
 1

A New Algorithm for Reachability Testing of Concurrent Programs

Yu Lei
Dept. of Comp. Sci. and Eng.

The University of Texas at Arlington
Arlington, TX 76019

ylei@cse.uta.edu

Richard Carver
Department of Computer Science

George Mason University
Fairfax, VA 22030

rcarver@cs.gmu.edu

Abstract
Concurrent programs exhibit non-deterministic behavior,
which makes them difficult to test. One approach to testing
concurrent programs, called reachability testing, generates
test sequences automatically, and on-the-fly, without
constructing any static models. This approach guarantees
that every partially-ordered synchronization sequence of a
program with a given input will be exercised exactly once.
Unfortunately, in order to make this guarantee all existing
reachability testing algorithms need to save and search
through the history of test sequences that have already been
exercised, which is impractical for many applications. In
this paper, we present a new reachability testing algorithm
that does not save the history of test sequences. This new
algorithm guarantees that every partially-ordered
synchronization sequence is exercised at least once for an
arbitrary program and exactly once for a program that
satisfies certain conditions. We also describe a reachability
testing tool called RichTest. Our empirical studies with
RichTest indicate that our new algorithm exercises every
synchronization sequence exactly once for many
applications.

1 Introduction
Because of its ability to increase computational

efficiency, concurrent programming has become an
important technique in modern software development.
However, concurrent programs behave differently than
sequential programs. Multiple executions of a concurrent
program with the same input may exercise different
sequences of synchronization events (or “SYN-sequences”)
and produce different results. (A SYN-sequence records the
relative ordering of events that occur on a synchronization
object such as a semaphore, monitor, or communication
channel.) This non-deterministic behavior makes concurrent
programs notoriously difficult to test.

Reachability testing is one approach to testing
concurrent programs. A novel aspect of reachability testing
is that it adopts a dynamic framework in which test
sequences are generated automatically, and on-the-fly,
without constructing any static program models. In this
framework, the synchronization events that occur during a
test run are recorded in an execution trace. At the end of the
test run, the trace is analyzed to derive SYN-sequences that
are “race variants” of the trace. A race variant represents
the beginning part of a SYN-sequence that definitely could

have happened but didn’t, due to the way race conditions
were arbitrarily resolved during execution. The race
variants are used to exercise new behaviors, which are
traced and then analyzed to derive more race variants, and
so on. If every execution of a program P with input I
terminates, and the total number of SYN-sequences is
finite, then reachability testing will terminate and every
partially-ordered SYN-sequence of P with input I will be
exercised.

One potential problem with reachability testing is that
some SYN-sequences may be exercised many times. To
prevent this problem, all existing reachability testing
algorithms save the history of SYN-sequences that have
already been exercised and search the history before using a
race variant. For large programs, the cost of saving a test
history can be prohibitive both in terms of the space to store
the history and the time to search it.

In this paper, we present a new reachability testing
algorithm that does not save the test history. The main idea
of our new algorithm is to enforce several constraints on
how variants are generated so that a race variant is
generated only if it can be used to exercise a SYN-sequence
that has not been exercised before. This new algorithm is
guaranteed to exercise every partially-ordered SYN-
sequence at least once for an arbitrary program and exactly
once for a program that satisfies certain conditions. We
describe a Java reachability testing tool, called RichTest,
which requires no modification to the Java JVM or to the
operating system. Our empirical results indicate that the
new algorithm exercises every SYN-sequence exactly once
for many applications. To make our presentation concrete,
we will show how to apply our new algorithm to
asynchronous message-passing programs, i.e., programs in
which processes synchronize/communicate by exchanging
messages. However, we note that the authors reported a
general reachability testing model in [2] that allows the new
algorithm to be directly applied to other types of programs,
including synchronous message-passing programs and
shared-memory programs in which thread
synchronize/communicate using semaphores, locks, and
monitors.

The rest of this paper is organized as follows. The next
section illustrates the reachability testing process. Section 3
presents an execution model for message-passing programs
and introduces the notion of event equality. Section 4
provides an algorithm for generating race variants. Section

mailto:rcarver@cs.gmu.edu
mailto:ylei@cse.uta.edu

 2

5 presents our new reachability testing algorithm. Section 6
describes the RichTest tool and reports some empirical
results. Section 7 briefly surveys related work. Section 8
provides concluding remarks and describes our plan for
future work.

2 The Reachability Testing Process
We use a simple example to illustrate the reachability

testing process. Fig. 1 shows a program CP that consists of
six threads. The threads synchronize and communicate by
sending messages to, and receiving messages from, ports.
Ports are communication objects that can be accessed by
many senders but only one receiver. Each send operation
specifies a port as its destination, and each receive
operation specifies a port as its source. A sequence of send
and receive events is called an SR-sequence.

Fig. 1 also shows one possible scenario for applying
reachability testing to the example program. Each SR-
sequence and race variant generated during reachability
testing is represented by a space-time diagram in which a
vertical line represents a thread, and a single-headed arrow
represents asynchronous message passing between a send
and receive event. The labels on the arrows match the labels
on the send and receive statements in program CP. Note
that in each SR-sequence, the portion above the dashed line
is the race variant used to collect the sequence. The
reachability testing process in Fig. 1 proceeds as follows:

First, sequence Q0 is recorded during a non-
deterministic execution of CP. Sequence V1 is a race
variant of Q0 derived by changing the outcome of a
message race in Q0. That is, in variant V1, thread T3
receives its first message from T4 instead of T2. The
message sent by T2 is left un-received in V1.

During the next execution of CP, variant V1 is used for
prefix-based testing. This means that variant V1 is replayed
and afterwards the execution proceeds non-
deterministically. Sequence Q1 is recorded during this
execution. Sequence Q1 is guaranteed to be different from
Q0 since V1 and Q0 differ on the outcome of a race
condition and V1 is a prefix of Q1. Variant V2 is a race
variant of Q1 in which T5 receives its first message from
T6 instead of T4.

When variant V2 is used for prefix-based testing,
sequence Q2 is collected. The variants and sequences
derived after Q2 are shown in Fig. 1. Reachability testing
stops after Q5 is recorded since Q0, Q1, Q2, Q3, Q4, and
Q5 are all the possible SYN-sequences that can be
exercised by this program.

For a formal description of the above process, the reader
is referred to a reachability testing algorithm that we
reported in [7]. The challenge for reachability testing is to
ensure that every sequence is exercised once and only once.
This is discussed in the remainder of this paper.

3 Preliminaries
3.1 SR-sequences
In this section, we describe how to model a program
execution in which processes communicate and synchronize
using asynchronous message passing. This model provides
sufficient information for replaying an execution and for
identifying the races in an execution. Also, this model is
easily generalized to handle other synchronization
constructs. In [2], the authors presented a general execution
model for programs that use semaphores, locks, monitors,
and asynchronous or synchronous message passing. Thus,
the algorithms and techniques described in this paper can be
applied without modification to programs that use any of
the above constructs.

Asynchronous message passing refers to non-blocking send
operations and blocking receive operations. A thread that
executes a non-blocking send operation proceeds without
waiting for the message to be received. A thread that
executes a blocking receive operation blocks until a
message is received. We assume that asynchronous ports
(see section 2) use a FIFO (First-In-First-Out) message
ordering scheme, which guarantees that the messages
passed between any two threads are received in the order
that they are sent.

A send or receive event refers to the execution of a send
or receive statement, respectively. A send event s and the
receive event r it synchronizes with form a synchronization
pair <s, r>, where s is said to be the send partner of r, and r
is said to be the receive partner of s. Let Q be an SR-
sequence and r a receive event in Q. We will use send(r, Q)
to denote the send partner of r in Q.

Let r be a receive event and s be a send event in SR-
sequence Q such that <s, r> is a synchronization pair.
Suppose some other send event s’ in Q could have been
synchronized with r but wasn’t, due to the arbitrary way in
which race conditions were resolved during execution.
Then s’ is said to be in the race set of r. The authors have
developed two schemes, a port-centric scheme and a thread-
centric scheme, that can be used to identify races in an

 T1 T2 T3 T4 T5 T6
 s1: p2.send (a); r1: x = p2.recv (); r2: y = p3.recv (); s3: p3.send (c); r4: u = p5.recv (); s5: p5.send (e)
 s2: p3.send (b); r3: z = p3.recv (); s4: p5.send(d); r5: v = p5.recv ();
 if (u == e) {
 s6: p2.send (f);
 }

 T1 T2 T3 T4 T5 T6

Q0

s1
r1

s2
r2

s3

r3

s4 r4

s5

T1 T2 T3 T4 T5 T6

V1/Q1

s1
r1

s2
r2

s3

r3’

s4 r4

s5

r5

T1 T2 T3 T4 T5 T6

V3/Q3

s1
r1

s2
r2

s3

r3’

s4 r4

s5

r5’

s6

T1 T2 T3 T4 T5 T6

V4/Q4

s1

r1
s2’ r2

s3

r3’

s4
r4

s5

r5’
s6

r3’

T1 T2 T3 T4 T5 T6

V5/Q5

s1

r1
s2 r2

s3

r3’

s4
r4

s5

r5’
s6

r3’

T1 T2 T3 T4 T5 T6

V2/Q2

s1
r1

s2
r2

s3

r3

s4 r4

s5

r5’

s6

(b)

(a)

Figure 1. The reachability testing process

r5

 3

execution [2]. For example, applying either scheme, we can
identify the race set for each receive event in sequence Q0
in Fig. 1.b: race_set(r2) = {s3}, race_set(r4) = {s5},
race_set(r1) = race_set(r3) = race_set(r5) = {}. Due to
space limitations, the reader is referred to [2] for details
about these race identification schemes

3.2 Event Equality
In this section, we introduce our notion of event

equality, which allows us to draw a correspondence
between events that occur in different SR-sequences. We
first define the prime structure of an event and an
isomorphism between two prime structures, both of which
are needed for defining the notion of event equality.

Assume that an event e is generated by an execution
instance of a statement t. Informally, the prime structure of
e contains all the events that could possibly affect the
beginning of the execution of t. Note that if e is a receive
event, then the send partner s of e is not included in the
prime structure of e. The reason is because s only affects
the end, rather than the beginning, of the execution of t.

Definition 1: Let Q be an SR-sequence exercised by a
program P with input I. Let e be an event in Q that is
exercised by a process T in P. If e is not the first event
exercised by T, then let f be the event that T exercises
immediately before e. Set before(f) contains the events that
happen before f, and set before+(f) = before(f) ∪ {f}. Then,
the prime structure of e in Q, denoted as p-struct(e, Q) or p-
struct(e) if Q is implied, is empty if f does not exist;
otherwise, it is a prefix of Q that contains all the events in
before+(f).

As an example, consider sequence Q0 in Fig. 1.b, where
p-struct(s1) is empty, p-struct(r1) is empty, p-struct(s2) is
the portion of Q0 consisting of the single event r1, p-
struct(r2) is empty, p-struct(r3) is the portion of Q0
consisting of the events s1, r1, s2, r2, p-struct(s3) is empty,
p-struct(s4) is the portion of Q0 consisting of the single
event s3, p-struct(r4) is empty, p-struct(s5) is empty, and p-
struct(r5) is the portion of Q0 consisting of events s3, s4 and
r4.

Definition 2: Let Q and Q’ be two SR-sequences of a
program P with input I. Let e be an event in Q and e’ an
event in Q’. Then, p-struct(e, Q) and p-struct(e’, Q’) are
isomorphic, denoted as p-struct(e, Q) ∼ p-struct(e’, Q)’, if
there exists a one-to-one mapping m from the events in p-
struct(e, Q) to those in p-struct(e’, Q)’ such that if <s, r> is
a synchronization pair in p-struct(e, Q), then <m(s), m(r)>
is a synchronization pair in p-struct(e’, Q’)..

Informally, two prime structures are isomorphic if their
space-time diagrams are the same except their event labels.

Definition 3: Let P be a message-passing program. Let
Q and Q’ be two SR-sequences of P with input I. Let e be
an event in Q and e’ an event in Q’. Events e and e’ are
equal, denoted as e = e’, if p-struct(e, Q) ∼ p-struct(e’, Q’).

In Fig. 1.b, we have used the same event label to name
equals events in different SR-sequences. As an example,
event r1 in Q0 equals event r1 in Q1, because both p-
struct(r1, Q0) and p-struct(r1, Q1) are empty and thus are
trivially isomorphic. In the remainder of this paper, we will
consider equal events to be the same event and refer to
them using the same label. We comment that the reason
why the send partner s of e is not included in p-struct(e) is
that otherwise, as soon as e is synchronized with a different
send event, e becomes a different event. As a result, we
would not be able to express the notion of a race set, where
the same receive event can be synchronized with different
send events.

4 Computing Race Variants
In Section 4.1, we define the notion of a race variant. In

Section 4.2, we briefly explain an algorithm for computing
the race variants of an SR-sequence.
4.1 Race Variant

Let P be a message-passing program. Let Q be the SR-
sequence exercised by an execution of P. Intuitively, a race
variant of Q can be derived by changing the send partner of
one or more receive events in a way that satisfies the
following constraints: Whenever the send partner of a
receive event is changed: (1) the new send partner must be
in the race set of r in Q; and (2) all the send and receive
events that happen after r must be removed from Q.

Note that the second constraint is needed to ensure that
a race variant is feasible (i.e., the variant can be exercised
by at least one program execution), regardless of the
program’s control and data flow. This is because a change
to the send partner of a receive event r in Q could
potentially affect all the events that happened after r. In
particular, if P takes a different path after a different
message is received at r, then some events that happened
after r in Q may no longer happen along the new path.

As an example, consider race variant V1 in Fig. 1.b,
which is derived from SR-sequence Q0 by changing the
send partner of r2 to s3, as s3 is in race_set(r2), and then
removing r3, which is the only event that happens after r2.

A formal definition of a race variant is presented below.
Definition 4: Let Q be an SR-sequence. A race variant

V of Q is another SR-sequence that satisfies the following
conditions:

� There exists at least one receive event r in Q and V
such that send(r, Q) ≠ send(r, V).

� Let r be a receive event in Q and V such that send(r, Q)
≠ send(r, V). Then, send(r, V) must be in race_set(r,
Q).

� Let e be a send or receive event in Q. Then, e is in V if
and only if for any receive event r in Q such that r →Q
e, then send(r, Q) = send(r, V).

 4

The first condition says that the send partner of at least
one receive event needs to be changed. The second and
third conditions are consistent with constraints (1) and (2)
above, respectively.

One interesting phenomenon, called event recollection,
is that some of the events that have been removed from V
(to satisfy the third condition) may be generated again
during prefix-based testing with V. Below we present two
important properties related to event recollection and
equality.

Proposition 1: Let Q be an SR-sequence and V a race
variant of Q. Let e be an event in Q that was removed from
V. Then, event e can be recollected during prefix-based
testing with V if and only if there is no receive event in p-
struct(e, Q) whose send partner was changed in V.

The above proposition is true because (1) if there is no
receive event in p-struct(e, Q) whose send partner was
changed, then p-struct(e, Q) is repeated in V; and (2) if V is
forced to be exercised at the beginning of prefix-based
testing with V, then p_struct(e, Q) will also be repeated
during prefix-based testing with V.

Proposition 2: Let Q be an SR-sequence. If a send
event s in Q was removed from a race variant V of Q, then s
cannot be recollected during prefix-based testing with V.

The above proposition can be derived from Proposition
1 for the following reasons: (1) Since event s in Q was
removed from a race variant V of Q, there must exist a
receive event r that happens before s in Q and whose send
partner has been changed; (2) Any receive event that
happens before a send event must also exist in the prime
structure of the send event.
4.2 An Algorithm for Computing Race Variants

In [7], we reported an algorithm for computing the race
variants of a semaphore-based execution. In [2], we
reported a general model for reachability testing, which
encapsulates the differences between the various types of
synchronization constructs. The general model allows the
algorithm in [7] to be applied to a message-passing
execution. Below, we present a high-level description of
this algorithm.

The algorithm for computing race variants builds a
“race table” for a given SR-sequence Q. Each row of the
race table for Q can be used to derive a unique, partially-
ordered race variant of Q. The race table of Q consists of a
column for each receive event in Q whose race set is non-
empty. Let r be the receive event corresponding to column
j. Let V be the race variant to be derived from row i and v
be the value in row i, column j.

Value v indicates how receive
event r in Q is changed to create
variant V:
� v = -1 indicates that r is

removed from V;

� v = 0 indicates that the send partner of r is left
unchanged in V; and

� v > 0 indicates that in V, the send partner of r is
changed to the v-th event in race_set(r, Q), where the
send events in race_set(r) are arranged in an arbitrary
order and the index of the first event in race_set(r, Q)
is 1.

As an example, the race table for Q0 in Fig. 1.b is shown
below. Variants V1, V2, and V3 are derived from rows 1, 2,
and 3 in the table, respectively.

r4 r2
0 1
1 0
1 1

One approach to building a race table is to enumerate all

combinations of the possible values of v for the receive
events and then remove the invalid combinations. Invalid
combinations are combinations that are not consistent with
Definition 4. The algorithm reported in [7] builds the race
table more efficiently by preventing a large number of
invalid combinations from being generated in the first
place. Due to space limitations, we refer the reader to [7]
for details about the algorithm.

We stress that every row in a race table represents a
unique, partially ordered variant [7]. Therefore, our
algorithm deals with partial orders directly – test sequences
are never totally ordered.

5 A New Reachability Testing Algorithm
In order to reduce test effort while maximizing test

coverage, it is desirable to exercise every partially-ordered
SR-sequence exactly once during reachability testing.
However, if a newly derived race variant V is a prefix of an
SR-sequence Q that has already been exercised, then prefix-
based testing with V could exercise Q again. To deal with
this duplication problem, all existing reachability testing
algorithms need to save the history of SR-sequences that
have already been exercised. A newly derived variant is
used for prefix-based testing only if it is not a prefix of any
SR-sequence that is in the test history. For large programs,
the cost of saving a test history can be prohibitive both in
terms of the space to store the history and the time to search
it. As a result, the scalability of the existing reachability
testing algorithms is limited.

In this section, we present a new reachability testing
algorithm that does not save the test history. The main idea
is to enforce several constraints that will prevent a race
variant from being generated in the first place if prefix-
based testing with this variant could cause duplicate SR-
sequences to be exercised. The new algorithm guarantees
that every SR-sequence is exercised at least once for an

rj

i

j

v

 5

arbitrary program and exactly once for a program that
satisfies certain conditions.
5.1 A Graph-Theoretic Perspective

To help understand our new algorithm, we consider the
reachability testing problem from a graph-theoretic
perspective. Let P be a message-passing program. All
possible SR-sequences that could be exercised by P with
input I can be organized into a directed graph G, which we
refer to as a Sequence/Variant graph or simply an S/V
graph. Each node n in G represents an SR-sequence that
could be exercised by P with input I. An edge e from node
n to node n’ represents a race variant of n and indicates that
n’ could be exercised by prefix-based testing with e. Note
that a node n may have multiple outgoing edges which are
labeled by the same variant of n. The reason is that prefix-
based testing with a race variant forces the variant to be
exercised at the beginning of a test run and then lets the run
continue non-deterministically, and the non-deterministic
portion can exercise different sequences in different test
runs. For example, in Fig. 2, node Q2 has two outgoing
edges that represent the two sequences that can be exercised
during prefix-based testing with variant V4.

Definition 5: There is a race difference for a receive
event r w.r.t. two SR-sequences if r exists in both sequences
but has different send partners in these sequences.

Note that Def. 1 focuses on differences that are directly
caused by message races. If we assume that the order in
which threads synchronize and communicate is the only
source of non-determinism, then any difference between
two SR-sequences can be traced back to a race difference.
For this reason, we will only be interested in race
differences and will refer to a race difference as a difference
unless stated otherwise.

Theorem 1: Let P be a message-passing program. Let G
be the S/V graph of P with input I. Then, G is strongly
connected.

Proof: We show that given two arbitrary nodes n and n’
in G, where n ≠ n’, there exists a path from n to n’ and
another path from n’ to n. By symmetry, we only need to
show that there exists a path from n to n’. In the following,
we demonstrate how to construct such a path step by step.

Let D = {r | r is a receive event that exists in both n and
n’ but r has different send partners in n and n’.}. Note that
D is not empty, as otherwise n and n’ would be the same
sequence. There must exist an outgoing edge e of node n in
which the send partner of every receive event r ∈ D is
changed to match the send partner of r in n’. Let n’’ be the
destination node of e. If n’’ = n’, then there is a path from n
to n’ which only consists of edge e. Otherwise, the longest
common prefix between n’’ and n’ is longer than that
between n and n’, This is because every receive event r ∈ D
now has the same send partner s in n’’ and n’, and every
event that happens before r must be the same in n’’ and n’
(otherwise r and s could not have the same prime structures

in n” and n’ and thus could not both exist in n’’ and n’).
This process can be repeated until we reach n’.

From a graph-theoretic perspective, the goal of
reachability testing is to construct a spanning tree of an S/V
graph. Note that since an S/V graph is strongly connected,
reachability testing can start from an arbitrary node. Also
note that during reachability testing, each variant is used to
conduct only one test run. Therefore, in a spanning tree
constructed during reachability testing no two edges are
labeled with the same variant.

In Fig. 2, the left side shows the S/V graph of program P
in Fig. 1.a, and the right side shows a spanning tree that can
be generated during reachability testing of P.

Figure 2: The S/V-graph of the program in Fig. 1 and a
spanning tree of the S/V-graph

Now it becomes clear that the purpose of saving the test
history during reachability testing is to avoid visiting the
same node more than once. Therefore, the main challenge
for our new algorithm is to avoid visiting the same node
(i.e., exercising the same sequence) more than once without
saving a list of the nodes that have already been visited.
5.2 Path Constraints

Let G be the S/V graph of a program P with input I. The
main idea of our new algorithm is as follows: If we can find
several constraints on the paths through G such that given
two arbitrary nodes n and n’ in G, there is exactly one
acyclic path from n to n’ that satisfies these constraints,
then we can construct a spanning tree of G by only
generating those paths satisfying these constraints. In this
section, we will define three such path constraints. Note that
since it is possible that no path from one node to another
satisfies these constraints, enforcing these constraints alone
will not construct a spanning tree. This will be discussed in
Section 5.3. In Section 5.4, we will show how these
constraints are implemented in our new algorithm.

Let n and n’ be two arbitrary nodes in G. Let H =
n1e1n2e2 … nm, where n = n1 and n’ = nm, be a path from
node n to node n’ in G. We consider each edge ei to
represent a transformation of node ni into node ni+1. (Note
that we will use node/sequence and edge/variant
interchangeably.) This transformation is realized by
changing the send partners of some of the receive events in
node ni to derive a race variant ei and then performing
prefix-based testing with variant ei. In this manner,
sequence n is eventually transformed into n’. The path

Q0

Q1 Q2 Q3

Q4 Q5

V1 V2
V3

V4

V5

V4

Q0

Q1 Q2 Q3

Q4 Q5

V1 V2
V3

V4

V5

 6

constraints we present below impose restrictions on how the
send partner of a receive event can be changed at each edge
ei of path H.

C1: The send partner of a receive event can be
changed at most once along path H.

Constraint C1 ensures that H is an acyclic path. Assume
that there exists a cycle in H. Let nieini+1…nj be such a
cycle, where 1 ≤ i, j ≤ m, i ≠ j, and ni = nj. Note that ei
changes the send partner of at least one receive event r in ni.
Assume that the send partner of r is s in ni. Since ni = nj, the
send partner of r must have been changed back to s by some
edge ek, i < k < j. This is impossible, since the send partner
of r is already changed in ei, and it can be changed at most
once along path H.

Constraint C1 also implies that the send partner of a
receive event cannot be changed to a send event other than
its send partner in n’. In other words, if the send partner of
a receive event r is changed in an edge ei, then the new send
partner of r must match the send partner of r in n’. The
reason is because otherwise, in order to reach n’, the send
partner of r would have to be changed again sometime later,
which is impossible. In the following, we will say “a
difference is reconciled” between ni and n’, 1 ≤ i < m, if the
send partner of a receive event r is changed in edge ei to
match the send partner of r in n’.

C2: Differences must be reconciled in happens-
before order.

Let r1 and r2 be two receive events in node ni, 1≤ i < m,
such that r1 happens before r2. Assume that both events also
exist in node n’ but have different send partners in n’. Note
that in this case, r1 must not be in p-struct(r2, ni). Otherwise,
since p-struct(r2, ni) is not repeated in n’, r2 cannot exist in
n’. Also note that these two differences cannot be
reconciled at the same time (i.e., in the same edge), since
when we reconcile the difference with r1 in one edge, r2 will
be removed in that edge (see constraint (2) on deriving race
variants in section 4.1). Therefore, constraint C2 dictates
that if the difference with r1 is reconciled in edge ei and the
difference with r2 is reconciled in edge ej, then i < j.

Let fi be the longest common prefix between ni and n’,
1≤ i < m, where an event is included in fi if and only if it
exists in both ni and n’ and it has the same send partner in ni
and n’. We show that constraints C1 and C2 together ensure
that if i < j, then fi is a proper prefix of fj. First we show that
C1 ensures that fi is a prefix of fj. Assume that there is an
event a in fi that does not exist in fj. Then, there must exist a
receive event r such that r happens before a in ni, and the
send partner of r is changed in some edge ek, i < k ≤ j. This
is impossible, because r is in fi, which means that the send
partner of r in ni is the same as that in n’, and the send
partner of r is already changed in ek.

Next we show that C2 ensures that fi is a proper prefix
of fj. Observe that each edge e reconciles at least one
difference. It suffices to show that the reconciliation of each

difference adds one more receive event to the longest
common prefix. Let r be a receive event in a node nk, i < k
≤ j. Assume that the send partner of r in nk is different from
that in n’. Also assume that the send partner of r in nk was
changed in edge ek. By C2, all the receive events that
happen before r must have the same send partners in nk as
in n’; otherwise, the send partner of r cannot be changed in
ek. This means that r must be in fk+1.

C3: Each edge must reconcile as many differences as
possible.

Constraint C3 means that if a difference can be
reconciled by an edge without violating C1 and C2, then the
difference should be reconciled by that edge.

The following lemma shows that given any two nodes n
and n’ in an S/V graph, there is at most one path from n to
n’ that satisfies all three constraints.

Lemma 1: Let G be an S/V graph. Let n and n’ be two
arbitrary nodes in G. Then, there exists at most one path
from n to n’ that satisfies all the three constraints C1, C2
and C3.

Proof: Earlier we have shown that C1 can only be
satisfied by an acyclic path from n to n’. Next we show that
constraints C2 and C3 can be satisfied by at most one
acyclic path. We proceed by contradiction. Assume that
there exist two acyclic paths H1 and H2 from n to n’ that
satisfy C2 and C3. Let n’’ be the first node where the two
paths branch off. Let e1 and e2 be two outgoing edges of n’’
in paths H1 and H2, respectively. Then, there is at least one
difference reconciled in one of the two edges but not in the
other. Without loss of generality, let r be a receive event
such that its send partner is changed in e1 but not in e2.
Then, by C2, all the differences that happened before r must
have already been reconciled before node n’’. Therefore, r
could have been reconciled in e2, which means that e2 does
not satisfy C3, leading to a contradiction.

To illustrate the above constraints, consider the example
program in Fig. 1. In the S/V graph in Fig. 2, there exists an
edge from Q1 to Q0 that completes a cycle. Note that
send(r2, Q0) = s2 and send(r2, Q1) = s3. Therefore, the edge
from Q1 to Q0 must change the send partner of r2 from s3 to
s2. However, we note that the send partner of r2 has already
been changed once in V1. Therefore, the edge from Q1 to
Q0 will be prevented by C1.

As another example, consider path Q0Q3Q5 in Fig. 2.
This path is excluded from the spanning tree because r1
happens before r2 in Q0, however the difference with r1 is
reconciled in the second edge and the difference with r2 is
reconciled in the first edge, which violates C2.

Finally, consider path Q0Q2Q3 in Fig. 2. This path is
excluded from the spanning tree because the difference with
r2 could have been reconciled in V2, but was not, which
violates C3.

 7

5.3 Tangled Cycles
Unfortunately, in certain cases, there may be no path from
one node to another that satisfies all three constraints. Fig.
3.a shows a program involving threads T1, T2, T3, and T4.
As usual, we assume that each thread Ti has port pi. Fig. 3.b
shows all the possible SR-sequences of the program. Fig.
3.c shows the S/V graph of the program. Assume that node
Q0 is chosen as the start node. The dashed edges in Fig. 3.c
will be suppressed by constraint C1. Then, the only path left
in the S/V graph from Q0 to Q2 is Q0Q1Q2, which does not
satisfy constraint C2, since r1 happens before r2 in Q0 but
the difference with r2 is reconciled in V1 before the
difference with r1 is reconciled in V2.

We observe that since r1 happens before r2 in Q0,
constraint C2 states that the difference with r1 should be
reconciled before the difference with r2. However, in order
to reconcile the difference with r1, we must first collect
event s4, which is the send partner of r1 in Q2. But this can
only happen after we have reconciled the difference with r2,
since s4 occurs only after r2 receives the message sent by
s3. This gives rise to a cycle of reconciliation, called a
tangled cycle, which makes it impossible to find a path
satisfying constraint C2.

Our solution to this problem is to allow constraint C2 to
be violated if and only if such a tangled cycle occurs. In the
following discussion, we characterize such a cycle. As
usual, let n and n’ be two arbitrary nodes in an S/V graph.
Let H be a path from n and n’. We will refer to a receive
event r as a to-be-reconciled event w.r.t. n and n’, or simply
a to-be-reconciled receive event when n and n’ are implied,
if r exists in both n and n’ but has different send partners in
them.

Definition 6: Let r and r’ be two to-be-reconciled
receive events w.r.t. n and n’. Then, (1) r should be weakly
reconciled before r’ w.r.t. n and n’, denoted as r →wrb(n, n’)
r’ or simply r →wrb r’ when n and n’ are implied, if r
happens before r’ in n; (2) r should be strongly reconciled
before r’ w.r.t. n and n’, denoted as r →srb(n, n’) r’ or simply
r →srb r’ when n and n’ are implied, if r happens before the
send partner of r’ in n’.

Note that the weakly-reconciled-before relation is due to
constraint C2. By “weakly”, we mean that this relation can
be broken in certain cases. In contrast, the strongly-
reconciled-before relation is an absolute requirement of the
process of reconciliation, which says that certain events
must occur before a difference can be reconciled. By
“strongly”, we mean that this relation must be maintained
all the time.

Definition 7: A tangled cycle w.r.t. n and n’ consists of
a sequence of receive events r1, r2, …, rn, rn+1 = r1 in n and
n’ such that r1 →wrb(n, n’) r2 →srb(n, n’) r3 →wrb(n, n’) … →srb(n,

n’) rn+1, where 1 ≤ i ≤ n.
Note that in a tangled cycle, weakly-reconciled-before

and strongly-reconciled-before links must alternate. For
example, in Fig. 3, there exists a tangled cycle w.r.t. Q0 and
Q2: r1 →wrb r2 →srb r1.

If there exists a tangled cycle between n and n’, then it
is impossible to reconcile the receive events involved in the
cycle in the happens-before order. In this case, the cycle
must be broken at a weakly-reconciled-before link ri →wrb
rj, i.e., we should allow rj to be reconciled before ri, which
means that constraint C2 may not be maintained. Note that
the cycle cannot be broken by reconciling the difference
with ri. For this reason, we call ri as a non-cycle-breaking
event and rj a cycle-breaking event. Also note that if a cycle
has more than one weakly-reconciled-before link, then it
could be broken in different ways, each of which will result
in a different path from n to n’. In order to ensure that only
one of these paths is generated, we add a restriction that a
tangled cycle can only be broken at one of those links. To
make our choice consistent, we place a total order on all the
weakly-reconciled-before links based on the event ID of
their cycle-breaking events, i.e., a link r1 →wrb r1’ is smaller
than another link r2 →wrb r2’ if the event ID of r1’ is smaller
than the event ID of r2’. (We assume that every event has a
unique integer ID.) Then, a tangled cycle can only be
broken at the smallest weakly-reconciled-before link.

E1: Constraint C2 is allowed to be violated in order to
break a tangled cycle.

In Fig. 3, the only way to break the cycle is to reconcile
r1 before r2. This allows path Q0Q1Q2 to be generated
during reachability testing. Note that in this scenario,
constraint C2 is not maintained due to exception E1.

As discussed in Section 5.4, our new reachability testing
algorithm needs to solve the following problem. Let Q and
T be two SR-sequences. Let r and r’ be two to-be-
reconciled events w.r.t. Q and T. Assume that r happens
before r’ in Q, i.e., r →wrb r’. Now we want to determine
whether r →wrb r’ is a weakly-reconciled-before link in a
tangled cycle. Let R be the set of all the to-be-reconciled
receive events w.r.t. Q and T. We can organize all the
events in R into a graph G, where each node represents a to-
be-reconciled receive event. There are two types of edges
in G. Let r1 and r2 be two receive events in G. There is a

 T1 T2 T3 T4
s1: p2.send (a); r1: x = p2.recv (); r2: y = p3.recv (); s3: p3.send (c);
 s2: p3.send (b); if (y == c) {
 s4: p2.send (d);
 }
 r3: z = p3.recv ();

(a)

T1 T2 T3 T4

s1
r1

s2
r2

s3

r3

Q0

T1 T2 T3 T4

s1
r1

s2
r2

s3

r3’

s4

V1/Q1

T1 T2 T3 T4

s1

r1
s2

r2
s3

r3’

s4

V2/Q2

(b)

Q0

Q1 Q2

(c)

Figure 3. A tangled cycle

V1

V2

 8

weak edge from r1 to r2 if r1 →wrb r2, and a strong edge
from r1 to r2 if r1 →srb r2. Therefore, r →wrb r’ is involved
a tangled cycle if and only if r can be reached from r’ in G,
which can be accomplished by a modified depth-first search
algorithm that restricts that weak and strong edges must
alternate.

5.4 The Algorithm

Fig. 4 shows algorithm GenerateVariants. Given an SR-
sequence Q and the race variant that was used to collect Q,
this algorithm generates a subset of the variants of Q. In
algorithm GenerateVariants, the receive events in
sequences Q and V are colored either white, black or gray.
The color of a receive event r in V is inherited by the
equivalent event r in Q. (Recall that V is a prefix of Q so
each event in V is also in Q.) Receive events that are in Q
but not in V are colored white. The color of receive event r
restricts how r can be changed when deriving variants:
white indicates that the send partner of r can be changed;
black indicates that the send partner of r cannot be changed;
and gray indicates that the send partner r may be changed,
but only under certain conditions. More details about
assigning and using colors are provided below.

Next we use the example programs in sections 2 and 5.3
to illustrate how algorithm GenerateVariants enforces the
three path constraints C1, C2, and C3, and the exception
rule E1. A more detailed explanation on this can be found
in [14].

C1: The send partner of a receive event can be changed
at most once.

The method for enforcing this constraint is simple. In
step 3, if the send partner of a receive r in Q is changed to
derive a race variant V’, then the color of r in V’ is set to
black (due to statement (*) in GenerateVariants). In step 2,
black receive events are excluded from the heading of the
race table, which prevents the send partners of black
receives from being changed again. For example, in Fig.
1.b, variant V1 (the portion of Q1 that is above the dashed
line) was derived by changing the send partner of r2 from
s2 to s3. Therefore, the color of r2 in V1 will be black,
which is inherited by r2 in Q1. Thus, r2 will be excluded
from the heading of the race table, which prevents the send
partner of r2 from being changed, when we derive the race
variants of Q1.

Note that it is possible for a black receive r in sequence
Q to be removed when deriving variant V’ of Q. (If the send
partner of a receive event in Q is changed to generate
variant V’, then the events in Q that happen after the
changed event are not included in V’ (see section 4.1).) If r
were recollected in an SR-sequence Q’ derived from V’, the
color of r in V’ would not be inherited, which means that r’s
color would be white in Q’. As a result, the send partner of
r could be changed again. This scenario violates constraint
C1 and is prevented by statement (**), which sets the color

of a receive event r’ to black in V’ if (i) r’ happened before
r in V’ and (ii) r’ is not in p-struct(r, V’). This means that
the send partner of r’ cannot be changed in sequences
derived from V’. By Proposition 1, the only way to recollect
r is to change the send partner of such a receive event as r’.
Therefore, the fact that we cannot change the send partner
of r’ means that r cannot be recollected, which prevents the
above scenario.

C2: Differences must be reconciled in happens-before
order, with the following exception E1: Constraint C2 is
allowed to be violated in order to break a tangled cycle.

Constraint C2 is enforced by coloring some receive
events as gray. Essentially, if the send partner of a receive
event r is changed to derive variant V’, then the color of r’
is set to gray if r’ happens before r in V’ but r’ is not in p-
struct(r, V’). The send partner of a gray receive cannot be
changed unless they complete a tangled cycle that was
broken earlier due to Exception E1. This is because
otherwise the difference with r’ was reconciled after the
difference with r was reconciled, which violates C2. Note
that the color of a receive event r’ is not changed if r’ is in
p-struct(r, V’). This is because if the send partner of r’ is
ever changed, then r will not exist (since changing r’
changes r’s prime structure). Thus, it is impossible to
reconcile the difference with r before the difference with r’.
This implies that C2 can never be violated and thus the
color of r’ does not need to be changed.

Consider the program in Fig. 3. Variant V1 is derived by
changing the send partner of r2. Note that r1 happens
before s2 in V1 but is not in p-struct(r2, V1). Thus, the
color of r1 will be set to gray in V1 by statement (***) in
GenerateVariants. Note race variant V2 is derived from Q1
by changing the send partner of r1, which is a gray receive
event. The reason why V2 is not discarded is because
changing r1 completes the tangled cycle consisting of r1
and r2, which was broken earlier when the send partner of
r2 was changed in V1.

Constraint 3: Each edge in the S/V graph must
reconcile as many differences as possible.

This constraint is enforced in an implicit manner. Let n
and n’ be two nodes in the S/V graph. If a difference w.r.t.
n and n’ could be reconciled by an edge e, but is not, then
this difference will be marked and can never be reconciled
afterwards. Therefore, no path from n to n’ can be
generated if it contains any such edge as e, since there
exists at least one difference that cannot be reconciled
between n and n’. This is equivalent to saying that if we
generate a path from n to n’, then each edge in the path
must reconcile as many differences as possible.

The above idea is implemented by step 1 in
GenerateVariants, which removes “old” send events from
the race sets of “old” receive events. A send or receive
event in an SR-sequence Q is “old” if it also appears in the
variant V used to collect Q. For example, consider SR-
sequence Q2 in Fig. 1.b. Note that events r2 and s3 are old

 9

events because they appear in both V2 (the prefix of Q2
which is above the dashed line) and Q2. Therefore, s3 will
be removed from the race set of r2, which means that if we
did not change the send partner of r2 from s2 to s3 in V2,
then we would never be able to do that in the future.

The complexity of algorithm GenerateVariants is
dominated by the second step. The original table-based
algorithm is in O(Nv * Ne

3), where Nv is the number of race
variants of Q, and Ne the number of events in Q. The
modification for black receives does not change the
complexity. In the modification for gray receives, it takes
O(Ne) to determine if the change completes a tangled cycle.
Therefore, the complexity of this modification is O(Nv *
Ne

2). Note that this modification can be performed after the
first modification was completed. Therefore, the complexity
of the second step, and thus the complexity of the
algorithm, is O(Nv * Ne

3). As mentioned below, reachability
testing exercises every SR-sequence exactly once for many
applications. Since this algorithm is used to generate
variants for each sequence, in the average case, the
complexity of the entire testing process is O(NQ * Nv * Ne

3),
where NQ is the number of all possible SR-sequences.

We note that the new reachability testing algorithm may
exercise the same SR-sequence more than once if some

tangled cycles are interconnected. Two tangled cycles are
interconnected if one or more receive events are involved in
both cycles. This is because unlike for a regular cycle, it is
difficult to determine whether a change completes a tangled
cycle that was broken at an early point. However, our
empirical studies indicate that interconnected cycles are not
common.

Theorem 2: Let P be a message-passing program and I
an input of P. Let � be the set of all the feasible SR-
sequences of P with input I. Then, our new reachability
testing algorithm based on algorithm GenerateVariants has
the following properties:

I. It exercises every SR-sequence in � at least once.

II. It exercises every SR-sequence in � exactly once if
there is no interconnected cycles w.r.t. any two SR-
sequences in �.

The formal proof of Theorem 2 is presented in
Appendix.

6 Empirical Results
 We implemented our reachability testing algorithms in

a prototype tool called RichTest. RichTest provides a Java
class library that contains a race variant generator class, a
test driver class, a class for tracing and replaying SR-
sequences, and synchronization classes for simulating
semaphores, locks, monitors, and message passing with
selective waits. RichTest is implemented entirely in Java
and does not require any modifications to the JVM or the
operating system. We are applying this same approach to
build portable reachability testing tools for multithreaded
C++ programs that use thread libraries written for
Windows, Solaris, and Unix.

As a proof-of-concept, we conducted an experiment in
which RichTest was used to apply reachability testing to
several programs: (1) BB – a solution to the bounded-buffer
problem where the buffer is protected using either
semaphores, a Signal-and-Continue (SC) monitor, a Signal-
and-Urgent-Wait (SU) monitor, or a selective wait; (2) RW
– a solution to the readers/writers problem using either
semaphores, an SU monitor, or a selective wait; (3) DP – a
solution that uses an SU monitor to solve the dining
philosophers problem without deadlock or starvation.

Table 1 summarizes the results of our experiment. The
first column shows the name of the program. The second
column shows the test configuration for each program. For
BB, it indicates the number of producers (P), the number of
consumers (C), and the number of slots (S) in the buffer.
For RW, it indicates the number of readers and the number
of writers (W). For DP, it indicates the number of
processes. The third column shows the number of
sequences generated during reachability testing. There were
no interconnected cycles found for any of these programs.
As a result, RichTest was able to exercise every SYN-

VariantList GenerateVariants (SR-sequence Q, Variant V)
// Q was collected during prefix-based testing with V
begin
// 1: prune “old” send events from the race sets of “old” receive
// events in Q.
 for each receive event r in V (and thus in Q too) do
 race_set(r, Q) = race_set(r, Q) - race_set(r,V)

// 2: generate the race variants of Q, variants(Q), using the
// table based algorithm in section 4.2 with the following
// modifications for handling black and gray receive events:
a. modification for black receives: exclude black receives from
 the heading of the race table to prevent their send partners
 from being changed;
b. modification for gray receives: the send partner of a gray
 receive r cannot be changed unless the change reconciles
 the last deifference of a tangled cycle C that was broken at
 an early point and r is the non-cycle-breaking event of the
 smallest weakly-reconciled-before link in C

// 3: set the colors of receive events in the variants
 for each variant V’ in variants(Q) do
 for each receive r whose send partner is changed do
 r.color = black; … (*)
 for each receive r' that is not in p-struct(r, V’) do
 if r' happens before r in V’
 then r'.color = black; … (**)
 else if r' happens before send(r, Q) in V’
 and r’.color ≠ black
 then r'.color = gray; … (***)
 return variants(Q);
end
 Figure 4. Algorithm GenerateVariants

 10

sequence of these programs exactly once. To shed some
light on the total time needed to execute these sequences,
we observe that, for instance, the total execution time for
the DP program with 5 philosophers is 7 minutes on a
1.6GHz PC with 512 MB of RAM.

Program Configuration # of Seqs
BB-Select 3P + 3C + 2S 144
BB-Semaphore 3P + 3C + 2S 324
BB-MonitorSU 3P + 3C + 2S 720
BB-MonitorSC 3P + 3C + 2S 12096
RW-Semaphore 2R + 2W 608
RW-Semaphore 2R + 3W 12816
RW-Semaphore 3R + 2W 21744
RW-MonitorSC 3R + 2W 70020
RW-MonitorSU 3R + 2W 13320
RW-Select 3R + 2W 768
DP-MonitorSU 3 30
DP-MonitorSU 4 624
DP-MonitorSU 5 19330

Table 1. Experimental Results

The results in Table 1 show that the choice of
synchronization construct has a big effect on the number of
sequences generated during reachability testing. SC
monitors generate more sequences than SU monitors since
SC monitors have races between signaled threads trying to
reenter the monitor and calling threads trying to enter for
the first time. SU monitors avoid these races by giving
signaled threads priority over calling threads. Selective
waits generated fewer sequences than the other constructs.
This is because the guards in the selective waits are used to
generate open-lists that reduce the sizes of the race sets.

7 Related Work
One approach to testing concurrent programs is non-

deterministic testing, which executes the same program with
the same input many times and hope that faults will be
exposed by one of these repeated executions [3][10]. The
main problem with this approach is that because of lack of
control, some SYN-sequences may be exercised many times
while others are never exercised.

An alternative approach is deterministic testing, which
forces test runs to exercise selected SYN-sequences. The
SYN-sequences are usually selected from a global state
graph of a program (or of a model of the program) [11][12].
This approach suffers from the state explosion problem.
Moreover, it may select totally-ordered SYN-sequences that
are different linearizations of the same partial order, which
is inefficient.

Reachability testing combines non-deterministic and
deterministic testing. In [5] a reachability testing algorithm
for multithreaded programs that use shared variables was
described. In [9] a reachability testing algorithm for
asynchronous message-passing programs was reported,
which was later improved in [6]. The authors have recently
reported two reachability testing algorithms, one for

semaphore-based programs [7] and the other for monitor-
based programs [8], and a general model for reachability
testing [2]. All the existing algorithms need to save the
history of test sequences and thus have limited scalability.

Recently, there is a growing interest in techniques that
can directly explore the state space of actual programs
without constructing any models. Tools such as Java
PathFinder [13], VeriSoft [4] and ExitBlock [1] use partial
order reduction methods to reduce the chances of executing
totally-ordered synchronization sequences that only differ
in the order of concurrent events. In contrast, our
reachability testing algorithm deals with partial orders
directly – no totally-ordered sequences are ever generated.
In addition, the SYN-sequence framework used by
reachability testing is highly portable. This is because the
definition of a SYN-sequence is based on the language-
level definition of a concurrency construct, rather than the
implementation details of the construct. Our reachability
testing tool requires no modification to the thread scheduler
and is completely portable, while Java PathFinder,
VeriSoft, and ExitBlock all require access to the thread
scheduler to control program execution, and have limited
scalability.

8 Conclusion and Future Work
In this paper, we have described a new algorithm for

reachability testing of concurrent programs. For many
practical applications, this new algorithm can exercise
every possible SYN-sequence exactly once, without saving
the history of test sequences. This represents a significant
reduction in memory requirements and thus allows
reachability testing to be applied to large programs. We
note that since reachability testing is implementation-based,
it cannot by itself detect “missing SYN-sequences”, i.e.,
sequences that are valid according to the specification but
are not allowed by the implementation. In this respect,
reachability testing is complimentary to specification-based
approaches that select valid sequences from a specification
and determine whether they are allowed by the
implementation.

We are continuing our work on reachability testing in
the following three directions. First, exhaustive testing is
not always practical due to resource constraints. To seek a
trade-off between test effort and test coverage, we are
developing algorithms that can selectively exercise a set of
SYN-sequences according to some test coverage criteria.
Second, we are addressing the test oracle problem.
Reachability testing frequently executes a large number of
sequences, which makes it impractical to manually inspect
the output of all the test executions. At present, properties
such as freedom from deadlock and assertion violations can
be checked automatically in RichTest. We plan to build
new RichTest components so that advanced temporal
properties can be checked automatically as well. Third,
there is a growing interest in combining formal methods

 11

and testing. Formal methods are frequently model based,
which means that a model must be extracted from a
program. Since reachability testing is dynamic and can be
exhaustive, we are investigating the use of reachability
testing to construct complete models of the communication
and synchronization behavior of a concurrent program.

References

[1] D. L. Bruening. Systematic testing of multithreaded Java
programs. Master’s thesis, MIT, 1999.

[2] R. Carver and Y. Lei, A general model for reachability
testing of concurrent programs, to appear in Proc. of Intl.
Conf. on Formal Engineering Methods, 2004.

[3] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithread Java program test generation. IBM Systems
Journal, Vol. 41(1), pp. 111-125, 2002.

[4] P. Godefroid. Model Checking for Programming Languages
using VeriSoft. Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, pages 174-186,
Paris, January 1997

[5] G. H. Hwang, K. C. Tai, and T. L. Huang. Reachability
testing: An approach to testing concurrent software.
International Journal of Software Engineering and
Knowledge Eng. 5(4):493-510, 1995.

[6] Y. Lei and K. C. Tai, Efficient reachability testing of
asynchronous message-passing programs, Proc. 8th IEEE
Int’l Conf. on Engineering for Complex Computer Systems,
pp. 35-44, 2002.

[7] Y. Lei and R. Carver, Reachability testing of semaphore-
based programs, Proc. of COMPSAC, 2004.

[8] Y. Lei and R. Carver, Reachability testing of monitor-based
programs, Proc. of Software Engineering and Applications,
2004.

[9] K. C. Tai. Reachability testing of asynchronous message-
passing programs. Proc. of the 2nd International Workshop
on Software Engineering for Parallel and Distributed
Systems, pp. 50-61, 1997.

[10] S. D. Stoller. Testing concurrent Java programs using
randomized scheduling. In Proceedings of the Second

Workshop on Runtime Verification (RV), Vol. 70(4) of
Electronic Notes in Theoretical Computer Science. Elsevier,
2002.

[11] K. C. Tai. Testing of concurrent software. Proc. of the 13th
Annual International Computer Software and Applications
Conference, pp. 62-64, 1989

[12] R. N. Taylor, D. L. Levine, and Cheryl D. Kelly, “Structural
testing of concurrent programs”, IEEE Transaction on
Software Engineering, 18(3):206-214, 1992.

[13] W. Visser, K. Havelund, G. Brat, and S. Park. Java
PathFinder – Second Generation of a Java Model Checker. In
Proc. of Post-CAV Workshop on Advances in Verification,
2000.

Appendix

1 Correctness Proof of Theorem 2
Notations: Let P be a message-passing program. Let Q

be an SR-sequence of P with input X. Let Send(Q) be the
set of send events in Q. Let send(r, Q) be the send partner
of a receive event r in Q. Let Recv(Q) be the set of receive
events in Q. Let Sync(R, Q) = {<s1, r1>, ..., <sn, rn>},
where R = {r1, ..., rn} is a subet of Recv(Q), and si = send(ri,
Q). Let Min(R, Q), where R is a subset of Recv(Q), be a
subset of R consisting of receive events that are minimal
w.r.t. the happens-before relation of Q, i.e., Min(R, Q) = {r
∈R | no receive event r' ∈R such that r' →Q r}. Let Q1 and
Q2 be two SR-sequences, and let Diff(Q1, Q2) = {r ∈
Recv(Q1) ∩ Recv(Q2) | send(r, Q1) ≠ send(r, Q2)}, and
Cut(Q1, Q2) = Min(Min(Diff(Q1, Q2), Q1), Q2).
1.1 Part I of Theorem 2

Fig. 5 presents a procedure called Guided-RT, which
selects a race variant at each step to guide the testing
process until a given SR-sequence is eventually exercised.
We show that the race variant selected by Guided-RT is
generated by algorithm GenerateVariants at each step and
that procedure Guided-RT terminates.

http://cm.bell-labs.com/who/god/public_psfiles/popl97.ps
http://cm.bell-labs.com/who/god/public_psfiles/popl97.ps

 12

Lemma 1: In Guided-RT, the variant V at each iteration

is generated by algorithm GenerateVariants.
Proof: Let Qi, Vi, RTRi, RTCi, RTUi be the SR-sequence,

variant, RTR, RTC, and RTU at iteration i. Let r ∈ RTRi.
We show that (1) send(r, T) exists in Qi and send(r, T) ∈
race(r, Qi); (2) if r exists in Vi-1, then (2.1) send(r, T) does
not exist in Vi-1 (so that send(r, T) is not pruned from the
race set of r) (2.2) r.color != black; (2.3) if r.color = gray,
then changing the send partner of r to send(r, T) reconciles
the last difference in a tangled cycle in which r is the non-
cycle-breaking event of the smallest weakly-reconciled-
before link.

Case 1: First we show send(r, T) exists in Qi. This is
because otherwise, there must exist a receive event r' in T
so that r' →T send(r, T) (and thus r) but receives different
messages in T and Qi. This implies that r cannot be in
Cut(T, Qi), leading to a contradiction.

Next we show that (a) r does not happen before send(r,
T) in Qi and (b) letting r’ be the receive event with which
send(r, T) is synchronized in Qi, then r happens before r’.

Case 1.a: Assume that r happens before send(r, T) in Qi.
Since send(r, Qi) ≠ send(r, T), send(r, T) cannot exist in T
(by Proposition 2), leading to a contradiction.

Case 1.b: Assume that r’ happens before r. (Note that r’
and r must belong to the same process and thus cannot be
concurrent.) Since in T, send(r, T) is synchronized with r,
i.e., no longer with r', send(r', T) ≠ send(r, T) = send(r', Qi).
Thus r can't be in Cut(T, Qi), leading to a contradiction.

Case 2.1: Assume that send(r, T) also exists in Vi-1. We
show that r ∈ RTRi-1, which means that r will be reconciled
at iteration i - 1. Therefore, r cannot be in Cut(T, Qi),
leading to a contradiction.

First, we show that r ∈ Cut(T, Qi-1). Assume otherwise,
and consider two cases: (2.1.a) r is not in Min(Diff(T, Qi-1),
T); (2.1.b) r is in Min(Diff(T, Qi-1), T).

Case 2.1.a: There must exist a receive event r' such that
r' →T r and r' ∈ Min(Diff(T, Qi-1), T). If r' is in p-struct(r,
T), then r could not exist in Qi-1 (by event equality), leading
to a contradiction. If r' is not in p-struct(r, T), then r’ →T
send(r, T). Since send(r’, T) ≠ send(r’, Qi-1), send(r, T)
could not exist in Qi-1 (by Proposition 2), also leading to a
contradiction.

Case 2.1.b: There must exist a receive event r' happens
before r in Qi-1 such that r' ∈ Cut(T, Qi-1). (Otherwise, r ∈
Cut(T, Qi-1).) If r' is in RTRi-1, then r cannot exist in Vi-1
since r' will be reconciled in Vi-1, which will remove r from
Vi-1, leading to a contradiction. Otherwise, r' will not be
reconciled in Vi-1. Thus, r' ∈ Cut(T, Qi). This means that r
cannot exist in Cut(T, Qi), leading to a contradiction.

Next, we show r ∈ RTRi-1. Assume otherwise. Then,
there exists at least one receive event r' in Qi-1 such that r'
happens before r in Qi-1 and send(r', Qi-1) != send(r', T).
Since r ∈ Cut(T, Qi-1), r' is not in Cut(T, Qi-1). Therefore, r'
will not be reconciled at iteration i - 1. This implies that r is
not in RTCi. Further, since each iteration introduces no new
differences, if r is not in RTUi-1, then r is not in RTUi. It
follows that r is not RTRi, leading to a contradiction.

Case 2.2: Assume that r.color = white at iteration j - 1
and r.color = black at iteration j, j < i. Then, either (a)
send(r, Vj) != send(r, Qj) or (b) there exists a receive event
r' ∈ RTRj so that send(r', Vj) != send(r', Qj) and r happens
before r’ in Vj.

Case 2.2.a: In Guided-RT, the race outcome of r can be
changed only in (*). Thus, send(r, Vj) = send(r, T). This
means that r is not in Cut(T, Qi), leading to a contradiction.

Case 2.2.b: Note that r ∈ Diff(T, Qj). Since r happens
before r’ in Vj, r' cannot be in Cut(T, Qj), leading to a
contradiction.

Case 2.3: Assume that r.color = white at iteration j - 1
and r.color = gray at iteration j, j < i. Then, there exists a
receive event r' in RTRj so that send(r', Vj) != send(r', Qj),
and r happens before send(r', Qj) in Vj but is not in p-
struct(r’, Vj).

Procedure Guided-RT
// Input: A message-passing program P, an input X of P, and
// an SR-sequence T of P with input X
//Output: T is exercised by an execution of P with X
begin
 execute P with X non-deterministically to collect an
 SR-sequence Q0
 Q = Q0;
 while Cut(T, Q) is not empty do
 begin
 // 1: select a subset of events to reconcile
 // a. Ready-To-Change: receives that can be reconciled in
 // the happens-before order
 RTC = { r ∈ Cut(T, Q) | ∀r' ∈ Q: r' →Q r � send(r', Q) =
 send(r', T) };
 // b. Ready-To-be-Untangled: receives that need to be
 // untangled
 RTU = {};
 for each receive event r ∈(Cut(T, Q) - RTC) do
 if (∀ r’ ∈ Diff(T, Q), r’ →Q r � both r’ and r are involved
 in a tangled cycle w.r.t. Q and T)
 AND
 (r is the smallest cycle-breaking event of a tangled
 cycle w.r.t Q and T)
 then RTU = RTU + r;
 // c. Ready-To-be-Reconciled: the union of RTC and RTU
 RTR = RTC ∪ RTU;

 // 2. select a race variant which reconciles the differences
 // with the receives in RTR
 find a variant V in variants(Q) so that
 (1) Sync(RTR, V) = Sync(RTR, T); ... (*)
 (2) Sync(Recv(V) - RTR, V) = Sync(Recv(V) - RTR, Q)

 // 3: perform prefix-based testing
 perform a prefix-based testing of P with X using V, and let
Q
 be the new sequence
 end

 13

First, we show that r’ must be in RTUj. It suffices to
show that send(r', Qj) exists in both Vj and Q, and thus r
also happens before send(r', Qj) in Qj (since the prime
structure send(r', Qj) in Qj must be the same as that in Vj.
Assume otherwise. There must exist a receive event r'' in
RTRj such that r'' →Q send(r', Qj). This implies that r'
cannot be in RTRj, leading to a contradiction.

Next we show that changing the send partner of r to
send(r, T) reconciles the last difference of a tangled cycle.
Assume that r and r’ are involved in a tangled cycle C.
Since r’ is in RTRj, r’ is reconciled at iteration j. This means
that C is broken at iteration j. Since r is in Cut(Q, T) at
iteration i, all the differences in C must have been
completed between iteration j and iteration i. Therefore,
changing the send partner of r to send(r, T) reconciles the
last difference of C.

Lemma 2: Let Q1 and Q2 be two SR-sequences of
program P with input X. If Cut(Q1, Q2) is empty, then Q1
and Q2 are the same SR-sequence.

Proof: This lemma can be easily established,
considering that any difference between Q1 and Q2 can be
traced back to a message race.

Lemma 3: Algorithm Guided-RT must terminate.
Proof: We show that RTR must be non-empty at each

iteration. This implies that at least one difference between
Q and T will be reconciled at each iteration. Since the
number of differences between Q and T is finite, Guided-RT
must terminate.

We proceed by contradiction. Assume that both RTC
and RTU are empty at iteration i. Let r1 ∈ Cut(T, Qi). There
must exist a receive event r1' ∈ Diff(T, Qi) such that r1'
happens before r1 in Qi and r1 and r1’ are not involved in a
tangled cycle. Note that r1’ must not be in Min(Diff(T, Qi)),
as otherwise, r1 cannot be in Cut(T, Qi). Therefore, there
exists a receive event r2 ∈ Cut(T, Qi) such that r2 →T r1

’.
Note that r2 ≠ r1. Similarly, there must exist a receive event
r2' ∈ Diff(T, Qi) such that r2' happens before r2 in Qi and r2
and r2’ are not involved in a tangled cycle, and a receive
event r3 ∈ Cut(T, Qi) such that r3 is different from r1 and r2.
Assume that the number of receive events in Cut(T, Qi) is n.
We can repeat the above procedure to derive a sequence of
events r1, r2, ..., rn, rn+1, where rn+1 must be different from
r1, ..., rn, leading to a contradiction.
1.2 Part II of Theorem 2

We first introduce some definitions that are needed in
our proof.

Definition 1: Let Q1 and Q2 be two SR-sequences
exercised during reachability testing. Q1 is the parent of Q2
if Q2 is an SR-sequence exercised by prefix-based testing
with a variant V of Q1. In this case, it is also said that V
leads to Q2. Q1 is an ancestor of Q2 if Q1 is the parent of Q2
or there exists an SR-sequence Q3 such that Q1 is the parent
of Q3 and Q3 is an ancestor of Q2.

Definition 2: Let Q1 and Q2 be two SR-sequences
exercised during reachability testing. Q1 and Q2 are siblings
if neither Q1 is an ancestor of Q2 nor Q2 is an ancestor of
Q1.

Definition 3: Let Q1 and Q2 be two SR-sequences such
that Q1 is an ancestor of Q2. Then, between(Q1, Q2) = {Q |
Q1 is an ancestor of Q and Q is an ancestor of Q1 }.

The main idea of our proof is to show that given two
sequences Q1 and Q2 exercised by reachability testing, there
exists a race difference between Q1 and Q2, in the following
two cases: (1) Q1 is an ancestor of Q2 or Q2 is an ancestor
of Q1; (2) Q1 and Q2 are siblings.

Lemma 1: Let Q1 and Q2 be two SR-sequences
exercised by our reachability testing algorithm. There exists
at least one race difference between Q1 and Q2 if Q1 is an
ancestor of Q2 or Q2 is an ancestor of Q1.

Proof: By symmetry, it suffices to show that if Q1 is an
ancestor of Q2, then there exists at least one race difference
between Q1 and Q2.

Let V be the variant of Q1 that leads to Q2. There must
exist one race difference between Q1 and V. Let r be a
receive event in Q1 and V so that send(r, Q1) ≠ send(r, V).
Therefore, the color of r in V is black. According to our
algorithm, the race outcome of r will never be changed in
subsequent iterations. In addition, ∀r': r' →V r � the color
of r in V is black. This means that we cannot change the
race outcome of any receive happening before r in V in
subsequent iterations either. Therefore, r will never be
removed. Hence, r must exist in both Q1 and Q2 and send(r,
Q1) ≠ send(r, Q2).

Lemma 2: Let Q1 and Q2 be two sibling sequences.
Then, there must exist at least one race difference between
Q1 and Q2.

Proof: Let Q be the youngest common ancestor of Q1
and Q2. Let V1 and V2 be the two variants of Q that lead to
Q1 and Q2, respectively. There must exist at least one race
difference between V1 and V2. Let r be a receive event in V1
and V2 so that send(r, V1) ≠ send(r, V2). We consider the
following cases: (1) send(r, V1) ≠ send(r, Q), and send(r,
V2) ≠ send(r, Q); (2) send(r, V1) = send(r, Q) (of course,
send(r, V2) ≠ send(r, Q).) (3) send(r, V2) = send(r, Q) (of
course, send(r, V1) ≠ send(r, Q).). By symmetry, we only
need to consider cases (1) and (2).

Case (1): According to our algorithm, the color of r in
V1 and V2 is black. This means that the race outcome of r
will never be changed in V1 and V2. In addition, the color of
any receive event r’ that happens before r in V1 and V2 is
also black. This means that the race outcome of any receive
event happening before r will not be changed in both V1 and
V2. Therefore, r will never be removed from V1 and V2.
Hence, the race difference with r will be preserved in Q1
and Q2.

 14

Case (2): Note that the color of r in V2 is black, and the
color of r in V1 is either gray or white. Also note that since
send(r, V2) ∈ race(r, Q), send(r, V2) is also in V1.

Let Q’ be an arbitrary sequence in between(Q, Q1).
Then, send(r, V2) is an old send event in Q’ (because a send
event can never be recollected by Proposition 2). If r is an
old receive event in Q’, then send(r, V2) will be removed
from race(r, Q’). As a result, we will not be able to change
the send partner of r in Q1 to send(r, V2). Therefore, send(r,
Q1) ≠ send(r, Q2). (Note that send(r, V2) = send(r, Q2),
because the color of r in V2 is black, which means its send
event can never be changed afterwards.)

In the following, assume that r was removed in a race
variant V’ and then recollected in the SR-sequence Q' ∈
between(Q, Q1), which was collected from prefix-based
testing with V’. Therefore, there exists a receive event r' in
Q such that r' happens before r, r' is not in p-struct(r, Q),
and send(r', Q) ≠ send(r', Q'). Then, if send(r’, Q1) ≠
send(r’, Q2), there exists a race difference between Q1 and
Q2. Otherwise, we show that there must exist another race
difference between Q1 and Q2.

Note that send(r’, Q) = send(r', V1) = send(r', V2),
send(r', V1) ≠ send(r', Q'), and send(r', Q') = send(r', Q1).
Thus, send(r', V2) ≠ send(r', Q1). By assumption, send(r’,
Q1) = send(r', Q2). Thus, there must exist a sequence Q'' ∈
between(V2, Q2) such that send(r', V2) != send(r', Q'') (=
send(r’, Q2)). Note that the color of r' in V2 is gray (since
send(r, Q) ≠ send(r, V2)). Therefore, changing the send
partner of r’ to send(r', Q'') must reconcile the last
difference of a tangled cycle C w.r.t. Q and Q’’ (and thus
Q2) in which r’ is the non-cycle-breaking event of the
smallest weakly-reconciled-before link. If there exists no
race difference between Q1 and Q2, then C is also a tangled
cycle w.r.t. Q and Q1, and the last difference of C must be
completed at another receive event r''. This is impossible,
because by assumption, there is no interconnected cycle and
the only way to break a tangled cycle is to reconcile the
difference with the smallest cycle-breaking event.

