
CS 262: Introduction to Low-Level Programming

Course Syllabus – Spring 2025

3 credits

George Mason University

Department of Computer Science

Course Basics

Sections: 002, 005

Professor: Hamza Mughal

Email: hmughal2@gmu.edu

Office Hours: 1:30 pm – 2:30 pm M/W

Office: BUCHAN D217F

Sections: 004

Professor: John Otten

Email: jotten2@gmu.edu

Office Hours: 12:00 pm – 1:00 pm M/W

Office: ENGR 5335

Sections: 006

Professor: Tamara Maddox

Email: tmaddox@gmu.edu

Office Hours: 3:00 pm – 4:00 pm M/W

Office: ENGR 5347

Sections: 007

Professor: Bobby Chab

Email: rchab@gmu.edu

Office Hours: T/TR 3:00 pm – 4:00 pm

Office: TBD

Lectures:

Section Days Time Building Room

002 T,Th 12:00 pm – 01:15 pm Innovation Hall 103

004 M,W 01:30 pm – 02:45 pm Enterprise Hall 80

005 M,W 03:00 pm – 04:15 pm Innovation Hall 103

006 M,W 09:00 am – 10:15 am Horizon Hall 2017

007 M,W 10:30 am – 11:45 am Horizon Hall 2009

mailto:hmughal2@gmu.edu

CS 262: Introduction to Low-Level Programming – Fall 2024

Page 2 of 6

Textbook (Required)
• Kernighan and Ritchie, The C Programming Language, 2nd ed., Prentice Hall, 1988

Complementary Books:
• Byron S. Gottfried, Programming with C, 2nd ed., Schumm's Outline, 1996 or the latest

• Printz and Crawford, C in a Nutshell: A Desktop Quick Reference, 1st ed., O'Reilly', 2006

• Griffiths and Griffiths, Head First C, 1st ed., O'Reilly', 2012

Course Information

Prerequisites: C or better in CS 211 or CS 222, and C or better in CS 110

* (CS 110 can be a co-requisite with CS 262)

Course Description

This course is intended to prepare students for topics in systems programming. It emphasizes

relevant concepts of the C programming language, as well as the use of main commands of the

Unix Operating System. This is a course on "low-level" programming using C which is taught with

an emphasis on operations with pointers.

Most high-level programming languages (and particularly Java) insulate the programmer from the

realities of the hardware on which the programs will run. C is the exception since it was originally

designed to implement the Unix operating system. C offers the programmer direct access to much

of the underlying hardware and, for programs running under Unix, direct access to operating

system services. For these reasons C remains the language of choice for systems programming.

Learning Outcomes

1. Be able to implement, test and debug a designed solution to a problem in a low-level

programming language, specifically the C programming language.

2. Demonstrate a good understanding of C language constructs such as pointers, dynamic

memory management, and address arithmetic.

3. Demonstrate a good understanding of C libraries for input and output, and the interface

between C programs and the UNIX operating system.

4. Demonstrate the ability to use UNIX tools for program development and debugging.

Course Topics

The course plans to cover the following topics (in no particular order):

• C Types, Operators, and Expressions

• Basic I/O, Input and Output Libraries

• Control Flow

• Functions and Program Structure

• Strings

• Pointers and Arrays

• Dynamic memory allocation

CS 262: Introduction to Low-Level Programming – Fall 2024

Page 3 of 6

• File I/O

• Structures

• Bitwise operations

• Multiple source files

• The Unix System Interface

• vi/vim

• Debugging using GDB and Valgrind

• Compiling, Linking, and Makefiles

Evaluation and Grading

Category Percent Notes

Lab assignments 10% 1 lowest lab dropped

Projects 30%

Quizzes 20% 1 lowest quiz dropped

Midterm exam 15%

Final exam 25% Cumulative

Course Work

The latest you can turn in work is 48 hours after the posted deadline, after this time the submission

link will be not available anymore.

• Lab assignments: Description for lab assignments will be posted on Blackboard. During Lab

recitations, the lab instructor and one or more UTAs will be available to help students with the

assignment. Submissions must be through Blackboard by the due date.

• Projects: There will be 3 projects in the semester. Project descriptions will be posted on

Blackboard and student's solutions must be submitted on Blackboard by the assigned due date. If

your program is incomplete, you may still submit for partial credit. However, your code must

run without obvious errors (even if all functionality is not present). Notice: Your GTA relies on

running your program as part of your grade determination.

• The cutoff for on-time submission is 11:59 pm on the due date.

• Note: Email submissions are not accepted.

Students are responsible for verifying that all submissions are the correct file and that the submitted

files can be extracted correctly. Please note that once a submission link expires, we do not accept

resubmissions due to corrupted files or incorrect file submissions.

Late Work

Late projects and labs are penalized 10% per day (incl. weekend days/holidays). For instance, if a

lab assignment score is 100 points and the submission is one day after the due date, 10% will be

deducted, and if the submission is two days after due, 20% is deducted.

If your program isn't the way you'd like it to be when the deadline is near, submit it anyway for

CS 262: Introduction to Low-Level Programming – Fall 2024

Page 4 of 6

partial credit. The system permits you to retrieve and resubmit your assignment until the due date, so

you may resubmit if you improve your program prior to the deadline. The last submission is the one

graded by your GTA.

Each student gets THREE Emergency-Day tokens. These tokens are automatically used by

submissions that are between 0-24 and 24-48 hours late to avoid points penalty. These late tokens

are only applicable for project assignments.

It is highly recommended to attend your lab sessions, as they are intended to clarify the

necessary aspects for lab and project assignments. During labs, GTAs and UTAs will

provide assistance and give hints to develop your programs.

For each lab that you attend in person, you will earn up to 0.1% extra credit up to a

maximum of 1% extra credit added to your final course grade.

Quizzes must be taken on the scheduled date/time. Quizzes may not be made up unless due to

extenuating circumstances, such as illness, etc.

Exams must be taken on the scheduled date/time.

If you know in advance that you are unable to take an exam on the scheduled date for a valid

and unavoidable reason, you must notify your professor at least one week before the scheduled

exam date to make arrangements.

Replacement Midterm policy: If you perform better on the final exam than on your midterm,

the midterm grade is replaced with the final exam grade.

Per departmental policy, you must pass a significant exam threshold to receive a passing grade

in this class regardless of your performance on other assignments. To receive a passing grade in this

course, your final exam grade MUST be >= 60% or the average exam grade MUST be >=65%. For

the replacement policy to take effect, you must take the midterm exam.

If you feel points have been incorrectly deducted, contact the grader. For all projects and lab

assignments, that is your GTA. For exams, that is your professor. Contesting of grades on any/all

submissions must be requested within one week of receiving the grade. No grade changes will be

considered after that deadline.

There is no compensation for a missed assignment. Only if the circumstances that caused you to

miss an assignment are justifiable (e.g., surgery), contact the professor no later than 3 natural days

after the due date and attach supporting documentation, otherwise your case will be dismissed.

Class Communications

CS 262 will be using Piazza, Blackboard, and email for most class communications. You are

responsible for any notifications or information posted on Blackboard/Piazza on via email either by

your instructor, your GTA or the class UTA(s), and you will need to check the systems regularly for

such notices. Some information may be disseminated through these systems rather than in class.

CS 262: Introduction to Low-Level Programming – Fall 2024

Page 5 of 6

Privacy and FERPA

Students must use their Mason email account to receive important University information, including

communications related to this class. The instructor and GTAs cannot respond to messages sent

from or send messages to a non-Mason email address.

Video recordings of class meetings that are shared only with the instructors and students officially

enrolled in a class do not violate FERPA or any other privacy expectation. All course materials

posted to Blackboard, or any other course site are private; by federal law, any materials that identify

specific students (via their name, voice, or image) must not be shared with anyone not enrolled in

this class.

For email communication, use your Mason email, including the subject and your section. Please

note that emails sent on weekends may not be answered at that time and will be reviewed until

Monday and answered in the order they are received.

Special Accommodations

If you are a student with a disability, please see your instructor and contact the Office of Disability

Services (ODS) at (703) 993-2474. All academic accommodations must be arranged through the

ODS: http://ods.gmu.edu/

Inclusion

Every student in this class, regardless of background, sex, gender, race, ethnicity, class, political

affiliation, physical or mental ability, veteran status, nationality, or any other identity category, is an

equal member of our class. If you encounter any barriers to your inclusion, please feel free to contact

your professor.

Academic Standards

GMU is an Academic Integrity standards university; please see the Office for Academic Integrity

for a full description of the code and the honor committee process, and the Computer Science

Departments Honor Code Policies regarding programming assignments. The principle of academic

integrity is taken very seriously, and violations are treated gravely. What does academic integrity

mean in this course? When you are responsible for a task, you will perform that task. All class-

related assignments are considered individual efforts unless explicitly expressed otherwise (in

writing).

Cheating on any assignment will be prosecuted and result in a notification of the Honor Committee as

outlined in the GMU Academic Integrity standards. Sharing, collaboration, or looking at any code

related to programming assignments that is not your own is considered cheating. Any attempts at

copying or sharing code, algorithms, or other violations of the Academic Integrity standards simply

will not be tolerated. We use automated software to flag suspicious cases, and then review them to

find the cases that must be submitted to the Office of Academic Integrity with recommendation to

fail the course (F) plus further measures.

Another aspect of academic integrity is the free play of ideas. Vigorous discussion and debate are

encouraged in this course, with the firm expectation that all aspects of the class will be conducted

with civility and respect for differing ideas, perspectives, and traditions. When in doubt (of any

http://ods.gmu.edu/

CS 262: Introduction to Low-Level Programming – Fall 2024

Page 6 of 6

kind) please ask for guidance and clarification.

Programming Policies
(1) No sharing or discussion of code for assignments. Unless specifically stated otherwise, all

assignments are individual assignments, not group assignments. Students are expected to do

their own work, not to share programs with each other, nor copy programs from anyone else.

However, you may offer limited assistance to your fellow students regarding questions or

misunderstandings on their programming assignments. Suspected Academic Integrity

standards violations are taken very seriously and will be reported to the Honor Committee.

(See CS Honor Code)

(2) No incorporation of code from any source external to the course. You may

not incorporate code written by others. Of course, you may freely use any code provided as part

of the project specifications, and you need not credit the source. Working something out

together with an instructor or GTA will not require crediting the source.

(3) Back up your program regularly. You are expected to back up your program in separate

files as you get different pieces working. Failure to do this may result in your getting a much

lower grade on a program if last minute problems occur. (Accidently deleting your program,

having problems connecting, etc., will not be accepted as excuses.)

(4) Keep an untouched copy of your final code submission. It is important that you don't touch

your programs once you have made your final submission. If there are any submission

problems, consideration for credit will only be given if it can be verified that the programs

were not changed after being submitted.

(5) Code must compile and run on Zeus. Students may develop programs using any computer

system they have available. However, submitted programs must work under GCC compiler

available on Zeus. Your documentation should clearly state which software was used for

compilation, and once makefiles are introduced, a makefile should be included with each

assignment submission. Programs that do not compile or are not runnable cannot earn more

than a 50%.

Using ChatGPT (or any other LLM)

ChatGPT or other LLM models may not be used in this course as an assistant in the projects or other

assignments unless otherwise specifically stated by the instructors.

Students who replace their own learning and assignment work with materials prepared by

Generative-AI models:

• Sacrifice the opportunity to acquire the knowledge, skills, and critical thinking taught in the course.

• Risk being unable to perform to expectations in the academic environment when Generative-AI

models are unavailable, such as in exams

• Ultimately endanger their employability if they are unable to produce work other than that

produced by Generative-AI models

