George Mason University College of Engineering, School of Computing, Department of Computer Science

CS 480 Introduction to Artificial Intelligence

Meeting times: Monday, Wednesday 12:00 pm – 1:15 pm **Meeting location:** Online on Blackboard

Instructor: Dr. Gheorghe Tecuci, Professor of Computer Science

Office hours: Online by appointment, for questions unrelated to the course. Course-related

questions will be addressed during the course online meetings.

E-mail: tecuci at gmu dot edu

Graduate Teaching Assistant: Juan Huang

E-mail: jhuang21 at gmu dot edu

Office hours: Thursdays, 3-4 pm at ENGR 4456, 4-5 pm online (link).

Course Description

Artificial Intelligence is the Science and Engineering domain which is concerned with the theory and practice of developing systems that exhibit the characteristics we associate with intelligence in human behavior, such as reasoning, problem solving and planning, learning and adaptation, natural language processing, and perception. This course is a broad introduction to the basic principles and the major methods of Artificial Intelligence, preparing the students to build complex systems incorporating capabilities for intelligent processing of information. We will cover the main results from three waives in the evolution of AI: Handcrafted Knowledge (problem solving as search; constraint satisfaction problems; adversarial search; logic and production systems; resolution and prolog; ontologies and the semantic web), Statistical Learning (probabilistic reasoning basics; Bayesian networks inference and learning; machine learning basics; inductive learning of decision trees; very fast decision trees; neural networks and back propagation; deep learning; recurrent neural networks; convolutional neural networks, large language models), and Contextual Adaptation (evidence-based reasoning; instructable agents).

Students will have accounts on Blackboard and can download the lecture notes by going to courses.gmu.edu and logging in using their Mason ID and passwords. They should also be familiar with Zoom and Microsoft Teams.

Online Teaching and Class Attendance

This is a synchronous online class and your class attendance is required.

A few days before each class meeting the lecture (pdf and recording) will be posted on Blackboard. Your assignment is to watch them before the meeting and to do the associated exercises.

During the class meetings I will answer questions about the posted lectures and discuss the exercises to improve your understanding of course material.

Course Topics & Schedule

	Monday	Wednesday
Week 1		Jan 17
		Artificial Intelligence and Intelligent Agents
Week 2	Jan 22	Jan 24

	Problem-Solving as Search	Problem-Solving as Search
Week 3	Jan 29	Jan 31
	Constraint Satisfaction Problems	Adversarial Search
Week 4	Feb 5	Feb 7
	Logic and Production Systems	Resolution and Prolog
Week 5	Feb 12	Feb 14
	Resolution and Prolog	Ontologies
Week 6	Feb 19	Feb 21
	Semantic Web	Midterm
Week 7	Feb 26	Feb 28
	Probabilistic Reasoning Basics	Bayesian Networks Inference and Learning
Week 8	Mar 4	Mar 6
	Spring Recess (no class)	Spring Recess (no class)
Week 9	Mar 11	Mar 13
	Bayesian Networks Inference and	Bayesian Networks Inference and Learning
	Learning	
Week 10	Mar 18	Mar 20
	Machine Learning Basics	Inductive Learning of Decision Trees
Week 11	Mar 25	Mar 27
	Inductive Learning of Decision	Inductive Learning of Decision Trees
	Trees	
Week 12	Apr 1	Apr 3
	Very Fast Decision Trees	Neural Networks
Week 13	Apr 8	Apr 10
	Neural Networks	Deep Learning
Week 14	Apr 15	Apr 17
	ChatGPT	Evidence-based Reasoning
Week 15	Apr 22	Apr 24
	Evidence-based Reasoning	Instructable Cognitive Agents
Week 16	Apr 29 Last day of class	May 1
	Instructable Cognitive Agents	Reading Day (no class)
Week 17	May 6	
	Final Exam	

Outcomes

- Knowledge of and ability to apply uninformed and heuristic search methods;
- Knowledge of and ability to apply knowledge representation and reasoning methods based on first-order logic;
- Knowledge of and ability to apply basic probabilistic reasoning methods;
- Knowledge of and ability to apply basic machine learning methods.

Grading Policy

• Mid-term exam: 40%

• Final exam: 60%

Absence from the midterm exam and the final exams will not be excused except for doctor-certified sickness on the day of the exam or quiz that prevented you from attending. If absence from a quiz or exam is unexcused, the grade will be entered as 0.

Exams

Part 1 closed-book exam with LockDown Browser

(https://web.respondus.com/he/lockdownbrowser/).

Part 2 open-book exam

Dates (mark your calendar)

• Mid-term exam: 02/21/2024

• Final exam: 05/06/2024

Honor Code Policy

Mason is an Honor Code university. You are expected to abide by the <u>University's honor code</u> (http://oai.gmu.edu/mason-honor-code/), as well as the <u>CS department Honor Code</u> (http://cs.gmu.edu/resources/honor-code/). Any collaboration between students on assignments or exams is unacceptable.

Required Reading

• Tecuci G., Lecture Notes in Artificial Intelligence, 2023 (available on Blackboard)

Recommended Reading

- Poole D.L. and Mackworth A.K., *Artificial Intelligence: Foundations of Computational Agents*, Cambridge University Press, Second edition 2017, Third edition, 2023.
- Russell S., and P. Norvig P., <u>Artificial Intelligence: A Modern Approach</u>, Prentice Hall Fourth edition (ISBN-13: 978-0134610993, ISBN-10: 0134610997, 2020) or Third edition (ISBN-13: 978-0-13-604259-4, 2010) or Second edition (ISBN: 0-13-790395-2, 2003).

Other Readings

- Tecuci, G., Marcu, D., Boicu, M., Schum, D.A., *Knowledge Engineering: Building Cognitive Assistants for Evidence-based Reasoning*, Cambridge University Press, 2016.
- Gathering Strength, Gathering Storms: One Hundred Year Study on Artificial Intelligence, The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.
- Witten, I., Frank E., Hall M., *Data Mining: Practical Machine Learning Tools and Techniques*, Morgan Kaufmann, 2011. Free access on-campus from http://proquest.safaribooksonline.com/book/-/9780123748560
- Mitchell, T.M., *Machine Learning*, New York: McGraw Hill, 1997.See also 2015-2016 chapters at http://www.cs.cmu.edu/~tom/NewChapters.html
- Nilsson J.N., Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998.
- Luger G., Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison Wesley, 2009.

Email Communication

- For all the issues related to the course, always email to <u>both</u> tecuci at gmu dot edu and jhuang21 at gmu dot edu.
- You are <u>required</u> to always use your <u>Mason email</u> and include <u>CS480</u> in the subject.
- Do not sent us email through Blackboard.

Mason Email Accounts

Students must activate their Mason email accounts to receive important University information, including messages related to this class.

Office of Disability Services

If you are a student with a disability and you need academic accommodations, please see Dr. Tecuci and contact the Office of Disability Services (ODS) at 993-2474. All academic accommodations must be arranged through the ODS (http://ds.gmu.edu/).

Other Useful Campus Resources

- Writing Center: A114 Robinson Hall; (703) 993-1200; http://writingcenter.gmu.edu
- University Libraries "Ask a Librarian" http://library.gmu.edu/ask
- Counseling and Psychological Services (CAPS): (703) 993-2380; https://caps.gmu.edu/

University Policies

The University Catalog, http://catalog.gmu.edu, is the central resource for university policies affecting student, faculty, and staff conduct in university affairs. You may also review the University Policy web site, http://universitypolicy.gmu.edu/