violation, and as a minimum, will result in

failure of the submission and as a maximum, failure of the class.

Weekly Schedule

Unless otherwise stated, all assignments are due at 4 pm before the class in which they are

assigned.

To help you manage your schedule and time to complete the individual assignments in this

course along with the group project, the class schedule is provided below. If you have a question

or concern or encounter a problem about an assignment, please contact me immediately so we

can discuss and work out a resolution.

For reading assignments:

• SAH: Software Architect’s Handbook (Chapter titles follows the chapter number with SA

for "Software Architecture")

• Supplemental: Additional materials beyond the information in SAH will be provided in

the weekly folder (including links to external sources or videos).

Class Date Reading Topic Notes

1 1/26 SAH: Ch. 1 (The Meaning of

SA)
SAH: Ch. 2 (SA in an

Organization) – stop at “Project

Management”, read section on

“Software Risk Management”

Overview: Syllabus, Schedule,

Project
Meaning of Software Architecture

(SA)
SA in Organization
Architecture in Agile

(supplemental)
Team Formations (supplemental)
Technical: HTML

- Welcome!
- Post an Introduction

to yourself in Piazza

https://www2.gmu.edu/safe-return-campus/personal-and-public-health/face-coverings
https://www2.gmu.edu/safe-return-campus/personal-and-public-health/face-coverings

2 2/2 SAH: Ch. 3 (Understanding the

Domain) - stop at “Requirements

Engineering”
SAH: Ch. 12 (Documenting and

Reviewing SAs) – stop at

“Reviewing software

architectures”

Understanding the Domain
- Domain Driven Design
Documenting Software

Architectures
- Architecture Views
- UML
- C4 (supplemental)
Technical: Github and Maven

- Groups Formed with

scenario
- Quizzes Start

3 2/9 SAH: Ch. 3 (Understanding the

Domain) - “Requirements

Engineering” to end
SAH: Ch. 4 (Software Quality

Attributes)

Understanding the Domain
- Requirements
- User Stories (supplemental)
Software Quality Attributes
Technical: Spring Framework and

Spring Boot

- Current Topics Post

Due

4 2/16 SAH: Ch. 5 (Designing SAs) -

excluding “Architecture

Development Method”
SAH: Ch. 7 (SA Patterns) - Skip

“Event Driven Architecture” and

stop at “Command Query

Responsibility Separation”

Designing Software Architectures
Software Architecture Patterns I:
- Layered
- Model-Views
Technical:Thymeleaf

- Sprint 1 Review

5 2/23 SAH: Ch. 6 (Software

Development Principles and

Practices) – stop at “Helping

Your Team Succeed”

Software Development

Principles/Practices
Technical: JPA

- Current Topics

Review 1 Due

6 3/2 SAH: Ch. 8

(Architecting Modern

Applications) – Stop at

“Serverless Architecture)

Architecting Modern Applications
- Monolithic
- Microservices
- Microservices Patterns

(supplemental)
Technical: Microservices Code

- Sprint 2 Review
- Design Method
- Component Diagrams
- Class Diagrams

 7 3/9 SAH: Ch. 9 (Cross-Cutting

Concerns)
SAH: Ch. 12 (Documenting and

Reviewing SAs) - “Reviewing

software architectures”

Cross-Cutting Concerns
AOP and Spring (supplemental)
Reviewing Software

Architectures (in class exercise)
Mid-Term Review

- Prepare for

Architecture Review

- Current Topics

Review 2 Due

- Posting of Review on

Other Group (After

class)
 3/16 Spring Break

8 3/23 Mid-Term

- Sprint 3 Review with
Revised Component

and Remaining UML

9 4/6 SAH: Ch. 7 (SA Patterns) -

“Event Driven Architecture” and

“Command Query

Responsibility Separation”

Software Architecture Patterns II:
- Event Driven
- CQRS

10 4/13 SAH: Ch. 7 (SA Patterns) –

“Service oriented Architecture”
Software Architecture Patterns III
- SOA
- Pipe and Filter pattern
Others

- Sprint 4 Review

11 4/20 SAH: Ch. 8 (Architecting

Modern Applications) – “Server-

Less Architecture” and Cloud

native Applications”
SAH: Ch. 10 (Performance

Considerations) - stop at “Server

Side Caching”

Architecting Modern Applications
Server-Less and Cloud Native
Performance

12 4/28 SAH: Ch. 11 (Security

Considerations)
SAH: Ch. 13 (DevOps and SA)

Security
DevOps

- Sprint 5 Review

13 5/4 SAH: Ch. 14 (Architecting

Legacy Applications)
SAH: Ch. 16 (Evolutionary

Architecture)

Architecting Legacy Applications
Evolutionary Architecture
Final Review Material

14

5/11 Presentations - Sprint 6 Ends
- Final Submission
- Presentation Slide

Deck
 5/18 Final Exam

Project Description

Overview

The project objective is to build a software system according to an architectural design by

following each step in a defined architectural process. You and your team will implement

architectural patterns currently used in industry and document the architecture system using

UML diagrams. Once your architecture has been reviewed by another team following a

structured format, you will code these patterns into working software.

The primary purpose is to follow architectural processes, use architectural concepts and

implement architecture patterns. (We are not trying to build fancy systems with sophisticated

algorithms and beautiful user interfaces. Learning and implementing the processes and patterns

are key - not the system itself.)

Software development is a team activity so this project is performed in a group. The overall

success of a project relies on each team member and, at the same time, each team member is

judged (graded) based on their participation, effort and outcome. The evaluation is done by the

team management (myself) along with input from the team members.

Agile is one of the most common approaches to developing software. We will use the basics of

agile within the constraints of a university project. We will use two week sprints to iteratively

and incrementally develop the project with a review for feedback at the end of each sprint. The

team will prepare the project documentation in a wiki to facilitate team communicates and

update the documentation in an agile manner (incrementally and iteratively). Each team will

discuss their efforts with the successes and opportunities for improvement documented and

addressed in the next iteration.

 Learning Outcomes

The following learning outcomes from the course syllabus are applicable to this project.

The student will be able to:

• describe a system's architecture accurately

• generate architectural alternatives to address a problem and choose from among them

• design a medium-size software system that satisfies a specification of requirements

• use existing tools to expedite software design

• evaluate the suitability of a given architecture in meeting a set of system

requirements.

• use domain driven design to model core business concepts

• identify and write appropriate software quality attributes and requirements

• document software architectures using correctly formed and appropriate UML

diagrams

• use agile approaches to complete software development projects

• design and develop code for implementing software architecture patterns

• articulate and implement the core software development principles and practices

 Steps

The following components are in the project:

• Prepare a scenario and model to establish the business functionality for the software

system

• Develop functional and architectural requirements along with software quality

attributes as the basis of the system

• Select an Architecture Design Method and follow the steps in the method with

appropriate documentation

• Document the software architecture with selected development principles and

architecture patterns

• Explain your architecture to another team in accordance with a selected review

approach

• Code components of the architecture to demonstrate successful implementation

• Record a demonstration of your part of the project with an explanation of how the

architectural requirements, patterns and components were addressed,

• Prepare a presentation summarizing the project and give the presentation to class

Scenario

Each team needs to come up with a scenario for a sample organization and business system.

Your scenario starts with information on your organization including name, business area, and

target functionality for the system.

The scenario must have at least three separate functional areas that work together into one

system. (The number is adjusted based on the number of team members – one per member.)

Each functional area will need to have at least one screen with basic capabilities. Each functional

area must also include processes for data storage, data retrieval for display, and updates to the

data store from user input.

Requirements

Each team will develop the functional requirements for each epic that explains how the system

will operate. You will then develop a domain model to set the context for your organization

along with epic user stories and then use cases.

The team must also come up with 12 quality attributes with at least one requirement in each of

the areas covered listed in the text. For each attribute, an explanation is required on how the

architecture implements or addresses the attribute in the final submission.

Architectural Design Method and Architectural Review Methods

Each team will pick one of the design methods presented in the book and then follow the

outlined steps. The submission must show evidence that each step was performed with

consideration given for completeness. The team may also pick a design method not in text with

prior approval. The same process will be conducted to perform an architectural review in class.

Software Architecture

Each of the functional areas will implement a model-view pattern for the user interface and use

the microservice pattern for the underlying service(s). Other architectural patterns may be used

with prior permission. The architecture must clearly show the implementation of both patterns.

Each functional area must call and use data from the API of another service developed by a

different student. The appropriate UML documents must be provided for the system and each

selected pattern. (Note: the goal is not to show the whole system but the interactions between the

functional areas.) The architectural description must also describe the development principles

implemented in each functional area.

Project Coding Preparation Assignments

Throughout the first 1/2 of the semester, technical assignments and reading material is assigned

to prepare for the project coding using the approaches outlined for the project. The topics include

a foundation in Spring and Spring Boot, GitHub, Maven, basic UI, database use and

microservices structures. The end result is a simple, sample project with a user interface,

database repository and separate service component.

Development

Each functional area must be substantially coded by a different team member. Teamwork is

encouraged in overcoming development issues, ensuring the various parts work together and that

there is a common look and feel to the application. However, each person’s code must be their

own work. The use of Spring Boot for the microservices component is required unless another

approach is approved in advance. In order to appropriately implement a microservices

architecture, two separate Java projects will be required. The final submission must map the code

modules to the UML diagram describing the component.

Agile Approach

In the spirit of agile, the team will develop the system incrementally with a review at the end of

each two-week sprint. (There are six sprints in the project with three weeks allocated for the

sprint over Spring break.) The team will conduct a short sprint planning session at the

beginning of Sprint 4 to determine what will be delivered at the end of each sprint. Overall, the

team will develop the system incrementally to build upon the previous work for the final

delivery. So the team will have the opportunity to refine and improve project artifacts as the

project progresses. At the end of each sprint, the team will conduct a retrospective to review

what went well, what did not go so well, and how to improve with the results documented in the

wiki.

Wiki

In modern development efforts, the artifacts developed by the team are publicly available and

updated real-time on a common portal. (As opposed to a Word document stored on a protected

server.) The team will follow this model in the development of the class project and as the basis

for reviewing each other’s work.

Final Submission

The team will prepare a document to explain their overall project and summarize the group

aspects of the effort. An introduction to the overall scenario, the problem being solved by the

system, lessons learned section, and system-wide UML diagrams should be divided among the

team. The whole paper should read as a team effort. Each team member will also record a video

for their final submission to demonstrate their functional area is operational. The video will

explain the user interface as compared to the system architecture, development principles and the

underlying code. Access to a source code repository must be provided for a code review (Zip

files with code are not accepted.)

Presentation

Each team will have time allocated to present their project to the class. The first period is

allocated to an overview and appropriate diagrams that show the overall system. Each person

must then present their own work by describing the functional area and patterns implemented in

a 5-minute period. The presentation will end with a summary of lessons learned and best

practices identified during the effort.

Extra Credit

Each team or student can propose additional tasks to be undertaken as part of the project to

enhance learning, exploration of advanced topics and provide "resume enhancers". The points

assessed to the extra credit will vary based on the complexity and effort involved. Potential areas

for extra credit are implementing an Continuous Integration pipeline for automated build process

using Jenkins, implementing automated testing, coding unit tests and demonstrating substantial

code coverage and deploying the solution to a cloud environment.

Deliverables

The following items will be graded for the project with rubrics provided for each item.

Week Summary Points

4 Sprint Review 1 including scenario, domain model, epics, requirements

and software quality attributes

10

6 Sprint 2 Review including design method, use cases, component

diagrams and class diagrams

10

7 Review other groups models 5

8 Sprint 3 review with microservices details and additional UML

diagrams plus updates to previous architecture and UML diagrams from

feedback

15

8 Project Coding Preparation Assignments 5

10 Sprint 4 review (based on team sprint planning) 10

12 Sprint 5 review (based on team sprint planning) 10

14 Final Submission at end of Sprint 5 30

14 Presentations 5

Assignments are due by 4 pm of the class day. Each assignment will have one submission for the

group and one submission for each team member.

