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Abstract

Multi-agent problem domains may require distributed al-
gorithms for a variety of reasons: local sensors, limita-
tions of communication, and availability of distributed
computational resources. In the absence of these con-
straints, centralized algorithms are often more efficient,
simply because they are able to take advantage of more
information. We introduce a variant of the cooperative
target observation domain which is free of such con-
straints. We propose two algorithms, inspired by K-
means clustering and hill-climbing respectively, which
are scalable in degree of decentralization. Neither algo-
rithm consistently outperforms the other across over all
problem domain settings. Surprisingly, we find that hill-
climbing is sensitive to degree of decentralization, while
K-means is not. We also experiment with a combination
of the two algorithms which draws strength from each.

1 Introduction

Cooperative target observation (CTO) problems are in-
teresting testbeds for studying multi-agent coordination,
planning, and robot control. These problems are inter-
esting both because they are good examples of dynamic
multi-agent interaction and emergent behavior; and be-
cause they have real-world application to robotics, secu-
rity, and AI.

In this paper we use CTO as a problem domain
for comparing the performance of centralized, partly-
decentralized, or fully decentralized algorithms under

different levels of dynamism and sensor capabilities.
The algorithms presented are interesting in several ways.
First, we have found them very effective solutions to the
problem. Second, they aretunably decentralized, mean-
ing that we can adjust them gradually from fully decen-
tralized versions to fully centralized versions with a sin-
gle parameter. This provides us with a useful tool for
analysis of degree of decentralization. Third, surpris-
ingly, in the CTO problem studied, the degree of decen-
tralization has very different effects on otherwise reason-
ably comparable algorithms. It isnotnecessarily the case
that decentralization is likely to perform worse, at least in
the problem studied, as we would intuitively imagine due
to its lack of complete information about the intentions
of other agents.

The kind of CTO problem we are using is one in which
mobile agents, (calledobservers) collectively attempt to
stay within an “observation range” of as many targets as
possible. The targets wander randomly and are slower
than the observers. For purposes of this paper, the envi-
ronment is bounded and clear of obstacles. CTO prob-
lems of this type have been popularized by Lynn Parker
[15], and are sometimes known as CMOMMT (“Coop-
erative Multi-robot Observation of Multiple Moving Tar-
gets”). In Parker’s configuration of the problem, an ob-
server does not have a global view of all available tar-
gets to observe. This formulation of the problem strongly
suggests a distributed and greedy control solution due to
the lack of global information.

We have reformulated CTO in a slightly different fash-
ion. In our problem domain, observers know the posi-
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tions of all other observers and targets in the environ-
ment. This is not an unrealistic assumption for some
real domains, where long-range radar may provide bear-
ings for all targets of interest, and vision or other short-
range sensors may dictate the observation range. How-
ever our primary reason for reformulating the problem in
this way is to lift sensing constraints which strongly bias
the problem towards distributed algorithms; this gives us
an opportunity to study the degree to which global con-
trol is advantageous over varying degrees of dynamism
and other environment variables.

In this work, we examine two algorithms for control-
ling the observers, based on K-means clustering and hill-
climbing respectively. We also consider the two in com-
bination: K-means clustering followed by hill-climbing.
These three algorithms are tunably decentralized by ad-
justing a parameter which dictates how manysubsetsthe
observers are divided into. All observers within a given
subset collectively participate in a separate, concurrent
decision-making process. Thus one unified set yields a
centralized algorithm, whereas many small subsets are
decentralized. We note as an aside that the ability to work
under different subset sizes conveys another advantage:
the observers can work in environments where indepen-
dent agents (humans perhaps) are also participating in
the observation task. The observers can simply treat the
humans as a separate “subset” and will attempt to take
advantage of the presence of the human observers in the
environment.

The paper is organized as follows. Section 2 discusses
related work. Section 3 describes the simulation and the
K-means and hill-climbing algorithms. Section 4 com-
pares the algorithms and discusses the results. The al-
gorithms are compared for different subset sizes to see
how performance degrades as the targets become faster,
the sensing radius decreases, and speed of the world in-
creases relative to algorithm execution. Section 5 pro-
vides concluding remarks.

2 Related Work

There is considerable previous work in areas related to
CTO. Many of these areas deal with multi-agent prob-
lems in dynamic environments with mobile agents. One
example, robot foraging, asks a team of robots to col-
lectively forage for pucks or cans, and to move them to
specially designated areas. The efficiency of an approach
may be defined by how quickly it completes the foraging
task [6, 13], or by the number of items collected in a fixed
amount of time. Related tasks include collective sorting
and clustering [3, 7].

Foraging and clustering tasks do not generally require
interaction and coordination: in fact, many can be per-

formed by a single agent. In contrast, stick-pulling re-
quires robots to cooperatively lift sticks out of holes, a
task so arranged as to be impossible for a single robot to
perform [9, 10, 12]. Another task requiring coordination
is robot formation [1], where a team of agents must move
across a field in minimal time without colliding with ob-
stacles or other robots. Problems such as collaborative
mapping [4, 8] can be performed by a single robot, but
are useful for studyinghow the multiple robots collabo-
ratively agree on which of several possible map interpre-
tations is correct.

Parker ([15, 17]) has studied the form of CTO most
similar to our work, termed CMOMMT (“Cooperative
Multi-robot Observation of Multiple Moving Targets”).
As discussed earlier, in CMOMMT a team of observer
agents attempt to move within a given distance of as
many targets at once. An agents’ sensor range is limited,
but it can additionally see targets within sensor ranges
of certain nearby teammates. One approach to solving
the problem is to use weighted force vectors applied by
nearby targets, observer agents, and obstacles to guide
agent movement. CMOMMT has been proven to be NP-
hard [16], and has been demonstrated in simulation and
on real robots [14].

Other techniques exists for controlling robots in a
CTO domain. One approach is to include bargaining in
the control algorithm [19]. Each robot is ranked accord-
ing to its “eligibility” to perform each ofN tasks, and
robots then perform tasks according to preferred rank-
ings. Lazy reinforcement learning has also been applied
to the CTO problem, with favorable results [18].

Finally, CTO is related to the problem of multi-target
tracking [2, 5], which is concerned with the generation of
target tracks from data collected by non-geospatially lo-
cated sensors. A typical application is air-traffic control,
where the air-traffic control operators need a complete
picture of aircraft tracks.

3 Model Description

Our version of CTO is a variation of CMOMMT which
allows all observer agents to see all targets and other ob-
servers in the environment. The environment is a non-
toroidal rectangular continuous 2D field free of obsta-
cles. The model containsN observers andM targets,
with N < M. Let O denote the set of all observers, and
T denote the set of all targets. The observers can move
in any direction. Each observer has an identicalobser-
vation range R, and can observe any target which falls
within a circle centered at the observer and of radiusR.
Figure 1 shows a snapshot of the model in action.

The targets move randomly throughout the space, and
do not try to avoid the observers. Movement of both
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Figure 1: Screenshot of the model. Small doubly-circled
dots are observers. Outer circles are their observation
ranges. Large dots are targets. Straight lines connect
observers with newly-chosen desired destinations.

the targets and observers is done by setting a destina-
tion point, then having the agent travel towards this point.
The targets travel towards their destination point for at
most 100 time steps. If they reach the destination be-
fore 100 time steps, then they compute a new destination
point immediately. Targets’ destination points are cho-
sen at random from within a local region (one quarter of
the environment height and width) centered on the target:
the locality helps prevent targets from clustering near the
center of the field on the way to their intended destina-
tions.

Observers compute a new destination point everyα
time steps. If one reaches its destination point in less than
α time steps, then it waits until a new destination point
is computed. The destination point is determined using
one of three cooperative target observation algorithms:

1. Hill-climbing with subsets

2. K-means clustering with subsets

3. K-means clustering with subsets followed by hill-
climbing with subsets

Tunable decentralization of the algorithms works as
follows. TheN observers are divided intoC disjoint sub-
sets, and a separate instance of the chosen algorithm is
run for each subset. Each algorithm instance adjusts the

locations only of the observers in its subset, and pre-
sumes that all observers outside the subset, and all tar-
gets, are fixed in their current positions. A cluster size
C/N may range from 1 toN: if the cluster size isN, then
all observers participate in the same decision-making
process, whereas smaller clusters yield higher degrees of
algorithm decentralization.

3.1 Hill-climbing with Subsets

Hill-climbing iteratively improves candidate observer
destinations by first copying the current locations into the
initial candidate destinations, then performing 1000 iter-
ations of the following operation:

1. Copy the current candidate observer positions and
mutate the copy by randomizing the position of one
observer member of the subset. The observer posi-
tion is picked at random from the intersection of the
field and a box centered at the observer with an ini-
tial width and height equal to one-half the environ-
ment width and height. The box decreases in width
and height by 1% each iteration, but not below one
tenth of the environment width and height.

2. If the mutated child is “better” than its parent, re-
place the parent with the child, else discard the
child.

3. Goto 1

A candidates’ quality is assessed by testing how it af-
fects theentire observer team, not just the subset. We use
a lexicographic ordering of various useful quality mea-
sures. Specifically, we accept the child and replace the
parent with it using the following test:

1. Accept the child if it observes more targets.

2. Else if the child and parent observe the same num-
ber of targets, let compute

H =
∑

o∈O

min
t∈T

f (o,t)

where

f (o,t)=

{

min(R,dist(o,t)) if R/2≤ dist(o,t)
0 if R/2 > dist(o,t)

where dist(o,t) is the Euclidian distance between
the observero∈O and targett∈T. Accept the child
solution ifHchild < Hparent. This encourages the ob-
servers to center themselves among the targets they
are observing and to not share targets.
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3. Else ifHchild = Hparent, and the child and parent ob-
serve the same number of targets, then compute

G =
∑

o∈O′

min
t∈T ′

dist(o,t)

whereO′ is the set of observers that do not observe
any targets, andT ′ is the set of targets that are not
observed by any observers. Accept the child so-
lution if Gchild < Gparent. This encourages the ob-
servers to move towards unobserved targets.

4. Else reject the child.

After the hill-climber has iterated 1000 times, then we
have to determine which observer in the subset will go
to which of the new candidate destinations. For this we
used a simple greedy coloring algorithm.

1. Pick the candidate destination and the observer in
the subset that are closest to one another

2. Assign the observer to that destination

3. Remove the observer and the destination from con-
sideration

4. Goto 1

3.2 K-means Clustering with Subsets

K-means is a widely used clustering algorithm which as-
sumes that the number of clusters is knowna priori. Sup-
pose thatN points need to be grouped intoK clusters,
with the requirement that the mean distance from the
points to the centers of the clusters is minimized. The
algorithm works as follows

1. SelectK initial centers for the clusters.

2. Assign each of theN points according to which of
the cluster centers is closest to the point.

3. Reposition each cluster center slightly closer to the
mean location of all the points assigned to that cen-
ter.

4. Go to 2.

This process is repeated until no more significant
progress is made, or until time is exhausted.

In order to apply the K-means algorithm to our coop-
erative target observation problem domain, we consider
the targets to be the points to be clustered, and observer
destinations as the candidate cluster centers. We set the
initial positions of the cluster centers to the current posi-
tions of the observers, and assign each to the observer at
that position. We modify the clustering algorithm so that
the only candidate centers which are allowed to move (in
step 3) are those assigned to observers which are mem-
bers of the current subset.
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Figure 2: Performance of the hill-climbing algorithm us-
ing different subset sizes when varying the sensor range.

4 Experiments

We expected that both the K-means clustering and the
hill-climbing algorithms would degrade in performance
as the targets got faster, as the rate of algorithmic updates
slowed, and as the size of the sensing radii decreased.
This was consistently borne out in our results. However
our primary interest was in seeing how different levels of
decentralization would effect the degradation. As both
algorithms are tunably decentralized in a similar fashion,
we expected that both would degrade in the same way:
but this was not at all the case. Below we discuss this
result, followed by a comparison of the two algorithms
against one another, and against their combination.

All experiments were done on the MASON simula-
tion environment [11]. MASON is a fast discrete-event
multi-agent simulation library core in Java, designed to
be the foundation for large custom-purpose Java simula-
tions, and contains a model library and an optional suite
of visualization tools in 2D and 3D.

In performing the experiments, for each simulation run
we gathered the mean over all timesteps of the number
of targets under observation. If a target was observed
by multiple observers, then we counted the target only
once. In all experiments we held the following parame-
ters fixed:

• Width and Height of Field: 150 x 150 units

• Timesteps per simulation run: 1500

• Number of simulation runs per data point: 30

• Number of targets: 24

• Number of observers: 12

• Speed of observers: 1 unit per timestep
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Figure 3: Performance of the hill-climbing algorithm us-
ing different subset sizes when varying the target speed.

In order to establish statistical significance when com-
paring the results, we used a series of Welch’s two sam-
ple tests1. Additionally, we used Bonferroni’s inequality
to compensate for the large number of tests performed.
As a consequence, each of our two sample tests was per-
formed at confidence level 99.995%.

4.1 Results

Initial experiments compared K-means and hill-climbing
against random and stationary behaviors. We found that
K-means and the hill-climber are statistically better than
the random and stationary algorithms over all combina-
tions of target speed, subset size, range, and rate of up-
dates.

Hill-climbing Figures 2, 3, and 4 show the perfor-
mance of the hill-climbing algorithm as the range, target
speed, and update rates vary, respectively. If not being
varied, the sensor range is set to 15, the target speed to
0.5, and the update rate to 10. In each graph, we also
change the degree of decentralization.2 The results ver-
ify that performance significantly decreases when either
range decreases, target speed increases, or update rate de-
creases. More importantly, the graphs show that increas-
ing the degree of decentralization (reducing the subset
size) leads to a decrease in mean number of targets ob-
served. Notably though, the specific difference due to
decentralization is almost invariant over any change in
environment parameter.

1Welch’s two sample test is a variant of Student’s t-test for non-
equal variances of samples.

2Due to time constraints, our smallest cluster size is 2, not 1(fully
decentralized). While this is unlikely to effect the results, we hope to
add a cluster size of 1 in the final version of the paper.
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Figure 4: Performance of the hill-climbing algorithm us-
ing different subset sizes when varying the update rate.

Our findings are supported by statistical tests: we
compared subset sizes of 2 and 12 and found significant
differences across all range, target speed, and update rate
settings. Additionally, we compared extreme settings of
the range, target speed, and update rate for the same sub-
set size: all tests showed significant differences.

K-means We ran the same experiments with the K-
means algorithm, but it yielded a very different result.
Like hill-climbing, K-means performed best at large
ranges, small target speeds, and small update rates. How-
ever, K-means showedalmost identical performancere-
gardless of subset size. Decentralization appears to have
had no effect on the results at all.

Comparison Given that hill-climbing degraded with
subset size but K-means did not, we wondered how the
two algorithms compared against one another. We di-
rectly compared K-means against hill-climbing across all
combinations of domain parameters. We chose to use a
subset of size 12 as it yielded the best results for hill-
climbing. The results are shown in Table 1. In sum-
mary, hill-climbing was better with slower-moving tar-
gets, while K-means was better with faster targets.

This seems an intuitive result. When the targets are
slow, or when the sensor range is small, hill-climbing can
often discover superior solutions to K-means because K-
means is centering observers in the middle of clusters of
targets without considering how far away the targets in a
cluster are from one another (see Figure 5). But as targets
increase in speed, K-means clustering begins to outper-
form hill-climbing. Qualitatively, it is our observation
that with fast targets hill-climbing cannot reach its “op-
timal” destination in time, and essentially chases targets
around the field. But in many cases clusters form be-
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Update Sensor Target Speed
Rate Range 0.1 0.25 0.5 0.75 0.9

5 � � � � �

10 � � � � �

5 15 � � � � �

20 � � ' � �

25 � � � � �

5 � � � � �

10 � ' � � �

10 15 � ' � � �

20 � ' � � �

25 � � � � �

5 ' � � � �

10 ' � � � �

20 15 ' � � � �

20 ' � � � �

25 � � ' ' '

Table 1: K-means versus hill-climbing, subset size of 12.
��� means that K-means is statistically better,��� means
that hill-climbing is statistically better and''' means they
are statistically the same.

Figure 5: K-means clustering disadvantages. K-means
clustering (left) centers in the region of its cluster,
whereas hill-climbing (right) attempts to maximize cov-
erage inside the sensor range.

cause targets are moving towards one another (and hence
towards the mean of the cluster). By centering itself in
the cluster mean, K-means clustering more often than not
positions an observer to be in the path of fast incoming
targets ahead of time, giving it a pronounced advantage
in faster environments.

Hill-climbing outperformed K-means for very large
radii: we have yet to form an explanation for this, and
indeed we had expected the opposite result.

In Combination If each method did better under a cer-
tain range of parameters, how about the two in combina-
tion? We compared K-means followed by hill-climbing
against K-means alone, and also against hill-climbing
alone. The combination of the two does quite well as
a middle-ground. In Table 2, the combination is com-

Update Sensor Target Speed
Rate Range 0.1 0.25 0.5 0.75 0.9

5 � ' � � �

10 ' ' � � �

5 15 ' � � � �

20 ' ' � � �

25 � � ' ' '

5 � � � � �

10 ' � � � �

10 15 ' � � � �

20 ' � � � �

25 ' ' ' ' '

5 � � � � �

10 � � � � �

20 15 � � � � �

20 � � � � �

25 ' ' ' ' '

Table 2: Hill-climbing versus hill-climbing and K-means
in combination, subset size of 12.��� means that hill-
climbing is statistically better,��� means that the combi-
nation is statistically better, and''' means they are statis-
tically the same.

pared against hill-climbing: here it performs better than
or equal to hill-climbing almost everywhere, except for
very small radii or very low target speeds. Table 3 shows
that it also performs well against K-means, though K-
means is still superior at very high target speeds.

4.2 Discussion

Why is K-means clustering invariant over subset size?
We believe the answer may lie in the fact that changes
in the cluster means are made through small increments;
thus it is unlikely that the targets assigned to a given clus-
ter will be claimed by a far remote cluster. Nonetheless
target disputes are bound to happen along cluster bound-
aries, so we would have expectedsomedifference in per-
formance.

At any rate, it is striking that two good algorithms,
neither consistently better than the other, would produce
such different results in terms of degradation due to de-
centralization. K-means clustering is proof against the
argument that a centralization is by nature superior in this
problem domain: but hill-climbing likewise suggests that
centralizationcanoffer advantages over decentralization
for the same problem. To us, it is a surprising result.
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Update Sensor Target Speed
Rate Range 0.1 0.25 0.5 0.75 0.9

5 � � ' � �

10 � � � ' �

5 15 � � � ' �

20 � � � � '

25 � � � � �

5 � � ' � �

10 � � ' ' �

10 15 � � ' ' �

20 � � � ' '

25 � � � � �

5 � � ' � �

10 � ' ' � �

20 15 � ' ' � �

20 � � ' � �

25 � � ' ' '

Table 3: K-means versus hill-climbing and K-means in
combination, subset size of 12.��� means that K-means
is statistically better,��� means that the combination is
statistically better, and''' means they are statistically the
same.

5 Conclusion

This paper examined two algorithms for cooperative tar-
get observation, one inspired by K-means clustering and
the other based on hill-climbing. Both allowed for a
customization of the degree of decentralization for team
control. At one extreme, each observer decided where
to move next; the opposite extreme allowed for a unique
central “team brain” to analyze the current situation and
compute destinations for each observer. We also tested
the sensitivity of the algorithms to three problem domain
parameters: target speed, observation range, and algo-
rithm update rate relative to the speed of the world.

Surprisingly, hill-climbing was sensitive to the degree
of decentralization, but K-means was not. This was the
case even though neither algorithm was uniformly supe-
rior to the other across all problem settings. We further
examined a combination of the two algorithms which ap-
peared to inherit advantages of both.

These algorithm-specific results suggest avenues for
future work. We plan to extend this problem domain
to permit soft constraints, such as communication rate,
which increasingly make decentralized methods more
appealing. We will examine other approaches to par-
tial decentralization, such as control hierarchies, which
might confer the advantages of both centralized and de-
centralized approaches. Additionally, we are interested
in the inclusion of obstacles and other environmental fea-
tures which increase the complexity of the problem.
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