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Abstract— One approach to testing concurrent programs, called reachability testing, generates synchronization sequences 

automatically, and on-the-fly, without constructing any static models. In this paper, we present a general execution model for 

concurrent programs that allows reachability testing to be applied to several commonly used synchronization constructs. We also 

present a new method for performing reachability testing. This new method guarantees that every partially-ordered synchronization 

sequence will be exercised exactly once without having to save any sequences that have already been exercised. We describe a prototype 

reachability testing tool called RichTest and report some empirical results, including a comparison between RichTest and a partial 

order reduction based tool called VeriSoft.  RichTest performed significantly better for the programs in our study. 

 

Index Terms—Software Testing, Reachability Testing, Concurrent Programming 

 

I. INTRODUCTION 

concurrent program contains two or more threads that execute concurrently and work together to perform some task. Using 

multiple threads, a.k.a. multithreading, can increase computational efficiency. For instance, while one thread is waiting for 

user input, another thread can perform computational tasks in the background. In addition, many problem domains are, by nature, 

concurrent and can be solved more naturally by creating multiple threads. As an example, a web server typically creates separate 

threads to service incoming client requests. Some languages such as Java and Ada provide built-in support for concurrent 

programming. The POSIX Pthreads library can be used to write concurrent programs in other languages such as C and C++. 

While concurrent programs offer some advantages, they also exhibit non-deterministic behavior, making them notoriously 
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difficult to test. Multiple executions of a concurrent program with the same input may exercise different sequences of 

synchronization events (or SYN-sequences) and may produce different results. (The types of synchronization events that can 

appear in a SYN-sequence include send and receive events on communication channels, P and V events on semaphores, etc. A 

formal definition of a SYN-sequence is given in Section III.) One way to deal with non-deterministic behavior during testing is to 

execute the program with the same input many times and hope that faults will be exposed by at least one of the executions. This 

type of uncontrolled testing, called non-deterministic testing, is easy to carry out, but it can be very inefficient. It is possible that 

some SYN-sequences of the program are exercised many times whereas others are never exercised at all. Deterministic testing is 

an alternative approach in which executions are controlled so that user-specified SYN-sequences can be exercised. This approach 

allows a program to be tested with carefully selected SYN-sequences. However, selecting SYN-sequences for deterministic 

testing is a difficult problem. One commonly suggested approach is to select SYN-sequences from a static model of the program 

(or its design). However, static models are often inaccurate or may be too large to build.  

Reachability testing is an approach that combines non-deterministic and deterministic testing [6] [15] [19] [20] [21]. It is 

based on a technique, called prefix-based testing, which executes a test run deterministically up to a certain point and thereafter 

allows the test run to proceed non-deterministically. The novelty of reachability testing is two-fold. First, reachability testing 

adopts a dynamic framework in which SYN-sequences are derived automatically and on-the-fly, without constructing any static 

models. Second, reachability testing is an interleaving-free approach in which independent events are never totally ordered in a 

SYN-sequence. Therefore, reachability testing automatically avoids the problem of exercising more than one interleaving of the 

same partial ordering of events. This is in contrast to partial-order reduction techniques [5][13][14], which are based on an 

interleaving-based concurrency model (i.e., a state graph) and try to determine where interleavings can safely be suppressed. In 

practice, these techniques cannot always avoid exercising more than one interleaving of the same partial ordering of events.  

We use an example to illustrate the reachability testing process. Fig. 1(a) shows a concurrent program CP that consists of four 

threads. The threads interact by sending messages to, and receiving messages from, ports. Each send operation specifies a port as 

its destination, and each receive operation specifies a port as its source. Fig. 1(b) shows an application of reachability testing to 

CP. It begins by executing CP non-deterministically, which we assume exercises SYN-sequence Q0. We represent Q0 as a space-

time diagram in which a vertical line represents a thread, and a single-headed arrow represents a message passed asynchronously 

from a send event to a receive event. The race conditions in Q0 are then identified and the outcomes of one or more race 

conditions are changed to derive “race variants”, namely V1, V2, and V3, of Q0. (We will explain how to derive these race variants 

in Section VI.) Each variant is used to conduct a prefix-based test run, which forces the events and synchronizations in the variant 

to be replayed and then allows the test run to proceed non-deterministically. Prefix-based testing with V1, V2, and V3 exercises 
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sequences Q1, Q2, and Q3, respectively. (In Fig. 1(b) the sequence Qi and the variant Vi used to exercise it are shown in the same 

space-time diagram. The events and synchronizations in the variant are above the dashed line. The naming of the events will be 

explained in Section V.) No new variants can be derived from Q1, Q2, and Q3, so the reachability testing process stops. Note that 

Q0, Q1, Q2, and Q3 are all the (partially-ordered) SYN-sequences the example program can possibly exercise.  
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Figure 1. An example program and a reachability testing scenario of the program 

In this paper, we assume that the program under test is closed, i.e., the environment that the program interacts with is modeled 

as part of the program, and the only source of non-determinism is due to concurrency, i.e., the order in which threads synchronize 

and communicate. We also assume that a test driver is used to make every test run terminate. Under these assumptions, 

reachability testing of a concurrent program CP with a given input X will exercise every partially-ordered SYN-sequence of CP 

with input X. Note that data inputs can be selected using techniques such as domain partitioning, which is not discussed in this 

paper. It is worth noting that for certain types of programs, e.g., network protocols, the synchronization behavior is usually 

independent from data inputs.  

The main contributions of this paper are as follows. First, we present a general execution model for concurrent programs that 

allows reachability testing to be applied to several commonly used synchronization constructs, including asynchronous and 

synchronous message-passing, semaphores, and monitors. Second, we show how to extend traditional schemes for time-stamping 

events in a way such that race conditions can be identified in an execution that is modeled using our general execution model. 

Third, we present a new algorithm for computing the race variants of a SYN-sequence. Existing algorithms for computing race 

variants are interleaving-based, i.e., they generate race variants that represent all the possible interleavings of events and then 

filter out those that correspond to the same partial order [15][28]. Our algorithm generates partially ordered race variants in 

which independent events are never totally-ordered, and is thus more efficient than existing algorithms. Fourth, we present a new 

reachability testing algorithm for driving the testing process. In order to avoid exercising the same SYN-sequence more than 

once, all existing reachability testing algorithms need to save the history of SYN-sequences that have been exercised. Our new 

algorithm saves no SYN-sequences but still guarantees that every partially-ordered SYN-sequence is exercised exactly once. This 
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significantly reduces the space and time requirements of reachability testing. Finally, we describe a prototype reachability testing 

tool, called RichTest, and report some empirical results. RichTest is written in Java and makes no modification to the Java virtual 

machine or to the underlying operating system.  

The rest of this paper is organized as follows. Section II gives an overview of several commonly used synchronization 

constructs. Section III presents a general execution model for these synchronization constructs. Section IV shows how to assign 

timestamps to events in our execution model. Section V shows how to identify the race conditions in an execution. Section VI 

describes our new algorithm for computing race variants. Section VII presents our new reachability testing algorithm for driving 

the testing process. Section VIII describes the RichTest tool and reports some empirical results. Section IX briefly surveys related 

work. Section X provides concluding remarks and describes our plans for future work. 

II. OVERVIEW OF SYNCHRONIZATION CONSTRUCTS 

In this section, we briefly describe several commonly used synchronization constructs, including asynchronous and 

synchronous message passing, semaphores, and monitors. We assume that the queues associated with these constructs are First-

In-First-Out (FIFO), but the reachability testing algorithms presented later do not depend on this assumption; other queuing 

disciplines can be used. 

A. Asynchronous Message Passing 

Asynchronous message passing refers to non-blocking send operations and blocking receive operations. A thread that executes 

a non-blocking send operation proceeds without waiting for the message to arrive at its destination. A thread that executes a 

blocking receive operation blocks until a message is received. As shown below, each send operation specifies a destination port 

to which its message will be sent, and each receive operation specifies a source port from which a message will be retrieved.  

    Port p; 
    Thread1    Thread2 
    p.send(msg)      msg = p.receive(); 
 
We assume that ports use a FIFO (First-In-First-Out) message passing scheme, which guarantees that two messages sent by the 

same thread to a given port are received from that port in the order that they are sent. In practice, ports are often implemented 

using bounded buffers that can only hold a limited number of messages. In this case, a send operation can be blocked if the 

capacity of the buffer is reached.  
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B. Synchronous Message Passing 

 Synchronous message passing is the term used when send and receive operations are both blocking. The receiving thread 

blocks until a message is received. The sending thread blocks until it receives an acknowledgement that the message it sent was 

received by the receiving thread.  

Selective wait statements are commonly used with synchronous message passing to allow a combination of waiting for, and 

selecting from, one or more receive() alternatives [1]. The selection depends on guard conditions associated with each alternative 

of the selective wait:  

Port p1, p2; 
select 
 when (guard condition 1) => p1.receive(); 
or 
 when (guard condition 2) => p2.receive(); 
end select; 
 
A receive-alternative is said to be open, and thus selectable, if it does not have a guard condition, or if the value of the guard 

condition is true. Otherwise, the alternative is said to be closed and it cannot be selected. We restrict selective waits to having at 

most one receive-alternative for a given port. Also, we assume that the choice among multiple open alternatives in a selective 

wait is based on the order in which messages arrive. (Messages arrive at their destination some time after they are sent and they 

are queued until they are received.)  

C. Semaphores 

A semaphore is a synchronization object that is initialized with an integer value and is accessed through two operations named 

P and V.  For a counting semaphore s, at any time, the following relation, called the semaphore invariant, holds: 

(initial value of s) + (number of completed s.V() operations) ≥ (number of completed s.P() operations)  

A thread that starts a P() operation may be blocked inside P(), so the operation may not be completed right away. The invariant 

refers to the number of completed operations, which may be less than the number of started operations. For a counting 

semaphore, V() operations never block their caller and are always completed immediately. 

For a binary semaphore initialized to 1 (0), the first completed operation must be a P() (V()) operation, and the completion of 

P() and V() operations must alternate after that. Thus, the P() and V() operations of a binary semaphore may block the calling 

threads [2]. We assume that the queues of blocked threads associated with counting and binary semaphores are FIFO queues.  

D. Monitors 

A monitor is a high-level synchronization construct that supports data encapsulation and information hiding. At most one 

thread is allowed to execute inside a monitor at any time. Mutual exclusion is enforced by the monitor’s implementation, which 
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ensures that each monitor method is a critical section. Conditional synchronization is achieved using condition variables and 

operations wait() and signal(). A condition variable denotes a queue of threads that are waiting to be signaled that a specific 

condition is true. (The condition is not explicitly specified as part of the condition variable.) There are several different types of 

signaling disciplines [2]. When the Signal-and-Continue (SC) discipline is used, the signaling thread continues to execute in the 

monitor, and the signaled thread has to compete with other threads to reenter the monitor. When the Signal-and-Urgent-Wait 

(SU) discipline is used, the signaling thread exits the monitor and the signaled thread reenters the monitor immediately. We 

assume that the queues associated with a monitor and its condition variables are FIFO queues.  

III. GENERAL EXECUTION MODEL FOR REACHABILITY TESTING 

In this section, we present a general execution model for the synchronization constructs described in Section II. This model 

provides sufficient information for replaying an execution and for identifying race conditions in an execution. Replay techniques 

have already been developed for these constructs [7] [29]. Our execution model contains all the information required by these 

techniques. In Section V, we will discuss how to identify the race conditions in an execution that is represented using our model. 

We first show, for each synchronization construct, what events are modeled in a concurrent execution: 

� Asynchronous and synchronous message-passing: When a thread T performs a send (receive) operation, a send (receive) 

event occurs on T. 

� Semaphore: When a thread T calls a P() or V() operation on a semaphore s, a semaphore call event occurs on T. When a P() or 

V() operation on a semaphore s is completed, a semaphore completion event occurs on s.  

� SU monitor: When a thread T calls a method of monitor M, a monitor call event occurs on T. When T eventually enters M, a 

monitor entry event occurs on M, and then T starts to execute inside M. Note that reentries into an SU monitor are not 

modeled since they do not compete with other threads and thus do not involve any race conditions. 

SC monitor: When a thread T calls a method of monitor M, a monitor call event occurs on T. A monitor call event also occurs 

when T tries to reenter a monitor M after being signaled. When thread T eventually (re)enters M, a monitor entry event occurs on 

M, and T starts to execute inside M.  

In our general execution model, we refer to a send or call event as a sending event, and a receive, completion, or entry event as 

a receiving event. We refer to a semaphore or monitor generally as a synchronization object. If a sending event s is synchronized 

with a receiving event r in an execution (i.e., a sent message is received, or a called semaphore operation is completed, or a called 

monitor method is entered), we refer to <s, r> as a synchronization pair and say that s is the sending partner of r and r is the 

receiving partner of s.   

Definition 1: Let Q be the SYN-sequence exercised by a concurrent execution. Then, Q is defined as a tuple (Q1, Q2, …, Qn, 
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Φ), where Qi is the totally-ordered sequence of sending and receiving events that occurred on a thread or a synchronization 

object, and Φ is the set of synchronization pairs exercised in the execution.  

The notion of a SYN-sequence has been defined for many different concurrent programming languages and constructs [9], and 

has been used for the specification and testing of concurrent programs [7][8][29][30]. Note that the outcome of a concurrent 

execution is determined by the program text, the input, and the SYN-sequence exercised by the execution. In this paper, we deal 

with non-deterministic executions of the same program with the same input. Thus, we will characterize a concurrent execution 

simply as the SYN-sequence exercised by the execution. Unless otherwise specified, all the SYN-sequences are assumed to be 

exercised by executions of the same program with the same input. 

Definition 2: Two SYN-sequences Q and Q’ are equal, denoted as Q = Q’, if there exists a one-to-one mapping m from the 

events in Q to those in Q’ that preserves the synchronization relation, i.e., <m(s), m(r)> is a synchronization pair in Q’ if and only 

if <s, r> is a synchronization pair in Q. 

As shown in Fig. 1, a SYN-sequence is often depicted using a space-time diagram. Intuitively, two sequences are equal if their 

space-time diagrams are the same except for possibly their event labels. We will use send(r, Q) to denote the sending partner of a 

receiving event r, if the sending partner exists, in a SYN-sequence Q. Note that send(r, Q) is undefined if r is not synchronized 

with any sending event in Q.  To encode certain information about each event, we introduce the notion of an event descriptor:  

� A descriptor for a sending event s is denoted by (Sender, Destination, Operation, i), where Sender is the thread executing the 

sending event, Destination is the destination thread or synchronization object, Operation is the type of the operation 

performed (P, V, send, receive, etc), and i is the event index indicating that s is the ith event exercised by the sending thread. 

�  A descriptor for a receiving event r is denoted by (Receiver, OpenList, i), where Receiver is the receiving thread or object, 

OpenList is a field to be defined later that assists in identifying race conditions, and i is the event index indicating that r is the 

ith event occurring on the receiving thread or object.  

The individual fields of an event descriptor are referenced using dot notation. For example, the Operation of a sending event s is 

referred to as s.Operation.  

 Tables 1 and 2 summarize the specific information that is contained in the event descriptors for the synchronization constructs 

described in Section II. Although the information is construct-specific, the format, as well as the general meaning of each field in 

the event descriptor, is the same for all constructs. This allows us to present a single race analysis algorithm that operates on 

event descriptors and thus works for all the constructs. The values for the fields in the event descriptors are straightforward, 

except for the OpenLists of the receiving events, which are discussed below. 

Figs. 2 through 5 show an example execution for each of the synchronization constructs. In each diagram, the event descriptor 
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of an event is shown beside the name of the event and inside a pair of parentheses. A solid arrow is drawn from a sending event s 

to a receiving event r, indicating that <s, r> is a synchronization pair. The brackets as well as the dashed arrows will be explained 

in Section IV. Below we use Figs. 2 through 5 to illustrate how to compute the OpenList of a receiving event. 

Synchronization construct Sender    Destination Operation i 
 asynchronous message passing sending thread ID Port ID send event index 
synchronous message passing sending thread ID Port ID send event index 

semaphores calling thread ID semaphore ID P or V event index 
monitors calling thread ID monitor ID method name event index 

Table 1. Event descriptors for a sending event s. 

 
Synchronization construct Receiver OpenList i 
 asynchronous message passing receiving thread ID the port of r event index 
synchronous message passing receiving thread ID open ports (including r’s port) event index 

semaphores semaphore ID operations (P and/or V) that could  
be completed at r event index 

monitors monitor ID all of the monitor’s methods event index 

Table 2. Event descriptors for a receiving event r. 

• Asynchronous message-passing: The OpenList of a receive event r contains a single port, which is the source port of r. A send 

event s is said to be open at r if port s.Destination is in the OpenList of r, which means that the ports of s and r match. Fig. 2 

shows an asynchronous message-passing execution. Thread T1 sends two messages to port p1. Thread T3 sends its first 

message to port p1 and its second message to port p2. Thread T2 first receives two messages from port p1, followed by one 

message from port p2, and then another message from port p1. In Fig. 2, s2 is open at r1 since the ports of s2 and r1 match.   

T1                  T2                   T3

s2:(T1,p1,send,1) [1,0,0]

r1:(T2,{p1},1)
[0,1,1]

s1:(T3,p1,send,1)[0,0,1]

r2:(T2,{p1},2)
[1,2,1]

s3:(T3,p2,send,2)[0,0,2]r3:(T2,{p2},3)
[1,3,2]

r4:(T2,{p1},4)
[2,4,2]

s4:(T1,p1,send,2)[2,0,0]

 

Figure 2. An asynchronous message passing execution. 

• Synchronous message-passing: The OpenList of a receive event r that occurs inside a selective wait is the list of ports that had 

open receive-alternatives when r was selected. Note that this list always includes the source port of r. For a receive event r 

that does not occur inside a selective wait, the OpenList contains only the source port of r. Event s is said to be open at r if the 

destination port of s is in the OpenList of r. Fig. 3 shows a synchronous message-passing execution. Thread T1 sends two 

messages to port p1, and thread T3 sends two messages to port p2. Thread T2 executes a selective wait with receive-

alternatives for p1 and p2. In Fig. 3, the OpenLists for the receive events indicate that during execution, each time the receive-

alternative for p2 was selected, the receive-alternative for p1 was open, and each time the receive-alternative for p1 was 
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selected, the receive-alternative for p2 was closed.  

T1                       T2                   T3

s2:(T1,p1,send,1)[1,0,0]

r1:(T2,{p1,p2},1)
[0,1,1]

s1:(T3,p2,send,1)[0,0,1]

r2:(T2,{p1},2)
[1,2,1]

s3:(T3,p2,send,2)[0,1,2]r3:(T2,{p1,p2},3)
[1,3,2]

r4:(T2,{p1},4)
[2,4,2]

s4:(T1,p1,send,2) [2,2,1]

 

Figure 3. A synchronous message passing execution. 

• Semaphores: For a completion event e that represents the completion of a P() or V() operation, the OpenList of e specifies the 

types of operations (P and/or V) that could be completed at e. OpenLists can easily be computed at runtime based on the 

semaphore invariant. A call event c is open at a completion event e if c.Destination = e.Receiver, and c.Operation is in 

e.OpenList. Fig. 4 shows a semaphore-based execution with threads T1 and T2, and a binary semaphore s initialized to 1. T1 

and T2 both perform a P() and a V() operation on s. In this diagram, semaphore s is also represented as a vertical line, which 

contains the completed P and V events that occur on s. In Fig. 4, the OpenLists for the receiving events model the fact that the 

completion of P and V operations on a binary semaphore must alternate.  That is, the OpenList for an event representing a P 

(V) operation only contains P (V), not V (P). 

T1                  s                 T2

c3:(T1,s,P,1)[1,0]

e1:(s,{P},1)
[0,1]

c1:(T2,s,P,1)[0,1]

e2:(s,{V},2)
[0,2]

c2:(T2,s,V,2)[0,2]

e3:(s,{P},3)
[1,2]

e4:(s,{V},4)
[2,2]

c4:(T1,s,V,2)[2,2]

P

V

P

V

 

Figure 4. A semaphore-based execution. 

• Monitors: The OpenList of a monitor is the list of all of the (public) methods defined on the monitor since entry into a monitor 

is never guarded. A call event c is open at an entry event e if the called monitor of c is the owning monitor of e, i.e., 

c.Destination = e.Receiver. Fig. 5 shows a monitor-based execution involving threads T1 and T2 and an SC monitor M. Two 

methods, m1 and m2, are defined on monitor M. Thread T1 enters M first by calling m1 and executes a wait() operation. Then, 

thread T2 enters M by calling m2, executes a signal() operation that signals T1, and then exits M. Note that event c3 occurs 

when T1 tries to reenter M after being signaled by T2. In Fig. 5, the OpenList of each entry event always includes methods m1 

and m2 defined in monitor M. 
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MT1 T2

c1:(T1,M,m1,1)[1,0] e1:(M,{m1,m2},1)
[1,0]

c2:(T2,M,m2,1) [0,1]e2:(M,{m1,m2},2)
[1,1]

e3:(M,{m1,m2},2)
[2,1]

c3:(T1,M,m2,2) [2,1]

wait

signal

m1

m2

m2

 

 Figure 5. A monitor-based execution. 

Note that we have shown in [6] that our general execution model can also be applied to locks, which are another commonly used 

synchronization construct. Since locks and binary semaphores can be handled similarly, and due to space constraints, locks are 

not discussed in this paper. Our general model can also be used to handle shared variables by modeling a read (write) operation 

as receiving (sending) a message from (to) a shared variable. Again, due to space constraints, details of this extension are not 

discussed in this paper. If a program correctly protects accesses to shared variables using a semaphore (which can be a binary 

semaphore or a counting semaphore whose initial value is 1) or a monitor, then the program can be handled by our general model 

as a semaphore- or monitor-based program. 

IV. TIMESTAMP ASSIGNMENT 

In this section, we show how to assign vector timestamps to the events in an execution that is modeled using our general 

execution model. These timestamps can be used to determine the happened-before relation between events. This relation is 

needed to identify the race conditions in an execution, as shown in Section V. Intuitively, an event e1 happened before another 

event e2 in a SYN-sequence Q if e1 could potentially affect e2 [18]. We denote this as e1 →Q e2, or simply e1 → e2 if Q is implied.  

A vector timestamp scheme for asynchronous message passing has already been developed [11] [22]. In this scheme, each 

thread maintains a vector clock. A vector clock is a vector of integers that are used to keep track of the integer clock of each 

thread. The integer clock of a thread is initially zero, and is incremented each time the thread executes a send or receive event. 

Each send and receive event is also assigned a vector timestamp. In the following, we will use v[i] to denote the i-th component 

of vector v, and max(v1, v2) to denote the component-wise maximum of vectors v1 and v2. 

Let T.v be the vector clock maintained by a thread T. Let e.ts be the vector timestamp of an event e. The vector clock of a 

thread is initially a vector of zeros. The following rules are used to update vector clocks and assign timestamps to the send and 

receive events for asynchronous message passing: 

1. When a thread Ti executes a non-blocking send event s, it performs the following operations: (a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = 

Ti.v. The message sent by s also carries the timestamp s.ts. 
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2. When a thread Tj executes a receive event r that receives the message sent by s, it performs the following operations: (a) Tj.v[j] = 

Tj.v[j] + 1; (b) Tj.v = max(Tj.v, s.ts); (c) r.ts = Tj.v. 

In Fig. 2, the vector timestamp of each event that is assigned using the above scheme is shown inside a pair of brackets. 

A vector timestamp scheme for synchronous message passing has also been developed [11], but this scheme must be extended 

for race analysis. The traditional timestamp scheme for synchronous message passing assigns the same timestamp to the send and 

receive events in a synchronization pair: 

1. When a thread Ti executes a blocking send event s, it performs the following operation: Ti.v[i] = Ti.v[i] + 1. The message sent by 

s also carries the vector clock Ti.v.  

2. When a thread Tj executes a receive event r that receives the message sent by s, it performs the following operations: (a) Tj.v[j] = 

Tj.v[j] + 1; (b) Tj.v = max(Tj.v, Ti.v); (c) r.ts = Tj.v. Thread Tj also sends Tj.v back to thread Ti. 

3. Thread Ti receives Tj.v and performs the following operations (a) Ti.v = max(Ti.v, Tj.v); (b) s.ts = Ti.v.  

Let s be a send event and r a receive event such that <s, r> is a synchronization pair. In the above scheme, s and r are assigned 

with the same timestamp and are considered to happen at the same time. However, in order to support race analysis, synchronous 

send and receive events should not be considered to happen at the same time. Assume that two threads T1 and T2 each send a 

message to another thread T3, and they send these messages at the same time. Let s and s’ be the two send events executed by T1 

and T2, respectively. Suppose that T3 receives the message sent by T1 first and then the message sent by T2. Let r and r’ be the 

two receive events executed by T3, in that order, meaning that <s, r> and <s’, r’> are two synchronization pairs.  In the traditional 

timestamp scheme, s’ will be considered to happen at the same time as r’, which happens after r and thus also happens after s, 

whereas the messages were actually sent by T1 and T2 at the same time and both s and s’ could be synchronized with r. 

Therefore, we need to make a slight modification to the above scheme.  Our new scheme for synchronous message-passing is 

shown below. 

1. When a thread Ti executes a blocking send event s, it performs the following operations: (a) Ti.v[i] = Ti.v[i] + 1;  

(b) s.ts = Ti.v. The message sent by s also carries the timestamp s.ts. 

2. When a thread Tj executes a receive event r that receives the message sent by s, it performs the following operations: (a) Tj.v[j] = 

Tj.v[j] + 1; (b) Tj.v = max(Tj.v, s.ts); (b) r.ts = Tj.v. Thread Tj also sends Tj.v back to thread Ti. 

3. Thread Ti receives Tj.v and performs Ti.v = max(Ti.v, Tj.v). 

Note that in the above scheme, the vector clocks of Ti and Tj are exchanged, but the timestamps of s and r are not. In Fig. 3, the 

timestamp of each event is shown inside a pair of brackets. Note that the dashed arrows represent applications of rule (3). 

Next we describe a timestamp scheme for semaphores and monitors. In this scheme, each thread and synchronization object 
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maintains a vector clock. As before, position i in a vector clock refers to the integer clock of thread Ti. Synchronization objects 

maintain a vector clock but they do not have integer clocks; thus, a synchronization object does not have a position in a vector 

clock.  Let T.v (or O.v) be the vector clock maintained by thread T (or synchronization object O).  The vector clock of a thread or 

synchronization object is initially a vector of zeros. The following rules are used to update vector clocks and assign timestamps to 

events: 

1. When a thread Ti executes a sending event s, it performs the following operations: (a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v; 

2. When a receiving event r that is synchronized with a sending event s occurs on a synchronization object O, the following 

operations are performed: (a) O.v = max(O.v, s.ts); (b) r.ts = O.v;. 

3. Semaphore: When a thread Ti finishes executing a P() or V() operation on semaphore O, it updates its vector clock using the 

component-wise maximum of Ti.v and O.v, i.e., Ti.v = max(Ti.v, O.v). 

SU monitor: When a thread Ti finishes executing a method of monitor O, it updates its vector clock using the component-wise 

maximum of T.v and O.v, i.e., T.v = max(T.v, O.v). 

SC monitor: When a thread Ti finishes executing a method of monitor O, or when Ti is signaled while waiting on a  condition 

variable of O, it updates its vector clock using the component-wise maximum of Ti.v and O.v, i.e., Ti.v = max(Ti.v, O.v). 

In Figs. 4 and 5, the timestamp of each event is shown inside a pair of brackets. Again, dashed arrows represent applications of 

rule (3).  

Proposition 1 shows how to use vector timestamps to determine the happened-before relation between two arbitrary events. 

This proposition is an extension of the results in [11][22] for covering semaphore- and monitor-based executions.. 

Proposition 1: Let X be an execution involving threads T1, T2, …, Tn. Let Q be the SYN-sequence exercised by X. Assume that 

every event in Q is assigned a vector timestamp as described above. For a sending or receiving event e, let e.tid be the (integer) 

thread ID of the thread that executes e. (If event e is a completion event on a semaphore or an entry event on a monitor, then e.tid 

is the thread ID of the thread that executes the sending partner of e.) Let e1 and e2 be two events in Q. Then, e1 → e2 if and only if 

(1) <e1, e2> is a synchronization pair; or (2) e1.ts[e1.tid] ≤ e2.ts[e1.tid] and e1.ts[e2.tid] < e2.ts[e2.tid]. 

V. RACE ANALYSIS 

In this section, we show how to identify the race conditions in a concurrent execution. As shown later, a race condition is a 

phenomenon involving an execution and the possible alternatives of this execution. Thus, we need to draw a correspondence 

between the events in the original and alternative executions. For this purpose, we introduce the notion of event equality, which 

formally defines what it means for an event in one execution to be the same as, or equal to, an event in another execution.  
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A. Event Equality 

We define event equality based on the “control-structure” of an event. Informally, the control-structure of event e contains all 

the events, as well as the synchronizations between them, that could possibly control whether or not event e is executed. Fig. 6(a) 

shows a SYN-sequence Q for an asynchronous message passing execution. Send event s3 happened before receive event r3 since 

(s3, r3) is a synchronization pair. (Recall that one event happens before another if the former could potentially affect the latter 

[2].)  Receive event r1 also happened before r3 since T2 executes r1 before it executes r3. However, there is a subtle distinction 

between the happened-before relation between s3 and r3 and that between r1 and r3. Let L be the statement whose execution gives 

rise to the occurrence of r3. Then, whether or not statement L is executed, i.e., whether or not r3 occurs, may depend on the 

control exerted by the execution of events s1 and r1, but it does not depend on the execution of s3. Therefore, events r1 and s1 are 

said to be in the “control-structure” of r3, whereas s3 is not considered to be in the control-structure of r3. 

T1             T2             T3             T4 T1             T2             T3             T4

s1
r1

s4 r3

r4

s3

r2 s2 s1
r1

s4 r3

r5

s3

r2 s2

Figure 6(a). Sequence Q Figure 6(b). Variant V  of Q and sequence Q1 1 
 

Definition 3: Let e be an event exercised by a thread T in a SYN-sequence Q. Then, the control-structure of e in Q, denoted 

as c-struct(e, Q), is empty if e is the first event exercised by T; otherwise, it is the prefix of Q that contains the event f that T 

exercised immediately before e and all the events that happened before f, including the synchronizations between these events. 

Note that the control-structure of a sending event s consists of all the events that happened before s, whereas the control-

structure of a receiving event r may not include all the events that happened before r.  As an example, in sequence Q in Fig. 6(a), 

c-struct(s3, Q) contains r2 and s2, whereas c-struct(r3, Q) contains s1 and r1, but not s3, s2, and r2.  

The following definition shows that two events are equal if their control-structures are equal. Note that the control-structure of 

an event is also a SYN-sequence and the equality of control structures can be determined by Def. 2. 

Definition 4: Let CP be a concurrent program. Let Q and Q’ be two SYN-sequences of CP with input X. Let e be an event in 

Q and e’ an event in Q’. Events e and e’ are equal, denoted as e = e’, if c-struct(e, Q) = c-struct(e’, Q’). 

Fig. 6(b) shows a race variant V1 of Q and a SYN-sequence Q1 collected from prefix-based testing with V1, where V1 is the 

portion of Q1 that is above the dashed line. Note that equal events in Q and Q1 are given the same event label. As an example, 

event s4 in Q equals event s4 in Q1 since both c-struct(s4, Q) and c-struct(s4, Q1) contain only one send event, namely s1, and thus 

are equal to each other. As another example, event r3 in Q equals event r3 in Q1, because both c-struct(r3, Q) and c-struct(r3, Q1) 

contain two events, namely s1 and r1, and <s1, r1> is a synchronization pair in both Q and Q1. We will consider equal events in 
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different SYN-sequences to be the same event and always give equal events the same label. Note that this is how the events in 

Fig. 1 are labeled. Doing so allows us to refer to the control-structure of an event e without referring to any one of the possibly 

many SYN-sequences that e may appear in, i.e., we can simply write c-struct(e).  

Note that Def. 4 is a conservative definition of event equality. For example, Q and Q1 in Fig. 6 are different sequences. Event 

r5 in Q1 is a new event that does not appear in Q. Event r5 was caused by changing r3’s sending partner from s3 to s4 in variant V1. 

Note that events r4 and r5 might be generated by the same receive statement in Thread2, and r3 may receive from s4 the same 

value that it received from s3, but r4 and r5 are still not considered to be equal events. This reflects the fact that Q and Q1 are 

considered to be different SYN-sequences even though the outcome of the program might be the same regardless of which 

sequence is exercised. Some discussion on how to avoid exercising equivalent sequences is provided at the end of Section VII. 

B. Computing Race Sets 

Intuitively, there exists a race condition or simply a race between two sending events if they can be synchronized with the same 

receiving event in different executions. Note that races are caused by factors such as variations in thread scheduling and message 

delays. In order to accurately determine all the races in an execution, the program’s logic must be analyzed. Detecting races using 

static analysis is undecidable for arbitrary programs [4] and is NP-complete for even very restricted classes of programs (e.g. 

those containing no branches) [31]. However, for the purpose of reachability testing, we only need to consider a special type of 

race, called a lead race. Lead races can be identified by analyzing the SYN-sequence of an execution, i.e., without analyzing the 

program’s logic.  

Definition 5: Let Q be the SYN-sequence exercised by an execution of a concurrent program CP with input X. Let s be a 

sending event and r be a receiving event in Q such that <s, r> is a synchronization pair. Let s’ be another sending event in Q. 

There exists a lead race between s’ and s with respect to r in Q if s’ and r can be synchronized with each other during another 

execution of CP with input X in which all the events that happen before s’ or r in Q, as well as the synchronizations between these 

events, are replayed.  

Def. 5 requires all the events that can potentially affect s’ or r in Q to be replayed and thus guarantees that s’ and r will be 

exercised in the alternative execution. In the rest of this paper, a race is assumed to be a lead race unless otherwise specified. 

Recall that the control-structure of a receiving event r does not include its sending partner. Otherwise, if the control-structure 

of r was defined to include its sending partner, then whenever r was synchronized with a different sending partner, r’s control-

structure would be different and r would become a different event. As a result, we would not be able to express the phenomenon 

that the same receiving event can be synchronized with different sending partners. 

Definition 6: Let Q be a SYN-sequence. Let s be a sending event and r be a receiving event in Q such that <s, r> is a 
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synchronization pair. The race set of r in Q, denoted as race_set(r, Q) or race_set(r) if Q is implied, is the set of sending events in 

Q that have a race with s w.r.t. r. Formally, race_set(r, Q) = {s’ ∈ Q | there exists a race between s’ and s with respect  to r}. 

Proposition 2 describes how to compute the race set of a receiving event. This proposition is an extension of the result in [27] 

for covering synchronous message-passing, semaphore-, and monitor-based executions. 

Proposition 2: Let Q be a SYN-sequence. A sending event s is in the race set of a receiving event r in Q if (1) s is open at r; 

(2) r does not happen before s; (3) if <s, r’> is a synchronization pair, then r happens before r’; and (4) if a sending event s’ has 

the same source and destination as s but happens before s, then there exists a receiving event r’ such that <s’, r’> is a 

synchronization pair and r’ happens before r. 

The last condition in the above proposition deserves some explanation. For asynchronous and synchronous message-passing, 

this condition reflects the assumed FIFO message ordering scheme. That is, since messages sent from the same thread to the same 

port are received in the order they are sent, the message sent by s cannot be received by r unless the message sent by s’ has been 

received before r. Similarly, for semaphores and monitors this condition reflects the fact that calls to P() and V() operations and 

monitor methods that are made by the same thread are completed in the order that they are called. 

Below we show the race set of each receiving event in the example executions in Figs. 2 through 5: 

• Asynchronous message passing. The race set of each receive event in Fig. 2 is as follows: race_set(r1) = {s2}, race_set(r2) = 

race_set(r3) = race_set(r4) = {}. Note that s3 is not in race_set(r2) because s3 is sent to a different port and thus s3 is not open 

at r2. For the same reason, s4 is not in race_set(r3). Also note that s4 is not in race_set(r1), because the FIFO message ordering 

scheme requires  s2 to be synchronized with r1 before s4.   

• Synchronous message passing. The race set of each receive event in Fig. 3 is as follows: race_set(r1) = {s2}, race_set(r2) = { }, 

race_set(r3) = {s4}, and race_set(r4) = { }. Note that s3 is not in race_set(r2) because p2 is not in the OpenList of r2, and thus s3 is 

not open at r2.  

• Semaphores. The race set of each completion event in Fig. 4 is as follows: race_set(e1) = {c3}, race_set(e2) = race_set(e3) = 

race_set(e4) = { }. Note that since P was not in the OpenList of e2, c3 is not in race_set(e2). This captures the fact that the P() 

operation by T1 could start but not complete before the V() operation by T2 and hence that these operations do not race. 

• Monitors. The race set of each entry event in Fig. 5 is as follows: race_set(e1) = {c2}, race_set(e2) = race_set(e3) = {}. Sending 

event c3 is not in race_set(e2) since c3 happened after e2. This captures the fact that T2 entered monitor M at e2 and executed a 

signal operation that caused T1 to issue c3 and thus there is no race between c2 and c3 with respect to e2.  

VI. COMPUTING RACE VARIANTS 

In this section, we first define the notion of a race variant, and then we present an algorithm for computing the race variants of 
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a SYN-sequence. 

A. Race Variant 

Let CP be a concurrent program. Let Q be the SYN-sequence exercised by an execution of CP with input X. Informally, a race 

variant of Q is derived by changing the sending partner of one or more receiving events in Q in a way that satisfies the following 

constraints: (1) If we change the sending partner of a receiving event r, the new sending partner must be an event in the race set of 

r; (2) If and only if we change the sending partner of a receiving event r, we remove all the events whose control structures 

contain r.  

Definition 7: Let Q be a SYN-sequence. A race variant V of Q is another SYN-sequence that satisfies the following conditions: 

1. There exists at least one receiving event r in both Q and V such that send(r, Q) � send(r, V). 

2. Let r be a receiving event in Q and V. If send(r, Q) � send(r, V), then send(r, V) must be in race_set(r, Q).  

3. Let e be a sending or receiving event in Q. Then, e is not in V if and only if there exists a receiving event r in Q such that r ∈ c-

struct(e) and send(r, Q) � send(r, V). 

Note that the third condition ensures that race variant V is always feasible (i.e., V can be exercised by at least one program 

execution) regardless of the program’s control and data flow. This is because after the sending partner of a receiving event r is 

changed, the third condition requires all the events whose existence might be affected by this change to be removed from V. This 

is a conservative approach since some of the events that are removed may not actually be affected.  

B. An Algorithm for Computing Race Variants 

Our algorithm for computing race variants builds a “race table” for a given SYN-sequence Q. The race table contains a column 

for each receiving event in Q whose race set is non-empty. Each row of the race table represents a unique, partially-ordered race 

variant of Q. As an example, Table 3 shows the race table built for sequence Q0 in Fig. 1. Table 3 has two columns for receive 

events r1 and r3, which are the receive events in Q0 whose race sets are non-empty. (Note that race_set(r1) = {s2} and race_set(r3) 

= {s4}.) Variants V1, V2, and V3 in Fig. 1 are derived as described below from rows 1, 2, and 3, respectively, of the race table. 

r1 r3 
0 1 
1 0 
1 1 

Table 3. Race table for sequence Q0 in Fig. 1. 

Let r be a receiving event represented by one of the columns and V be a race variant represented by one of the rows. The value 

v in the row for V and the column for r indicates how r in sequence Q is changed to create variant V: 

� v = -1 indicates that r is removed from V. 
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� v = 0 indicates that no new sending partner is specified for r in V. 

� v > 0 indicates that in V, the sending partner of r is changed to the v-th event in race_set(r, Q), where the sending events in 

race_set(r, Q) are arranged in an arbitrary order and the index of the first event in race_set(r, Q) is 1.  

Note that whenever we change the sending partner of a receiving event r, we also need to remove all the events whose control 

structure contains r. Also note that the sending partner of a receiving event that does not appear in the table cannot be changed to 

another sending event.   

 As an example, for the variant represented by row 1 in Table 3, the value 0 indicates that the send partner of r1 will be left 

unchanged, while the value 1 indicates that the send partner of r3 will be changed to s4, which is the first (and only) send event in 

race_set(r3). Note that the sending partner of a receiving event could be left unspecified in a variant. For example, in V2 (derived 

from row 2), the send partner s3 of r3 will be removed because r1 is in c-struct(s3), and the sending partner of r1 is changed. 

However, r3 is not removed, as r1 is not in c-struct(r3), and no new send partner is specified for r3 (the value for r3 in row 2 is 0) 

Therefore, the sending partner of r3 is left unspecified in V2. In Section VII we will describe how r3’s send partner is resolved 

when V2 is used for prefix-based testing. 

 A naïve algorithm for constructing a race table is as follows. Let (r1, r2, …, rn) be the heading of the race table, which consists 

of the receiving events whose race sets are non-empty, arranged in an arbitrary order. Let domain(ri) be the set of values that can 

appear in the column with heading ri. If the size of the race set for ri is denoted as |race_set(ri)|, then the set of values in 

domain(ri) is {-1, 0, 1,…,|race_set(ri)|}. A naïve algorithm first generates the set T of tuples that represent all the possible 

combinations of changes that can be made to all the receiving events in the heading of the race table. These tuples are denoted by 

T = domain(r1) ×  domain(r2) ×  … ×  domain(rn). The algorithm then adds a tuple t ∈ T to the race table if t passes a validity 

check. Denote the individual values in t as t[1], t[2], …, t[n]. Then t is valid if all of the following rules are satisfied:  

1. There exists at least one value t[i], 1 ≤  i ≤ n, such that t[i]> 0.  

2. t[i] = -1, 1≤  i ≤  n, if and only if there exists an index j, where 1 ≤  j ≤  n and j ≠  i, such that t[j] > 0 and rj ∈ c-struct(ri)  

3. If t[i] > 0, there does not exist an index j, 1≤  j ≤  n, such that t[j] > 0 and rj ∈ c-struct(s), where s is the t[i]th sending event in 

race_set(ri), 

Note that the first rule implements the first condition in Def. 7. The second and third rules implement the third condition in Def. 

7. (The second condition in Def. 7 is reflected in the definition of domain(ri) above.)   

Fig. 7 shows a more efficient algorithm called Construct-Race-Table. The gain in efficiency comes from the fact that 

Construct-Race-Table does not generate any invalid tuples. This is in contrast to the naïve algorithm, which generates all possible 
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tuples and then filters out the invalid ones. In algorithm Construct-Race-Table, the receiving events with non-empty race sets are 

arranged in left-to-right order with respect to the happened-before relation. (If event a happens before event b, then a appears to 

the left of b.) Conceptually, a race table is constructed by enumerating the numbers in a number system, where each row in the 

table is a number in the system and each column is a digit in the number. In the number system, the base of a digit is the size of 

the race set for the corresponding receiving event plus 1. (Note that each digit may have a different base.) The significance of the 

digits in a number decreases from left to right.  

The rows in the race table are computed iteratively. Starting with the number 0, all the numbers in the number system are 

enumerated by adding 1 at each iteration. Each new number (not including 0) becomes the next row in the table.  Observe that we 

can add 1 to a number by incrementing the least significant digit g whose value is less than its base minus 1 and setting all the 

digits that are less significant than g to 0. For example, let 10111 be a binary number (i.e., all the digits in the number have the 

same base 2). Observe that the second digit (from the left) is the least significant digit whose value is less than 1. In order to add 

1 to this number, we increment the second digit from 0 to 1 and set the last three digits to 0. Doing so results in a new number 

11000. There is a slight modification, however, for dealing with the case where the value of a digit is, or becomes, -1, as 

described below. 

To compute the next row in the race table for a SYN-sequence Q, we increment the least significant digit whose value is less 

than the value of its base minus 1 and whose value is not -1. Let t[] be an array representing the next row in the race table. We 

use the following rules to ensure that t[] represents a valid race variant V of sequence Q:  

1. Whenever we change t[i] from 0 to 1, which means that the sending partner of ri will be changed, we set t[j] = -1, i < j ≤ n, 

if ri ∈ c-struct(rj) (lines 13 and 14). This is to remove rj from V as changing the sending partner of ri may affect the existence 

of the events whose control-structures contain ri. 

2. Let dj be the base of digit t[j] minus 1, which is also the size of rj’s race set. Whenever we change t[j] from dj to 0, which 

means that the sending partner of rj will be changed back to its original sending partner in Q, we set t[k] = 0, j < k ≤ n, if the 

current value of t[k] is -1 and there no longer exists an index l, 1 ≤ l < k, such that t[l] > 0 and rl ∈ c-struct(rk) (lines 18, 19 

and 20). In other words, if rj is the only event causing t[k] to be set to -1 (due to the application of rule(1)) and if we change 

rj’s sending partner back to its original sending partner in Q, then we change t[k] from -1 to 0 so that rk is no longer removed 

from the variant. 

3. Assume that we have incremented t[i]. Let s be the t[i]th sending event in race_set(ri). We need to check whether there exists 

an index j such that t[j] > 0, and rj ∈ c-struct(s). Array t[] is added to the race table as the next row if and only if such an 
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index j does not exist (lines 23 and 24). This is because if such an index j does exist, s should be removed from the variant, 

and thus t[] would not represent a valid variant. 

Notice that when we change t[i] from 0 to 1 or from |di| to 0, we need only check the values of t[j], i < j ≤ n. This is because 

receiving events are ordered from left-to-right based on the happened-before relation. This ordering also ensures that the value 

represented by t[] increases at each iteration. Therefore, algorithm Construct-Race-Table will eventually terminate.  

As an example, consider how to add 1 to the number represented by the first row (0, 1) in Table 3. In line (10) of Construct-

Race-Table, we increment the 1st (i.e., leftmost) column from 0 to 1 since the 1st column is the least significant column whose 

value is less than its base minus 1 and is not -1. (The heading for the 1st column is r1 and the base for the 1st column is 2, which is 

|race_set(r1)| + 1.) Note that changing the 1st column does not cause the 2nd column to be changed to -1 in lines (13) and (14) 

since r1 ∉ c-struct(r3) (where r3 is the heading for the 2nd column). In the for-loop starting at line (15), we check the value in the 

2nd column. The check in line (16) shows that the current value of the 2nd column equals its base value minus 1, so the 2nd column 

is set to 0 in line (17). This ends the for-loop of line (15). Finally, lines (22) and (23) check the new send partner s2 of r1. (Note 

that the new value for the 1st column is 1 and the first and only send event in race_set(r1) is s2.) Since s2 does not happen after any 

receive event whose send partner has been changed, there is no reason to remove s2, which means that the variant is valid.  

RaceTable Construct-Race-Table (Q: a SYN-sequence) { 

1. initialize table = (heading, rows)  to be an empty race table; 
2. R = {r ∈ Q | |race_set(r)| > 0};       
3. let heading = (r1, r2, ..., r|R|} be a topological order of R w.r.t the happened-before relation;  
4. D = {d1, d2, ..., d|R|}, where di = |race_set(ri)|;    
5. let t be an array of length |R| and initialize t with all 0s; 
6. while (true) { 
7. find the largest index i such that t[i] < di and t[i] != -1; 
8. if (such an index i does not exist) 
9. break; 
10. t[i]++; 
11. if (t[i] == 1)  // just changed t[i] from 0 to 1 
12.   for (i < j ≤ |R|)  
13.  if (t[j] ≠ -1 and ri ∈ c-struct(rj))  
14.   t[j] = -1; 
15. for (i < j ≤ |R|)  
16. if (t[j] == dj) { 
17. t[j] = 0;  // just changed t[j] from dj to 0 
18. for (j < k ≤ |R|) 
19. if (t[k] == -1 and rj ∈ c-struct(rk) and there is no index l, 1≤  l < k, such that t[l] > 0 and rl ∈ c-struct(rk)) 
20. t[k] = 0; 
21. } // end if 
22. let s be the t[i]th sending event in race_set(ri); 
23. if (there does not exist an index j, 1 ≤ j≤ |R|, such that t[j] > 0 and rj ∈ c-struct(s)) 
24. add t to rows; 
25.} // end while 
26. return table; 
} 

Figure 7: Algorithm Construct-Race-Table 
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Therefore, at line (24) we add the new number (1, 0) into the table as the next row. 

We wish to stress that algorithm Construct-Race-Table guarantees that every row in a race table represents a unique, partially 

ordered variant. Let V1 and V2 be the race variants represented by any two rows in the table. Algorithm Construct-Race-Table 

ensures that there exists at least one receiving event r such that r appears in both V1 and V2 but the sending partner of r in V1 is 

different from that in V2. This ensures that V1 and V2 are different partial orders. Therefore, our algorithm deals with partial orders 

directly – it never generates any interleavings that are only different in the ordering of some independent events.   

Finally, we consider the time complexity of algorithm Construct-Race-Table. Let R be the set of receiving events whose race 

sets are non-empty. The algorithm is dominated by the while-loop, which is further domained by the inner double for-loop (lines 

15 – 21). Note that every element t[j], i < j � |R|, can be visited at most once in the double for-loop. Thus, the time complexity of 

the double for-loop (lines 15 – 21) is O(|R|2). Considering that each iteration of the while-loop usually adds one row to the race 

table, the time complexity of the algorithm is O(|R|2 * |V|), where V is the set of race variants for Q. 

VII. A REACHABILITY TESTING ALGORITHM 

A reachability testing algorithm drives the reachability testing process by collecting SYN-sequences, generating variants, and 

performing prefix-based testing with the variants. In order to reduce test effort while maximizing test coverage, it is desirable to 

exercise every (partially-ordered) SYN-sequence exactly once during reachability testing. However, if a newly derived race 

variant V is a prefix of a SYN-sequence Q that has already been exercised, then prefix-based testing with V could exercise Q 

again. To deal with this potential duplication problem, all the existing reachability testing algorithms need to save the history of 

SYN-sequences that have already been exercised. A newly derived variant is used for prefix-based testing only if it is not a prefix 

of any SYN-sequence in the history. For large and/or complex programs, the cost of saving the history can be prohibitive both in 

terms of the space to store the history and the time to search it. In this section, we present a new reachability testing algorithm that 

does not save any SYN-sequences but still guarantees that every SYN-sequence will be exercised exactly once. We note that the 

number of test runs performed by our algorithm may be slightly larger than the number of SYN-sequences that can be exercised 

by the program under test, which will be discussed later.     

A. A Graph-Theoretic Perspective  

To understand our new reachability testing algorithm, we consider the reachability testing problem from a graph-theoretic 

perspective. Let CP be a concurrent program. All the possible SYN-sequences that can be exercised by CP with input X can be 

organized into a directed graph G, which we refer to as a Sequence/Variant graph or simply an S/V-graph. Each node n in G is 

labeled by a SYN-sequence seq(n) that can be exercised by CP with input X. An edge e from node n to node n’ is labeled by a 
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race variant var(e) of seq(n), indicating that seq(n’) could be exercised by a prefix-based test run with var(e). Note that node n 

may have more than one outgoing edge that is labeled by the same variant of seq(n). This is because prefix-based testing with a 

race variant forces the variant to be exercised at the beginning of the test run and then lets the run continue non-deterministically, 

where the non-deterministic portion is not controlled and can exercise different sequences in different test runs.  

Theorem 1: Let CP be a concurrent program. Let G be the S/V-graph of CP with input X. Then, G is strongly connected. 

The proof of Theorem 1 is provided in the supplementary material. 

From a graph-theoretic perspective, the goal of reachability testing is to construct a spanning tree of the S/V-graph of a 

concurrent program with a given input. (Of course, reachability testing does not actually construct a spanning tree, but the 

sequences exercised during reachability testing and the variants used to collect these sequences should represent a spanning tree.)  

Note that a spanning tree of S/V-graph G is a subgraph of G that is a tree (i.e., a graph with no cycles) and that connects the n 

nodes of G with n-1 edges (i.e., each node, except the root, has one and only one incoming edge.) Since an S/V-graph is strongly 

connected, reachability testing can start from an arbitrary node. This explains why we can start reachability testing with the SYN-

sequence collected from a non-deterministic test run. Note that each race variant is used to conduct a single test run during 

reachability testing. Therefore, in a spanning tree that represents the reachability testing process, no two edges are labeled with 

the same variant. 

Fig. 8 shows the S/V-graph (on the left) for the example program in Fig. 1(a) and a spanning tree (on the right) that represents 

the application of reachability testing (Fig. 1(b)) to this program. Due to the space constraints, the race variants represented by 

the dashed edges in the S/V-graph are not shown. Note that in the S/V graph, there is an edge from Q2 to Q1, but no edge from Q1 

to Q2. Also, note that other spanning trees are possible since the reachability testing process is inherently non-deterministic. 

Q0

Q1

Q2

Q3

V1

V2

V3 Q0

Q1

Q2

Q3

V1

V2

V3

 

Figure 8. The S/V-graph for the example program in Fig. 1 and a spanning tree for the graph. 

Recall that existing reachability testing algorithms must save the history of SYN-sequences to avoid exercising duplicate 

sequences. From a graph-theoretic perspective, the purpose of saving this test history is to avoid generating the same node more 

than once during the construction of a spanning tree. Therefore, the main challenge for our new algorithm is to avoid generating 

the same node (i.e., exercising the same sequence) more than once without saving the list of the nodes that have already been 

generated. Obviously, this challenge cannot be solved purely as a graph problem. Instead, it must be solved within the context of 

reachability testing. 



PRELIMINARY VERSION SUBMITTED TO IEEE TRANSACTION ON SOFTWARE ENGINEERING 
 

22 

B. Path Constraints 

Let G be the S/V-graph of a concurrent program CP with input X. The main idea of our new algorithm is as follows: If we can 

find some constraints on the paths in G such that given two arbitrary nodes n and n’ in G, there is exactly one acyclic path from n 

to n’ that satisfies these constraints, then we can construct a spanning tree of G by enforcing these constraints, i.e., by only 

generating paths that satisfy these constraints. In this section, we will define two such path constraints. In the next section, we will 

show how they are enforced in our new algorithm.  

We first introduce the notion of a race difference, which is needed to define our path constraints.  

Definition 8: Let Q and Q’ be two sequences. Let r be a receiving event that exists in both Q and Q’. There is a race difference 

with r if send(r, Q) and send(r, Q’) are both defined but send(r, Q) � send(r, Q’).   

Recall that we assume that the only source of non-determinism is due to concurrency, i.e., the order in which threads 

synchronize and communicate is. Under this assumption, any difference between two sequences (of the same program with the 

same input) can be traced back to a race difference. This property is formally stated in Lemma 1. In the rest of the paper, we will 

only be interested in race differences, and will refer to a race difference simply as a difference unless otherwise specified.  

Lemma 1: Let CP be a concurrent program. Let Q and Q’ be two SYN-sequences of CP with input X. Then, Q and Q’ are 

equal if and only if they have no race difference. 

The proof of Lemma 1 is provided in the supplementary material. 

Let n and n’ be two arbitrary nodes in G. Let H be a path from node n to node n’, i.e., H = n1e1n2e2 … nm, where n = n1 and n’ 

= nm. We consider each edge ei along path H to represent a transformation of node ni into node ni+1. This transformation is 

realized by changing the sending partner of one or more receiving events in seq(ni) to derive the race variant var(ei) of seq(ni) and 

then performing prefix-based testing with variant var(ei) to collect seq(ni+1). The path constraints to be defined impose 

restrictions on how the sending partner of a receiving event can be changed by such a transformation. We will say that the 

sending partner of a receiving event r is explicitly changed by edge ei if r’s sending partner is changed to a different sending event 

in var(ei). This is distinguished from the case where the sending partner s of a receiving event r is removed from var(ei) (due to 

the explicit change of another receiving event in c-struct(s)) and then r is synchronized with a different sending event during 

prefix-based testing with var(ei). We will say that edge ei reconciles a difference between seq(ni) and seq(n’) if the sending 

partner of a receiving event r in seq(ni) is explicitly changed by ei to match the sending partner of r in seq(n’). The two path 

constraints are defined below: 

C1: The sending partner of a receiving event can be explicitly changed by edge ei only if such a change reconciles a 

(race) difference between seq(ni) and seq(n’). 
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Constraint C1 prevents any edge ei from introducing any new difference between seq(ni) and seq(n’). This ensures that H is an 

acyclic path. To the contrary, assume that H is a cyclic path, i.e., n = n’. There must exist at least one receiving event r in seq(n) 

such that r’s sending partner s is explicitly changed to another send event s’, where s � s’, by edge e1. (Recall that e1 is derived by 

changing the outcome of one or more race conditions of seq(n).) The change from s to s’ is forbidden by C1 because n = n’, and 

such a change would create, rather than reconcile, a difference between seq(n) and seq(n’).   

For example, the S/V graph in Fig. 8 contains a cycle Q0Q1Q0. Note that for this path, seq(n) and seq(n’) in constraint C1 both 

refer to sequence Q0. Note also that the first edge in the cycle, which is from Q0 to Q1 and is labeled by V1, changes the sending 

partner of r3 from s3 to s4. This cycle does not satisfy constraint C1, as the change creates a new difference for r3 between Q0 and 

itself. Therefore, this cycle is excluded from the spanning tree.  

C2: Each edge ei must reconcile all the (race) differences between seq(ni) and seq(n’). 

Observe that for any node ni, there exists at most one variant of seq(ni) that reconciles all the differences between seq(ni) and 

seq(n’) and does not create any new difference. Therefore, C2 can be satisfied by at most one path from n to n’.  

As an example, consider the acyclic path Q0Q2Q3 in the S/V-graph in Fig. 8. Observe that receive events r1 and r3 exist in both 

Q0 and Q3, but their sending partners in Q0 are different from their sending partners in Q3 (see Fig. 1). Also observe that the first 

edge V2 along path Q0Q2Q3 reconciles the difference with r1 but not the difference with r3. This violates constraint C2, which 

requires each edge to reconcile all the race differences. As a result, path Q0Q2Q3 is excluded from the spanning tree. Note that 

path Q0Q3 is the only path from Q0 to Q3 that satisfies constraints C1 and C2, and is thus included in the spanning tree. The only 

edge V3 in path Q0Q3 reconciles the differences for both r1 and r3. 

Based on the above discussion, C1 and C2 can be satisfied by at most one acyclic path from n to n’. It can also be shown that 

C1 and C2 can be satisfied by at least one acyclic path from n to n’. Note that the proofs in the supplementary material provide a 

formal justification that C1 and C2 can be satisfied by exactly one acyclic path from n to n’. 

C. The Algorithm 

Fig. 9 shows our new reachability testing algorithm. Algorithm Reachability-Testing starts with the SYN-sequence Q0 

collected from a non-deterministic test run (line 2). Recall that a non-deterministic test run is a test run in which non-determinism 

is resolved arbitrarily, i.e., without controlling which SYN-sequence gets exercised. It then uses function GenerateVariants in 

Fig. 10 to generate a set of race variants of Q0 (line 4). Note that GenerateVariants is called with the empty variant, which reflects 

the fact that a non-deterministic test run can be considered as a prefix-based test run with a prefix that contains no events. Each of 

these race variants is used to collect a new SYN-sequence by performing prefix-based testing, but with a slight modification to 

handle the case where the sending partner of a receiving event is not specified (line 7). This modification will be discussed later. 
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Each newly collected SYN-sequence is then used to derive new race variants (line 8). This procedure is repeated until no more 

race variants can be generated. We stress that algorithm Reachability-Testing does not save any SYN-sequences that have already 

been exercised. 

Given a SYN-sequence Q and the race variant V that was used to collect Q, function GenerateVariants generates only a subset 

of the variants of Q (instead of all the variants of Q). In GenerateVariants, the receiving events in Q and V are colored either 

white or black. The color of a receiving event r in V is inherited by the same event r in Q. (Recall that V is a prefix of Q so each 

event in V is also in Q.) Receiving events that are in Q but not in V are colored white. The color of a receiving event r in Q 

restricts how the sending partner of r can be changed to derive race variants of Q: white indicates that the sending partner of r can 

be explicitly changed; black indicates that the sending partner of r cannot be explicitly changed. The color of a receiving event 

can change from white to black, but never from black to white. 

 
ALGORITHM Reachability-Testing (CP: a concurrent program; X: an input of CP)  { 
1.   let variants be an empty set;  
2.   collect a SYN-sequence Q0 by executing CP with input X non-deterministically; 
3.   let V0 be the special empty variant that contains no events 
4.   variants = GenerateVariants(Q, V0)  
5.   while (variants is not empty) { 
6.      withdraw a variant V from variants; 
7.      collect a SYN-sequence Q by conducting a modified prefix-based test run with V; 
8.      variants = variants ∪ GenerateVariants(Q, V); 
   } 
} 
                                  Figure 9. Algorithm Reachability-Testing. 

 
FUNCTION GenerateVariants (SYN-sequence Q, Variant V) { 
// sequence Q was collected during prefix-based testing with variant V 
      // prune “old” sending events 
1.   for each receiving event r in V (and thus in Q too) 
2.       race_set(r, Q) = race_set(r, Q) - race_set(r, V) 
 
      // generate a subset of the race variants of Q 
3.   Use algorithm Construct-Race-Table to construct a race table with statement 2 in  
         the algorithm replaced with the following statement  
            R = {r ∈ Q |  |race_set(r)| > 0 and r.color = white} 
4.   Derive a list variants(Q) of race variants, one variant from each row of the race table  
 
      // set the colors of the receiving events in the variants of Q 
5.   for (each variant V' in variants (Q)) { 
6.      for (each receiving event r in V' whose sending partner was explicitly changed) { 
7.          r.color = black; 
8.          for (each receiving event r' that happens before r in V') { 
9.             r'.color = black; 
10.  } 
11.  } 
12.  }  
13.  return variants (Q); 
} 
          Figure 10. Function GenerateVariants. 
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Next we explain how algorithm Reachability-Testing enforces the two path constraints C1 and C2.  In previous subsections, we 

related the reachability testing problem to the problem of constructing a spanning tree of an S/V-graph. Constraints C1 and C2 

are constraints on the paths that can be taken through an S/V-graph from an arbitrary node n to another n’. During the actual 

reachability testing process, however, there is no such S/V-graph, since we do not know a priori which SYN-sequences the 

program under test can exercise. Therefore, the main technical challenge of our algorithm is how to enforce constraints C1 and 

C2 without a priori knowledge about the S/V-graph and/or any particular nodes n and n’. For each constraint we will describe a 

strategy for enforcing the constraint and show how this strategy is implemented in algorithm Reachability-Testing. 

C1: The sending partner of a receiving event can be explicitly changed by edge ei only if such a change reconciles a 

(race) difference between seq(ni) and seq(n’). 

We enforce this constraint using the following strategy. After the sending partner s of a receiving event r in a sequence Q is 

explicitly changed to another sending event s’, we will ensure that both r and s’ exist and remain synchronized with each other in 

any sequence Q’ exercised afterwards. Since send(r, Q) = s, and send(r, Q’) = s’, the change from s to s’ actually reconciles a 

difference between Q and Q’. This is equivalent to saying that the sending partner of r in a sequence Q can be explicitly changed 

along a path only if such a change reconciles a difference between Q and the sequence Q’ that is reached at the end of the path.  

The implementation of this strategy consists of two parts: 

(1) If the sending partner s of a receiving event r in Q is explicitly changed to another sending event s’ to derive a race variant V’, 

then the color of r in V’ is set to black in line 7 of function GenerateVariants. Line 3 of function GenerateVariants excludes 

black receiving events from the heading of the race table constructed by algorithm Construct-Race-Table (even though black 

receiving events may have non-empty race sets). Since the color of an event never changes from black to white, this prevents 

the sending partner s’ of r from being explicitly changed afterwards.  

(2) When we set the color of r to black, we also set the color of a receiving event r’ to black if r’ happens before r in V’ (see lines 

8 and 9 in function GenerateVariants). Doing so prevents the sending partner of any receiving event like r’ from being 

changed, and thus ensures that r, as well as the new sending partner s’ of r, must exist in any sequence that is exercised 

afterwards. (Recall from Def. 7 condition (3) that we remove an event e if and only if we change the sending partner of a 

receiving event in e’s control-structure to another sending event. Since all of the events that happen before r, which includes all 

of the events in the control-structures of r and s’, are now colored black and hence cannot be changed, r and s’ can never be 

removed.) 

Earlier we have shown that the cyclic path Q0Q1Q0 in the S/V graph in Fig. 8 does not satisfy constraint C1. Note that variant 

V1 (the portion of Q1 that is above the dashed line) was derived by changing the sending partner of r3 from s3 to s4. Therefore, the 



PRELIMINARY VERSION SUBMITTED TO IEEE TRANSACTION ON SOFTWARE ENGINEERING 
 

26 

color of r3 in V1 will be black, and this color will be inherited by r3 in Q1. Thus, r3 will be excluded from the heading of the race 

table for Q1. As a result, the sending partner of r3 cannot be explicitly changed again when we derive the race variants of Q1. Note 

that this prevents the cyclic path Q0Q1Q0 from being generated during reachability testing. 

C2: Each edge ei must reconcile all the (race) differences between seq(ni) and seq(n’). 

Our strategy for enforcing C2 is as follows: If there are differences that can be reconciled by an edge but are not reconciled by 

that edge, then we make sure that these differences cannot be reconciled afterwards. Therefore, if a path contains an edge ei that 

does not reconcile some of the differences between seq(ni) and seq(n’), then these differences will never be reconciled along the 

path. As a result, the path will not be generated during reachability testing.  

The above strategy is implemented in GenerateVariants by removing “old” sending events from the race sets of “old” 

receiving events (lines 1 and 2). An event in a SYN-sequence Q is old if it also appeared in the variant V that was used to collect 

Q. Note that the difference with a receiving event r can be reconciled by an edge ei only if the sending partner s of r in seq(n’) 

exists in seq(ni). Therefore, if the difference with r was not reconciled by ei, then both s and r will become “old” events in any 

sequence that can be reached afterwards, if they exist in the sequence. Hence, s will always be removed from the race set of r, 

preventing the difference with r from ever being reconciled afterwards.  

Earlier we have shown that path Q0Q1Q3 in the S/V graph in Fig. 8 does not satisfy constraint C2. Note that events r1 and s2 in 

Q1 are old events because they appear in both V1 (the variant used to collect Q1) and Q1. In function GenerateVariants, s2 will be 

removed from the race set of r1 in Q1, which means that we will not be able to change the sending partner of r1 to s2 when we 

derive the race variants of Q1. As a result, path Q0Q1Q3 cannot be generated, as in order to reach Q3 from Q1, we would have to 

change the send partner of r1 from s1 to s2.  

There is a special case of C2 that must be handled. Consider sequence Q in Fig. 11. Suppose we change the sending partner of 

receiving event r1 from s1 to s3 to derive a variant V. Since r1 is in the control structure of the sending partner s2 of receiving event 

r2 but r1 is not in the control structure of r2, sending event s2 will be removed from V but r2 will stay in V. If no new sending 

partner is specified for r2, r2 will have its sending partner left unspecified in V. 

T1              T2              T3
r1

r2

Q

s3r3

T1             T2            T3
r1

V

s3s1
s2 r2

 

Figure 11. Modified prefix-based testing. 

We call a receiving event an “unmatched” receiving event if its sending partner is not specified in a variant. During prefix-

based testing with a variant that contains unmatched receiving events, additional runtime control is needed to ensure that the 
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unmatched events are not synchronized with any sending events that already appear in the variant. This is to ensure that “old” 

receiving events are not synchronized with “old” sending events. As an example, consider V2 in Fig. 1, where the sending partner 

of r3 is not specified. (Note that send event s3, which is the original sending partner of r3 in Q0, is removed from V2 and no other 

sending partner is specified for r3 in V2). During prefix-based testing with V2, we will ensure that r3 does not receive the message 

sent by s4 (which is an old send event), as otherwise, we would exercise Q3 twice. 

In the case that an unmatched receiving event can only be synchronized with an “old” sending event, the test run will not be 

allowed to complete. Instead, the test run will be allowed to proceed up to the point where the test run could not continue unless 

we were to allow some unmatched receiving events to be synchronized with old sending events. The sequence exercised by such 

a partial test run is collected (including the unmatched receiving events) and the reachability testing process continues normally. 

We point out that such a partial test run does not represent a deadlock in the application, since the run could continue if 

unmatched receiving events were allowed to be synchronized with “old” sending events. On the other hand, if an unmatched 

receiving event cannot be synchronized with any sending event at all, then the application is deadlocked or livelocked and 

reachability testing will terminate. Our prototype tool RichTest issues a timeout after observing for a specified period of time that 

the application has neither exercised any events nor terminated, and then decides whether the reachability testing process should 

be continued or terminated, as described above. Note that since partial test runs do not represent complete SYN-sequences, the 

number of test runs we perform during reachability testing may sometimes be larger than the number of SYN-sequences that can 

be exercised by the program under test. However, we expect the number of partial test runs to be small. This is evidenced by our 

case studies in which only one partial test run was generated for all the programs, as reported in Section VIII. 

Now we consider the time complexity of algorithm GenerateVariants, which is dominated by lines 3 and 4. As shown earlier, 

the original Construct-Race-Table algorithm is in O(|R|2 * |V|), where |R| is the number of receiving events in the race table 

heading, and |V| is the number of race variants of Q. The modification required for removing black receiving events from the 

header of the race table does not change the time complexity. In line 4, each time we change the sending partner of a receiving 

event r, we need to remove all the events whose control structures contain r. The complexity of line 4 is O(|E| * |V|), where |E| is 

the total number of sending and receiving events in Q. Therefore, the complexity of function GenerateVariants is bounded by 

O(|E|2 * |V|). It follows that the time complexity of the entire reachability testing process is O( n * |Emax|
2 * |Vmax|), where n is the 

number of possible SYN-sequences, |Emax| is the maximum number of events in a SYN-sequence, and |Vmax| is the maximum 

number of variants for a SYN-sequence. 

The following theorem states the correctness of algorithm Reachability-Testing.  

Theorem 2: Given a concurrent program CP and an input X, algorithm Reachability-Testing exercises every partially-ordered 
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SYN-sequence of CP with input X exactly once. 

The formal proof of Theorem 2 is provided in the supplementary material. 

As discussed in section V.A, SYN-sequences that represent different partial orders can be equivalent. This suggests that it is 

not always necessary to exercise every partially-ordered SYN-sequence. Below we describe a reduction, which we will refer to as 

the P/V reduction, for programs that use counting semaphores. The P/V reduction is implemented in our prototype and can be 

optionally enabled to further reduce the number of sequences exercised during reachability testing. 

The P/V reduction consists of ignoring a race between P and V operations on a counting semaphore s in the following two 

cases: 

• If two s.V operations are called concurrently, the race between the two calls to s.V can be ignored.  

• If an s.V operation and an s.P operation are called concurrently, and the call to s.V is completed before the call to s.P, the 

race between the two calls to s.V and s.P can be ignored. 

Note that by ignoring a race, we mean that no race variants are generated to change the outcome of the race. To see why the 

P/V reduction is safe, observe that two V operations are independent in any state, and a V operation is independent with a P 

operation in any state where the value of the semaphore is greater than 0. (Two operations are independent in a state g if they do 

not enable or disable each other in g, and executing them from g in any order will reach the same successor state.) Ignoring the 

race between a V operation and another operation X (which can be V or P) that completes after the V operation means that those 

sequences in which operation X is completed before the V operation will not be exercised during reachability testing. Let Q be 

such a sequence that is not exercised due to the P/V reduction on a counting semaphore s. We will show that Q is equivalent to a 

sequence that is guaranteed to be exercised. Since the reduction is applied to completed P and V operations, we are concerned 

with the order in which P and V operations are completed on semaphore s. Let t1t2 … tn be the (totally-ordered) sequence of 

semaphore-completion events on s in Q. (Note that since all incomplete P and V operations are concurrent and never happen 

before a completed operation, they can be placed at the end of a totally-ordered sequence and are thus ignored in our discussion.) 

Assume that ti is operation X and tj is the concerned V operation, where 1 ≤ i < j < n.  Note that if a P operation is completed 

before a V operation, the value of the semaphore must have been greater than 0 when the P operation was started. Thus, tj is 

independent with tk, 1 ≤ k < n, at each state sk where tk was executed  Therefore, tj can always be moved towards the beginning of 

a sequence, which means that there must exist a sequence that is equivalent to Q and is guaranteed to be exercised. We point out 

that this reduction is also used to compute persistent sets in partial order reduction [13]. 

 Note that the above reduction has no effect on a counting semaphore that is used solely to create critical sections. To see this, 

let counting semaphore mutex be such a semaphore. Mutex is initialized to 1 and is used in the following way: mutex.P(); 
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<critical section;> mutex.V(). Since at most one thread can enter a critical section at any time, there can never be concurrent calls 

to mutex.V operations, nor can there ever be concurrent calls to mutex.P and mutex.V operations.  

 Note also that the reduction does not apply to binary semaphores. The reason is two-fold. First, as defined in Section II, P and 

V operations on a binary semaphore can enable or disable each other and are thus never independent. Second, two operations on a 

binary semaphore never race with a V operation since only one of them can be completed at any given time. 

VIII. EMPIRICAL RESULTS 

We implemented our reachability testing algorithms in a prototype tool called RichTest. RichTest is developed in Java, and 

consists of three main components: a synchronization library, a race variant generator class, and a test driver class. The 

synchronization library provides classes for simulating semaphores, monitors, and message passing with selective waits. The 

synchronization classes contain the necessary control for tracing SYN-sequences and replaying variants. The race variant 

generator implements function GenerateVariants, i.e., it inputs a SYN-sequence and generates a subset of the race variants of the 

sequence. The test driver is responsible for coordinating the exchange of variants and SYN-sequences between the 

synchronization classes and the variant generator. These three components and the application form a single Java program that 

performs the reachability testing process. 

We wish to stress that RichTest does not require any modifications to the JVM, or any modifications to, or direct interactions 

with, the operating system. Instead, the synchronization classes contain the necessary control for reachability testing. In trace 

mode, the synchronization classes record synchronization events at appropriate points and assign timestamps to these events. In 

replay mode, the synchronization classes implement the replay techniques that have been developed for the various constructs. 

We are applying this same approach to build portable reachability testing tools for multithreaded C++ programs that use thread 

libraries in Windows, Solaris, and Unix. 

As a proof-of-concept, we conducted an empirical study in which RichTest was used to perform reachability testing on several 

programs. The programs chosen to carry out the study include: (1) BB – a solution to the bounded-buffer problem where the 

buffer is protected using either a selective wait, semaphores, an SU monitor, or an SC monitor. Program BB had three producers 

and three consumers and a buffer with two slots [9]. (2) RW – a solution to the readers and writers problem using a selective wait, 

semaphores, an SU monitor, or an SC monitor. Program RW had three readers and two writers [9]. (3) DP – a solution that uses 

an SU monitor to solve the dining philosophers problem without deadlock or starvation [9]. Program DP had three, four, or five 

philosophers.  (4) DME – a solution to the distributed mutual exclusion problem with three processes and two threads per process 

[24]. Each process has one thread that accesses the critical section and another thread that helps with message processing. This 

program uses message passing for communication between processes and semaphores for synchronization between threads within 
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a single process. Note that these solutions represent synchronization/communication patterns that are commonly found in many 

practical applications. Also note that the synchronization behavior of all the above programs is independent from their inputs. We 

stress that the complexity of the synchronization behavior of a program mainly depends on the way in which the threads 

communicate and synchronize, not the size of the program. 

Table 4 summarizes the results for all the programs. For each program, we show the number of sequences exercised during 

reachability testing. For all of the programs in Table 4, the number of sequences exercised equaled the number of test runs, i.e., 

there were no incomplete test runs. Also, we note that the time needed to perform these test runs largely depends on the program 

under test and is proportional to the number of sequences that have to be exercised.  

Recall that previous reachability testing algorithms required the history of sequences to be saved and searched. Each sequence 

that is collected is added to the history and each variant generated is compared to all the sequences in the history. If n sequences 

are exercised during reachability testing, the total number of searches is 1 + 2 + ... + n = n(n+1) / 2. To shed some light on the 

performance improvement created by removing the need to save the test history, the time and space needed for testing BB-

monitorSC was 3 minutes and 24 seconds and 0.4 MBs when the test history was not saved, and 5 minutes and 56 seconds and 

16.5 MBs when the test history was saved. Thus, for BB-monitorSC, our new algorithm avoids over 73 million comparisons that 

would otherwise be needed to search through the test history. Reachability testing with RW-semaphore, RW-monitorSU, and 

RW-monitorSC ran out of memory when the test history was saved on a system with 512MB RAM. When the test history was not 

saved, none of these three programs required more than 4.7 MB RAM. 

Program Seqs  Program Seqs  Program Seqs 

BB-select  144  RW-select 768  DP-monitorSU (3P) 30 

BB-semaphore 324  RW-semaphore 21744  DP-monitorSU (4P) 624 

BB-monitorSU  720  RW-monitorSU 13320  DP-monitorSU (5P) 19330 

BB-monitorSC 12096  RW-monitorSC 61716  DME 4032 

Table 4. Experimental results. 
 

Reachability testing was performed on the three programs involving semaphores, namely, BB-semaphore, RW-semaphore, and 

DME, with and without the P/V reduction described at the end of Section VII. Program BB-semaphore exercised 324 sequences 

without the PV reduction and 53 sequences with the PV reduction, where 53 was the average number of sequences exercised over 

10 test runs. (Note that the number of sequences that are exercised when the PV reduction is applied depends on the types of PV 

races that occur and may vary for different test runs of the same program with the same input.) The P/V reduction did not reduce 

the number of sequences exercised by RW-semaphore and DME. As we mentioned in Section VII, the P/V reduction does not 

affect P and V operations that are used to create critical sections. All three programs contain critical sections. However, unlike 

RW-semaphore and DME, BB-semaphore contains P and V operations that are used for conditional synchronization. These P and 
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V operations are executed outside the critical section and so the reduction does affect these operations. This accounts for the 

difference in the reduction results. 

In order to compare reachability testing to partial order reduction, we compared the performance of RichTest and a partial 

order reduction based tool called VeriSoft from Bell Labs [13] . As explained in Section IX, VeriSoft is a tool that is very similar 

to RichTest, except that VeriSoft uses partial-order reduction to avoid exercising redundant interleavings. Both techniques were 

applied to the semaphore-based programs, namely BB-semaphore and RW-semaphore, and to the message passing program 

DME. (VeriSoft supports the use of semaphores and FCFS message buffers but not monitors or select statements.) The results for 

the three programs are shown in Fig. 12. (The RichTest results were generated using the P/V reduction; Verisoft also uses this 

reduction.) These results indicate that RichTest performs significantly better than VeriSoft for these programs, in terms of the 

number of times the programs are executed, and the number of transitions that are explored. Note that the fault detection 

effectiveness of RichTest and VeriSoft are in principle the same as both techniques can explore all the paths of a concurrent 

program. 

   

Figure 12. Comparison between RichTest and VeriSoft for BB-semaphore, RW-semaphore, and DME programs. 

 
In [13], Godefroid reported the results of applying VeriSoft to a dinning philosophers program that contained a deadlock. The 

program was executed with three to nine philosophers. We rewrote the same program in Java, and applied reachability testing to 

the Java program. Fig. 13 shows our results. The graph on the left in Fig. 13 shows the number of transitions explored by 

VeriSoft and by RichTest for various numbers of philosophers. In the case of nine philosophers, VeriSoft explored 131,478 

transitions, while RichTest explored only 5,004 transitions. The graph on the right in Fig. 13 shows the numbers of times the 

program was executed to perform the selective search and to perform reachability testing. In the case of nine philosophers, 

VeriSoft required 19,023 executions, whereas RichTest required only 511 executions. The results indicate that RichTest performs 

significantly better than VeriSoft for this program. We point out that one test run with four philosophers was incomplete and 

collected a partial sequence. This was the only time a partial sequence was collected in all our case studies.  
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Note that in order to reduce the number of transitions that are explored, VeriSoft allows the user to manually enter structural 

properties of the form “operation x is allowed to be executed on semaphore/message buffer y by process z.” We specified these 

properties for the case study programs. Since the running times of both techniques are proportional to the number of explored 

transitions and the number of executions, the results of this study show that reachability testing may perform significantly faster 

than partial order reduction. It is hard to be more specific about the running times of RichTest and VeriSoft. For program RW-

semaphore in Fig. 12, VeriSoft ran for 48 minutes while RichTest ran for 17 minutes. However, VeriSoft works on multi-process 

C programs and RichTest works on multithreaded Java programs, which affects the execution times. We are porting RichTest to 

C/C++, which will allow a better comparison to be made. 

Figure 13. Comparison between RichTest and VeriSoft for the dinning philosophers problem.  

Since reachability testing can exercise every SYN-sequence, it guarantees the detection of deadlocks and assertion violations.  

An assertion in a process is a Boolean expression that can test and compare the value of variables and data structures local to the 

process. In practice, the ability of reachability testing to find faults depends on the techniques that are used for evaluating test 

results and detecting program failures, and on whether reachability testing is exhaustive or non-exhaustive. Some failures like 

deadlock are impossible to miss, whereas others may only be captured by a particular assertion or property that may or may not 

be among those checked by the user. Exhaustive reachability testing enables better fault detection since it ensures, when practical, 

that all the paths of a concurrent program with a given input are covered. When exhaustive testing is not practical, reachability 

testing can still enable better test coverage. Reachability testing is more efficient than random, non-deterministic testing since 

each execution exercises a different sequence and a sequence is never exercised more than once [15].  

There are several additional ways to reduce the number of sequences exercised during reachability testing: 

1. We can use the symmetry of threads to suppress sequences that differ only in the order in which two or more symmetric 

threads perform the same operation. For example, the three producers in the BB program can enter the monitor in six 

possible orders, but testing one of these orders is sufficient. Applying this symmetry reduction to the two monitor solutions 
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for the bounded buffer (BB) program reduced the number of exercised sequences from 720 and 12096 sequences to 20 and 

132 sequences, respectively. Likewise, when both the P/V reduction and the symmetry reduction are applied, the number of 

sequences for the semaphore version of the bounded buffer program (BB-semaphore) is sometimes three and sometimes one 

(for any number of Producers and Consumers). This is consistent with the analytical results in [16], which showed that the 

sequences of program BB-semaphore can be “collapsed” into a single representative sequence. 

2. In the distributed mutual exclusion (DME) program, processes send requests to each other and wait for replies. However, the 

behavior of a process does not depend on the values received in the replies, or on the identities of the senders, or on the order 

in which replies are received. Instead, it only depends on the number of replies that are received. If we suppress all but one of 

the possible orders of receiving replies, then the total number of sequences drops from 4032 to 504. 

The above reductions can be performed automatically in RichTest by removing sending events from the race sets of receiving 

events. The details of how to perform such reductions will be reported in a separate paper. 

Another way to speed up reachability testing is to execute multiple instances of RichTest in parallel on 

multiprocessor/distributed systems. Distributed reachability testing partitions the variants among the nodes in a distributed 

system. Since prefix-based test runs during reachability testing are independent, inter-process communication takes place only 

when variants are distributed. To get an initial estimate of the speedup that is possible from utilizing multiple processors, we 

performed an experiment on the dining philosophers (DP) program in Table 4. Program DP had six philosophers and 901,752 

possible sequences. It took reachability testing 144.5 minutes to exercise these sequences on a single PC. On a cluster of ten PCs, 

distributed reachability testing took only 16.5 minutes.  For this experiment, we used a simple partitioning scheme that gave each 

of the nine “client” nodes an equal number of initial variants and allowed each client node to request more variants from the 

“server” node when the client ran out. The server could send some of its own variants to a client that requested more, or steal 

variants from some other client. (The server node also performed reachability testing with its own set of variants.) Define the 

processor utilization factor as the ratio between the execution time of sequential reachability testing, and the execution time of 

distributed reachability testing times the number of clients. The utilization factor for the ten node experiment was 144.5 / (16.5 * 

10) ≈ 87%, which means that the communication overhead used up only 13% of the computing power. We believe that we can 

increase processor utilization by developing specialized load balancing techniques for distributed reachability testing. 

IX. RELATED WORK 

Non-deterministic testing is perhaps the simplest approach to testing concurrent programs. The main problem with this 

approach is that executions are uncontrolled, and thus some SYN-sequences may be executed many times whereas others may 

never be executed. Techniques have been developed to increase the chances of exercising different SYN-sequences, and thus the 
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chances of finding faults, when a program is repeatedly executed [10][26].  

A more controlled approach is deterministic testing, which allows carefully selected SYN-sequences to be executed. The main 

challenge with this approach is how to select a good set of SYN-sequences. There are two general strategies for selecting SYN-

sequences. One strategy is to construct an extended control flow graph (CFG) and then select test sequences from the graph 

[34][35]. An extended CFG consists of a number of CFGs, one per each process (or thread), that are connected by their static 

synchronization structure. There are two fundamental problems with this strategy. First, paths selected from an extended CFG 

may be infeasible, i.e., they cannot be exercised by any program execution. Second, it may be difficult to capture dynamic 

behaviors (e.g., dynamic thread/process creation, data structures, etc) in a statically constructed graph.   

The alternative strategy for selecting SYN-sequences is to derive the reachability graph of a program (or of a model of the 

program) and then select test paths from this graph [32] [33]. Every path selected from a reachability graph is guaranteed to be 

feasible, but this strategy suffers from the state explosion problem, i.e., the number of states in a reachability graph can be 

enormous for practical applications. Moreover, a reachability graph is fundamentally an interleaving-based concurrency model. 

Thus, it is possible to select two or more paths that correspond to the same partial order, which is inefficient. The problem of 

accurately modeling dynamic behaviors also exists in this strategy. 

Note that reachability testing combines non-deterministic and deterministic testing. It derives SYN-sequences automatically 

and on-the-fly, without constructing any static models. Also note that reachability testing is able to systematically exercise every 

partially-ordered SYN-sequence exactly once, which has important applications in program-based verification. 

 State exploration techniques such as VeriSoft [13] and others [5][14] have also been developed for testing concurrent 

programs. These techniques can be considered as model checking applied to programs, instead of their specifications or models. 

They use partial-order reduction to avoid exercising redundant interleavings of the same partial ordering of events. Partial-order 

reduction exploits the commutativity of independent transitions and conducts a selective search in which only a subset of the 

enabled transitions in a global state are explored. Two techniques have been developed for computing these subsets. The first 

technique is actually a family of algorithms that compute persistent sets. This technique needs to identify independent transitions 

and consider "which operations on which communication objects each thread might execute in the future" [12]. The latter 

information can be obtained from a static analysis of the program or from the user; otherwise, it must be assumed that anything 

could happen in the future. The amount of reduction that is obtained depends on the accuracy of this information. The second 

technique computes subsets of enabled transitions called sleep sets. Sleep sets can be used together with persistent sets to further 

reduce the number of states that are visited. Sleep sets are computed using information in the search history and if used alone, can 
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reduce the number of transitions that are executed but not the number of states that are visited. VeriSoft uses both persistent set 

and sleep set techniques for partial order reduction but no static analysis is performed for computing persistent sets.  

We want to point out that VeriSoft explores the state space in a state-less manner, which is accomplished as follows. During 

state exploration, the sequence of transitions, rather than states, along the current path is stored on the search stack. To restore a 

state for backtracking, the sequence of transitions, except the last one, on the stack is re-executed. The history of states that have 

already been visited is not saved. As a state-less search technique, VeriSoft may visit the same state for more than once and can 

only be used to explore acyclic state spaces. However, being state-less avoids the need to extract an explicit state representation, 

which is often difficult for programs written in a full-fledged programming language, and the need to store and search the search 

history, which can be prohibitive for practical applications.       

Whereas partial order reduction uses an interleaving-based concurrency model (i.e., a state graph), reachability testing deals 

with partially-ordered SYN-sequences directly. As a result, there is no notion of interleaving in reachability testing, and thus there 

is no problem with redundant interleavings. Also, reachability testing performs no static analysis so it can perform well in cases 

where partial order reduction does not. This was demonstrated by the results of our case study comparison between RichTest and 

VeriSoft. Similar to VeriSoft, reachability testing does not extract or represent any explicit state information, nor does it save or 

search the history of the SYN-sequences that have already been visited. 

Very recent work has been done on a new technique called dynamic partial order reduction, which uses dynamic information to 

compute persistent sets [12]. Dynamic partial order reduction and reachability testing share a similar framework, though they are 

presented quite differently. Both techniques start with a non-deterministic test run, i.e., an uncontrolled test run that allows non-

determinism to be resolved arbitrarily. At the end of each test run, information that was collected during the run is used to identify 

branching points, and the branching points are used to derive alternative executions that need to be explored. Branching points 

are called backtracking points in dynamic partial order reduction and race conditions in reachability testing. The alternative 

executions are then exercised, and new branching points are identified. This procedure is repeated until all the alternative 

executions are exercised.  

 Dynamic partial order reduction, like static partial order reduction, is based on an interleaving-based concurrency model and 

may allow redundant interleavings to be exercised. This is fundamentally different from reachability testing, which represents 

concurrent executions as partially-ordered SYN-sequences and does not have the notion of interleaving. This fundamental 

difference between the techniques creates differences in the way branching points are identified and alternative executions are 

derived. We plan to conduct an empirical study that compares reachability testing to dynamic partial order reduction when a 

dynamic partial order reduction tool becomes available. 
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Finally, we summarize existing work on reachability testing. In [15], a reachability testing algorithm was described for 

multithreaded programs that use read and write operations. A reachability testing algorithm for asynchronous message-passing 

programs was reported in [28] and was later improved in [19]. Our work is different in the following aspects. First, we present a 

general execution model that allows our reachability testing method to be applied to several commonly used synchronization 

constructs. This is in contrast to existing methods which are specific to a particular type of synchronization construct. Second, 

existing reachability testing methods compute race variants by considered all possible interleavings of the events in a SYN-

sequence. This is less efficient than our table-based algorithm, which deals with partial orders directly. The notion of a race 

variant in our work is also slightly different from that in existing methods. Third, in order to guarantee that every partially-

ordered SYN-sequence is executed exactly once, all the existing reachability testing algorithms need to save the test history, i.e., 

all the SYN-sequences that have already been exercised, whereas our new reachability testing algorithm saves no test history. We 

note that the work presented in this paper is an extension of our previous work in [6][20][21]. 

X. CONCLUSION AND FUTURE WORK 

In this paper, we presented a general execution model that allows reachability testing to be applied to several commonly used 

synchronization constructs, and a new method for performing reachability testing. For a closed program whose execution always 

terminates and whose only source of non-determinism is due to concurrency, our new method guarantees that every partially 

ordered SYN-sequence be exercised exactly once, without saving the history of SYN-sequences that have already been exercised. 

We consider this new method to be a break-through for reachability testing for two reasons. First, removing the need to save and 

search the test history represents a significant reduction in memory and time requirements and thus allows reachability testing to 

be applied to larger programs. Without the new method, reachability testing simply could not compete with partial order 

reduction-based search techniques such as VeriSoft. Second, the ability to exercise every partially-ordered SYN-sequence exactly 

once, without any static analysis, is of theoretical interest and has important applications in program-based verification, which is 

discussed in our future plans. Note that reachability testing tools can be implemented in a portable manner, without modifying the 

underlying virtual machine, runtime-system or operating system. 

Since reachability testing is implementation-based, it cannot by itself detect “missing sequences”, i.e., sequences that are valid 

according to the specification but are not allowed by the implementation. In this respect, reachability testing is complementary to 

specification-based testing, which selects valid sequences from a specification and determines whether the sequences are allowed 

by the implementation. RichTest supports specification-based deterministic testing. Test sequences selected manually or 

generated from labeled transition systems can be input by RichTest in order to automatically determine whether the sequences are 

allowed by the implementation [17] 
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We plan to continue our work in the following directions. First, exhaustive testing is not always practical. In order to enable a 

balance between test effort and test coverage, we are developing reachability testing algorithms that selectively exercise a set of 

SYN-sequences according to a specified test coverage criteria. Second, we are addressing the test oracle problem. Reachability 

testing frequently executes a large number of sequences, which makes it impractical to manually inspect the output of the test 

executions. At present, properties such as freedom from deadlock and assertion violations can be checked automatically in 

RichTest. We plan to build new RichTest components that can check advanced temporal properties as well. Third, we will 

conduct an empirical study to evaluate the fault detection effectiveness of reachability testing. Synchronization faults will be 

inserted into programs using mutation-based testing techniques. We will determine how many of the inserted faults can be 

detected by reachability testing. Finally, there is a growing interest in combining formal methods and testing. Formal methods are 

frequently model based, which means that a model must be extracted from a program. Since reachability testing is dynamic and 

can be exhaustive, we are investigating the use of reachability testing to construct complete models of the communication and 

synchronization behavior of concurrent programs. 

REFERENCES 

[1] Ada Language Reference Manual, January 1983. 

[2] G. Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming, Addison-Wesley, 2000. 
 
[3] A. Bechini and K. C. Tai, “Timestamps for programs using messages and shared variables,” 18th Int’l Conf. on Distributed Computing 

Systems, 1998. 

[4] A. Bernstein, “Analysis of programs for parallel processing,” IEEE Transactions on Electronic Computers 15(5):757 - 763, 1966 

[5] D. L. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis, MIT, 1999. 

[6] R. Carver and Y. Lei, “A general model for reachability testing of concurrent programs,” Proc. Intl. Conf. on Formal Engineering 

Methods, pp. 76-98, 2004. 

[7] R. Carver and K. C. Tai, "Replay and testing for concurrent programs," IEEE Software, Vol. 8 No. 2, Mar. 1991, 66-74. 

[8] R. Carver and K. C. Tai, “Use of sequencing constraints for specification-based testing of concurrent programs,” IEEE Transactions on 

Software Engineering, 24(6):471-490, 1998. 

[9] R. Carver and K. C Tai, Modern Multithreading, Wiley, 2005. 

[10] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, “Multithread Java program test generation,” IBM Systems Journal, Vol. 41(1), pp. 

111-125, 2002. 

[11] C. J. Fidge, “Logical Time in Distributed Computing Systems,” IEEE Computer,  pp. 28-33, Aug. 1991. 

[12] C. Flanagan and P. Godefroid, “Dynamic partial order reduction for model checking software,” Proc. of the 32nd Symposium on Pinciples 

of Programming Languages (POPL), 2005.  

[13] P. Godefroid, “Software model checking: The VeriSoft Approach,” Formal Methods in System Design, 26(2):77-101, 2003. 



PRELIMINARY VERSION SUBMITTED TO IEEE TRANSACTION ON SOFTWARE ENGINEERING 
 

38 

[14] K. Havelund and Tom Pressburger. “Model Checking Java Programs Using Java PathFinder,” International Journal on Software Tools 

for Technology Transfer (STTT), 2(4): 366-381, April 2000. 

[15] G. H. Hwang, K. C. Tai, and T. L. Huang, “Reachability testing: An approach to testing concurrent software,” International Journal of 

Software Engineering and Knowledge Engineering, 5(4):493-510, 1995. 

[16] S. Katz and D. Peled, “Defining conditional independence using collapses,” Theoretical Computer Science, 101:337--359, 1992. 

[17] Koppol, P.V., Carver, R. H., and Tai, K. C., “Incremental Integration Testing of Concurrent Programs,” IEEE Trans. on Software. 

Engineering, Vol. 28, No. 6, June 2002, 607-623. 

[18] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System, Comm. of ACM, July 1978, pp. 558-565. 

[19] Y. Lei and K. C. Tai, “Efficient reachability testing of asynchronous message-passing programs,” Proc. 8th IEEE Int’l Conf. on 

Engineering for Complex Computer Systems, pp. 35-44, Dec. 2002. 

[20] Y. Lei and R. H. Carver, “Reachability testing of semaphore-based programs”, Proc. of the 28th Computer Software and Applications 

Conference (COMPSAC), 2004. 

[21] Y. Lei and R. Carver, “Reachability testing of monitor-based programs,” Proc. of Int’l Conf. on Software Engineering and Applications, 

2004. 

[22] F. Mattern, “Virtual Time and Global States of Distributed Systems,” Parallel and Distributed Algorithms (M. Cosnard et al.), Elsevier 

Science, North Holland, 1989, pp. 215-226. 

[23] R. H. B. Netzer, “Optimal tracing and replay for debugging shared-memory parallel programs,” Proc. of 3rd ACM/ONR Workshop on 

Parallel and Distributed Debugging, pp. 1-11, 1993. 

[24] G. Ricart and A.K. Agrawala, “An optimal algorithm for mutual exclusion in computer networks,” Communications of the ACM, 24, 1 

(January), 1981, pp. 9-17. 

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dynamic race detector for multithreaded programs,” IEEE 

Transactions on Computer Systems 15(4): 391-411, 1998/ 

[26] S. D. Stoller, “Testing concurrent Java programs using randomized scheduling,” Proc. of the Second Workshop on Runtime Verification 

(RV), Vol. 70(4) of Electronic Notes in Theoretical Computer Science. Elsevier, 2002. 

[27] K. C. Tai, “Race analysis of traces of asynchronous message-passing programs,” Proc. of the 17th Intl. Conf. on Distributed Computing 

Systems, pp. 261-268, 1997. 

[28] K. C. Tai, “Reachability testing of asynchronous message-passing programs,” Proc. of the 2nd International Workshop on Software 

Engineering for Parallel and Distributed Systems, pp. 50-61, 1997. 

[29] K. C. Tai, R. H. Carver, and E. Obaid, “Debugging concurrent Ada programs by deterministic execution,” IEEE Trans. Software 

Engineering, 17(1):45-63, 1991. 

[30] K. C. Tai and R. H. Carver, "Testing of distributed programs", Chapter 33 of Handbook of Parallel and Distributed Computing, edited by 

A. Zoyama, McGraw-Hill, pp. 955-978, 1996. 

[31] R. N. Taylor, “A general-purpose algorithm for analyzing concurrent programs,” Communications of the ACM, 26(5):362-376, 1983. 



PRELIMINARY VERSION SUBMITTED TO IEEE TRANSACTION ON SOFTWARE ENGINEERING 
 

39 

[32] R. N. Taylor, D. L. Levine, and C. D. Kelly, “Structural testing of concurrent programs,” IEEE Transaction on Software Engineering, 

18(3):206-214, 1992.  

[33] A. Ulrich and H. Konig, “Specification-based Testing of Concurrent Systems,” Proc. of the IFIP Joint International Conference on 

Formal Description Techniques and Protocol Specification, Testing, and Verification (FORTE/PSTV '97), 1997. 

[34] R. D. Yang and C. G. Chung, “A Path Analysis Approach to Concurrent Program Testing,” Information and Software Technology, 

34(1):43-56, 1992. 

[35] C. Yang, A. L. Souter, and L. L. Pollock, “All-du-path Coverage for Parallel Programs,” International Symposium on Software Testing 

and Analysis (ISSTA), pp. 153-162, 1998. 



PRELIMINARY VERSION SUBMITTED TO IEEE TRANSACTION ON SOFTWARE ENGINEERING 
 

40 

SUPPLEMENTARY MATERIAL 

In this material, we present formal proofs for Lemma 1 and Theorems 1 and 2. 

1.   Proof of Lemma 1 

Lemma 1: Let CP be a concurrent program. Let Q and Q’ be two SYN-sequences of CP with input X. Then, Q and Q’ equal if 

and only if they have no race difference. 

Proof: The only if part is trivial. To show the if part, we show that there must exist at least one race difference between Q and 

Q’ if they are different. Assume, to the contrary, that Q and Q’ are different but there is no race difference between them. Then, 

any difference between Q and Q’ must be one of the following four types: (1) An event e exists in Q but not in Q’; (2) An event e 

exists in Q’ but not in Q; (3) A receiving event r exists in both sequences and send(r, Q) is defined but send(r, Q’) is undefined; 

(4) A receiving event r exists in both sequences and send(r, Q’) is defined but send(r, Q) is undefined. We will show that none of 

the above types of differences can exist in Q and Q’, contradicting the assumption that Q and Q’ are different.  

By symmetry, we only need to consider types (1) and (3). First we show that the existence of a difference of type 1 implies the 

existence of a difference of type 3 or 4. Therefore, we only need to consider type 3 differences (type 4 is symmetric to type 3). 

Assume that there exists a difference of type 1 between Q and Q’. Let e be one of the “first” events that has a difference of type 1, 

i.e., no event f has a difference of type 1 such that f →Q e. (Note that there could be more than one such “first” event because 

happened-before is a partial order.) Note that every event f in c-struct(e) must exist in both Q and Q’, as otherwise f would have a 

difference of type 1 and f →Q e. Therefore, the only way for e to exist in Q but not in Q’, i.e., to ensure that c-struct(e) is not 

repeated in Q’, is to have a receiving event r in c-struct(e) such that either (a) send(r, Q) and send(r, Q’) are defined but send(r, 

Q) � send(r, Q’) or (b) send(r, Q) or send(r, Q’) is defined but not both. Case (a) is not possible because of our assumption that 

no race difference exists between Q and Q’. Case (b) implies that a type 3 or 4 difference exists between Q and Q’.    

Now we show that the existence of a difference of type 3 implies the existence of a race difference. Let r be one of the “first” 

events that have a difference of type 3, i.e., no event e has a difference of type 3 such that e →Q r. This implies that the sending 

partner s of r in Q exists in both Q and Q’. (Otherwise, s has a difference of type 1, which, as shown earlier, implies the existence 

of a difference of type 3 or 4. Without loss of generality, let r’ be a receiving event with a difference of type 3 such that r’ →Q s. 

Then r’ →Q r, which contradicts the fact that r is one of the “first” events that have a difference of type 3.) Let T be the 

destination thread of s, which is also the thread in which r occurs. In Q’, s cannot be synchronized with any receiving event r’ that 

happens before r in T. Otherwise, r would not exist in both Q and Q’, since r’ is in c-struct(r) and send(r’, Q) � s. We consider 

two cases: (a) s is synchronized with a receiving event that happens after r in T; (b) s is not synchronized with any receiving 



PRELIMINARY VERSION SUBMITTED TO IEEE TRANSACTION ON SOFTWARE ENGINEERING 
 

41 

event. In (a), send(r, Q’) must be defined; otherwise T cannot proceed beyond r. In (b), send(r, Q’) must also be defined, as 

otherwise, nothing prevents s and r from being synchronized with each other. Therefore, send(r, Q’) is always defined, 

contradicting our assumption that r has a difference of type 3. It follows that the existence of any difference between Q and Q’ 

implies the existence of a race difference between them, which concludes our proof.     

2.   Proof of Theorem 1 

Theorem 1: Let CP be a concurrent program. Let G be the S/V-graph of CP with input X. Then, G is strongly connected. 

Proof: We show that given two arbitrary nodes n and n’ in G, where n ≠ n’, there exists a path from n to n’ and another path 

from n’ to n. By symmetry, we only need to show that there exists a path from n to n’. Below we demonstrate how to construct 

such a path. We will use lcp(n1, n2) to denote the longest (partially-ordered) common prefix between seq(n1) and seq(n2). (Let I be 

the set of events that exist in both seq(n1) and seq(n2) and that are synchronized with the same events in seq(n1) and seq(n2). Then, 

lcp(n1, n2) consists of those events in I as well as the synchronizations between them.) We also use |lcp(n1, n2)| to denote the 

number of events in lcp(n1, n2).  

By Lemma 1, since n ≠ n’, there must exist at least one (race) difference between seq(n) and seq(n’). Let r be a receiving event 

that exists in both seq(n) and seq(n’) such that send(r, seq(n)) and send(r, seq(n’)) are defined but send(r, seq(n)) � send(r, 

seq(n’)). Note that if we change the sending partner of r in seq(n) to match its sending partner in seq(n’) and remove all the events 

e whose control structure contains r in seq(n), we will derive a race variant, say V, of seq(n). Note that e must not be in lcp(n, n’). 

This is because otherwise r must be in lcp(n, n’), which contradicts our assumption that send(r, seq(n)) � send(r, seq(n’)). Let e1 

be the outgoing edge of n in G that is labeled by variant V. Let n1 be the destination node of e1. If n1 = n’, then there is a path 

from n to n’ which consists of the single edge e1. Otherwise, |lcp(n1, n’)| >  |lcp(n, n’)|. Note that since n1 ≠ n’ there must exist at 

least one difference between seq(n1) and seq(n’). Therefore, we can apply the same procedure to n1 and n’, and so on. Since the 

length of seq(n’) is finite, we will eventually terminate and reach node n’. € 

3.   Proof of Theorem 2  

Theorem 2: Given a concurrent program CP and an input X, our reachability testing algorithm exercises every partially-

ordered SYN-sequence of CP with input X exactly once. 

The proof consists of two parts. In the first part, we show that our reachability testing algorithm is complete, i.e., it exercises 

every SYN-sequence at least once. In the second part, we show that no SYN-sequence is exercised by our reachability testing 
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algorithm more than once.  

3.1   Completeness Proof 

We first introduce the notations used in our proof. Let CP be a concurrent program and let Q be a SYN-sequence exercised by CP 

with input X: 

• color(r, Q) is the color (black or white) of a receiving event r in Q. 

• Recv(Q) is the set of receiving events in Q. 

• send(r, Q) is the sending partner s of a receiving event r in Q if r has a sending partner.  

• e →Q f  indicates that e happens before f in Q. 

• Let R = {r1, ..., rn} be a subset of the receiving events in Recv(Q). Min(R, Q) is the set of events in R that are minimal w.r.t. 

the happened-before relation in Q, i.e., Min(R, Q) = {r ∈ R | there is no receiving event r' ∈ R such that r’ →Q r}. Note that 

the receiving events in Min(R, Q) are pairwise concurrent. For example, consider SYN-sequence Q0 in Fig. 1(b). Let R = {r1, 

r2, r3} be a set of receiving events in Q0. Then, Min(R, Q0) = {r1}.  

The rest of the notations deal with two SYN-sequences Q1 and Q2: 

• Diff(Q1, Q2) is the set of receiving events that have a race difference between Q1 and Q2. Diff(Q1, Q2)  = {r | r ∈ Recv(Q1) ∩ 

Recv(Q2),  both send(r, Q1) and send(r, Q2) are defined, and send(r, Q1) ≠ send(r, Q2)}.  

• Cut(Q1, Q2) = Min(Diff(Q1, Q2), Q2)). As we will see later, Cut(Q1, Q2) identifies the receiving events whose differences (in 

terms of their sending partners) can be reconciled by a single variant V of Q1, i.e., the sending partners of these receiving 

events in V will match those in Q2. 

Note that Diff(Q1, Q2) =  Diff(Q2, Q1), whereas Cut(Q1, Q2) � Cut(Q2, Q1). Consider again Fig. 1(b) in which Diff(Q0, Q3) = 

{r1, r3}, and Cut(Q0, Q3) = Min({r1, r3}, Q3) = {r1, r3}.  Note that the differences with r1 and r3 are reconciled by variant V3, i.e., 

the sending partners of r1 and r3 in V3 match those in Q3.  

Our completeness proof is based on a procedure called Guided-RT, which is shown in Fig. 14. Procedure Guided-RT takes as 

input an arbitrary SYN-sequence T and guides reachability testing by choosing, at each iteration, which of the race variants 

generated by function GenerateVariant is used for prefix-based testing so that T will eventually be exercised.  
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Procedure Guided-RT { 

 // Input: A concurrent program CP, an input X of CP, and an arbitrary target 
 //            SYN-sequence T of CP with input X 
 // Result: SYN-sequence T is exercised by an execution of CP with input X 
 Execute CP with input X non-deterministically to collect a SYN-sequence Q0; 
 Q = Q0;  
 while (Cut(Q, T) is not empty) { 
 // 1. Select a race variant that reconciles the differences with the receiving events in Cut(Q, T) 
 Let variants(Q) be the set of the variants of Q generated by function GenerateVariants; 
 Find a race variant V in variants(Q) such that: 
 // V reconciles the differences of the receiving events in Cut(Q, T) 
 (1) For receiving event r∈ Cut(Q, T), send(r, V) = send(r, T)  …  (*) 
 // V does not explicitly change the sending partners of any other receiving event 
 (2) For receiving event r ∈ Recv(V) – Cut(Q, T), send(r, V) is undefined or send(r, V) = send(r, Q)  
                  // 2: Perform prefix-based testing with V 
 Conduct a modified prefix-based test run of CP with input X using V, and let Q be the collected SYN-sequence; 
 } 
 } 

Figure 14. Procedure Guided-RT. 

As an example, consider procedure Guided-RT with SYN-sequence Q3 in Fig. 1(b) as the target sequence. Guided-RT starts 

with a non-deterministic test run, which we assume collects sequence Q0. Earlier we have shown that Cut(Q0, Q3) = {r1, r3}. 

Therefore, Guided-RT selects race variant V3 in which the sending partners of r1 and r3 are changed to match the sending partners 

of r1 and r3 in target sequence Q3. Variant V3 is used to perform prefix-based testing, from which SYN-sequence Q3 can be 

collected.  

In order to show that our reachability testing algorithm can exercise each SYN-sequence at least once, it suffices to show that 

(1) each race variant V selected by Guided-RT is actually generated by function GenerateVariants; and (2) Guided-RT terminates 

and T is exercised upon termination. Note that a prefix-based test run always terminates. 

Before we present our completeness proof, we introduce two properties that will be used in the proof. 

Property 1: Let Q1 and Q2 be two SYN-sequences of a program CP with input X. If event e exists in Q1 but not in Q2, then 

there must exist a receiving event f in Q1 and Q2 such that f ∈ Diff(Q1, Q2) and f →Q1 e. 

The above property is true because any difference can be traced back to a race difference, as shown by Lemma 1. 

Property 2: If an event e happens before a sending event s in a SYN-sequence Q, then e is in c-struct(s).  

The above property is true because any event e that happens before a sending event s is either the event f that immediately 

precedes s in the same thread or it must happen before f.  

Property 3: If an event e happens before a receiving event r in a SYN-sequence Q but is not in c-struct(r), then e happens 

before the sending partner of r in Q.  

The above property is true because an event e happens before a receiving event r in one of the following cases: (a) e 

immediately precedes r in the same thread; (b) e happens before the event that immediately precedes r in the same thread; (c) e 
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happens before the sending partner of r. Cases (a) and (b) imply that e is in c-struct(r). Thus, case (c) must be true. 

Lemma 2: In Guided-RT, the variant V selected at each iteration can always be found in variants(Q). 

Proof: Let Qi and Vi be the SYN-sequence and variant, respectively, at iteration i. (That is, Vi is the variant of Qi that is 

selected by procedure Guided-RT.) Note that variant Vi needs to reconcile all the differences associated with the receiving events 

in Cut(Qi, T). 

To prove that Vi can be found in variants(Qi), we show that (I) each receiving event r in Cut(Qi, T) can be reconciled 

individually at iteration i; and (II) the receiving events in Cut(Qi, T) can be reconciled altogether (i.e., by a single variant) at 

iteration i. Note that (II) is to show that even if the reconciliation of a receiving event may cause certain events to be removed, it 

will not affect the reconciliation of the other receiving events in Cut(Qi, T). Therefore, Vi is generated by function 

GenerateVariants as one of the variants in variants(Qi). Observe that any other receiving event r in Vi will either have the same 

sending partner as in Qi, or have its sending partner undefined if its sending partner in Qi was removed as a result of changing the 

sending partner of a receiving event r in Cut(Qi, T). 

Note that if a receiving event r ∈ Cut(Qi, T), then by definition of Cut(Qi, T): (A1) r exists in both Qi and T; (A2) send(r, Qi) 

and send(r, T) are both defined, and send(r, Qi) � send(r, T); (A3) there is no receiving event r' ∈ Diff(Qi, T) such that r’ →T r 

I. Each receiving event r in Cut(Qi, T) can be reconciled individually at iteration i. 

Let s be the sending partner of r in T. It suffices to show that (1) s ∈ race_set(r, Qi) (which ensures that s exists in Qi  and s can 

be synchronized with r); (2) if r also existed in Vi-1, which is the variant selected in the previous iteration, then (2.1) s did not 

exist in Vi-1 (which ensures that GenerateVariants will not consider s to be an old sending event that should be pruned from 

race_set(r, Qi)); (2.2) color(r, Qi) != black (which ensures that GenerateVariants will not disallow the sending partner of r from 

being changed to s).  

Condition (1): s ∈ race_set(r, Qi).  

First we show that s exists in Qi. Note that s is the sending partner of r in T. If s does not exist in Qi, then by Property 1, there 

must exist a receiving event r' in T such that r' →T s and r’ ∈ Diff(Qi, T). But since r' →T s it is also true that r' →T r (as s is the 

sending partner of r), which violates (A3) and means that r cannot be in Cut(Qi, T), leading to a contradiction. 

In order to show that s ∈ race_set(r, Qi), we need to show, by Proposition 2, that (a) s is open at r in Qi; (b) r does not happen 

before s in Qi; (c) letting r’ be the receiving partner of s in Qi, then r happens before r’ in Qi; (d) if a sending event s’ has the 

same source and destination as s but happens before s in Qi, then there exists a receiving event r’ such that <s, r’> is a 

synchronization pair and r’ happens before r in Qi.  

Condition (1.a): s is open at r in Qi. 
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Let t be the thread in which r occurs. Note that if CP is a monitor-based program then the OpenList in the descriptor of r is a 

list of method names for the owning monitor M of r and this list is easy to generate. Since s is synchronized with r in sequence T, 

which implies that s is a call to a method of monitor M, s is open at r in Qi.  If CP is an asynchronous or synchronous message 

passing program, or CP is a semaphore-based program, then the OpenList in the descriptor of r depends on the runtime state of t 

when r occurs. Recall that c-struct(r) contains the event f that immediately precedes r in t and all the events that happen before f. 

The runtime state of t when r occurs must be the same in Qi and T, as otherwise r would not exist in both Qi and T. Since s is 

synchronized with r in T, which implies that s is open at r in T, s is also open at r in Qi.  

Condition (1.b): r does not happen before s in Qi.  

Assume to the contrary that r happens before s in Qi. By Property 2, r is in the control-structure of s in Qi. Since s also exists in 

T, and every event is identified by its control structure, the control-structure of s in Qi and the control-structure of s in T must be 

the same. This means that r cannot be in Diff(Qi, T), which contradicts the fact that r ∈ Cut(Qi, T).   

Condition (1.c): Letting r’ be the receiving partner of s in Qi, then r happens before r’ in Qi.  

Note that r’ and r must be in the same thread. Otherwise, r’ can never be synchronized with the sending event that r can be 

synchronized with. Thus, r and r’ can never be concurrent. Assume, to the contrary, that r’ happens before r in Qi. Since r’ and r 

are in the same thread, r’ must be in c-struct(r). Note that in T, s is synchronized with r, i.e., s is no longer synchronized with r' as 

it was in Qi. Thus, r’ must be in Diff(Qi, T). This means that r cannot exist in both Qi and T. Therefore, r cannot be in Cut(Qi, T), 

leading to a contradiction. 

Condition (1.d): If a sending event s’ has the same source and destination as s but happens before s in Qi, then there exists a 

receiving event r’ such that <s’, r’> is a synchronization pair and r’ happens before r in Qi. 

By Property 2, s’ is in the control-structure of s in Q. Since s also exists in T, s’ must also happen before s in T. Note that s is 

synchronized with r in T. According to the FIFO scheme, s’ must be synchronized with a receiving event r’ that happens before r 

in T. Considering that s and s’ have the same destination, r’ is in the control-structure of r in T. The fact that r also exists in Q 

implies that r’ also exists in the control-structure of r in Q and must be synchronized with the same send partner as it does in T, 

i.e., the one sent by s’.   

Condition (2.1): If r also existed in variant Vi-1, which is the variant selected in the previous iteration, then s did not exist in 

variant Vi-1 (which ensures that GenerateVariants will not consider s to be an old sending event that should be pruned from 

race_set(r, Qi)). 

Assume that s existed in Vi-1. We will show that this implies r ∈ Cut(Qi-1, T), meaning that r must have been reconciled at 

iteration i - 1 and therefore that r cannot be in Cut(Qi, T), leading to a contradiction. Assume that r is not in Cut(Qi-1, T). There 
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must exist a receiving event r' such that r' →T r and r' ∈ Cut(Qi-1, T). Note that by definition of r' ∈ Cut(Qi-1, T), we have send(r’, 

Qi-1) ≠ send(r’, T). Note that r’ is not in the control-structure of r, as otherwise, r could not exist in both Vi-1 and T. By Property 3, 

r’ →T s. Further, by Property 2, r’ is in the control structure of s. Since send(r’, Qi-1) ≠ send(r’, T), s cannot exist in both Qi-1 and 

T. But this contradicts the assumption that s existed in Vi-1, since Qi-1 was collected from prefix-based testing with Vi-1 and thus 

every event in Vi-1 must also exist in Qi-1. 

Condition (2.2): color(r, Qi) != black (which ensures that GenerateVariants will not disallow the sending partner of r from 

being changed). 

Assume that the color of r was white at iteration j – 1, i.e., color(r, Qi-1) = white, and the color of r was black at iteration j, i.e., 

color(r, Qj) = black, j < i. Then, for the color of r to have been changed to black during iteration j, one of the following 

conditions must have held (a) send(r, Vj) != send(r, Qj) (which means that the sending partner of r was changed to derive Vj ) or 

(b) there existed a receiving event r' ∈ Cut(Qj, T) such that send(r', Vj) != send(r', Qj) (which means that the sending partner of r’ 

was changed to derive Vj) and r happened before r’ in Vj (which means that the color of r was changed since r happened before 

r’). 

Condition (2.2.a): send(r, Vj) != send(r, Qj) (which means that the sending partner of r was changed). 

In procedure Guided-RT, the sending partner of r can only be changed in the statement marked (*), which uses the sending 

partners in T as the basis for all changes. Thus, send(r, Vj) = send(r, T). This means that r cannot be in Cut(Qi, T), leading to a 

contradiction. 

Condition (2.2.b): There existed a receiving event r' ∈ Cut(Qj, T) such that send(r', Vj) != send(r', Qj) (which means that the 

sending partner of r’ was changed) and r happened before r’ in Vj (which means that the color of r was changed since r happened 

before r’ in Vj). 

Note that r ∈ Diff(Qj, T), j < i, as the sending partner of r is not changed until iteration i. But since r happened before r’ in Vj, 

r' cannot be in Cut(Qj, T), leading to a contradiction.  

II: All the receiving events in Cut(Qi, T) (including r) can be reconciled altogether (i.e.,by a single variant) at iteration i. 

It suffices to show that no receiving event r in Cut(Qi, T) is in the control-structure of another receiving event r’ in Cut(Qi, T) 

or in the control-structure of the sending partner of r’ in T, i.e., send(r’, T), if defined (so that r’ and send(r’,T) are not removed as 

a result of the reconciliation of r.) This is true because otherwise r must happen before r’ in T, and thus both events cannot be in 

Cut(Qi, T) at the same time. Therefore, the receiving events in Cut(Qi, T) can be reconciled altogether by a single variant at 

iteration i.  

Lemma 3: Algorithm Guided-RT must terminate, and T must be exercised upon termination. 
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Proof: By Lemma 1, if Cut(Q, T) is empty, then T is already exercised. Note that each iteration will reconcile at least one 

difference between Q and T. Since the number of differences between Q and T is finite, then Cut(Q, T) must become empty within 

a finite number of steps. Therefore, Guided-RT must terminate and T must be exercised upon termination. 

3.2    Uniqueness Proof 

We first introduce some definitions that are needed in our proof. 

Definition 9: Let Q1 and Q2 be two SYN-sequences exercised during reachability testing. Q1 is the parent of Q2 if Q2 is a SYN-

sequence exercised by prefix-based testing with a variant V of Q1. In this case, we also say that V “leads to” Q2. Q1 is an ancestor 

of Q2 if Q1 is the parent of Q2 or there exists a SYN-sequence Q3 such that Q1 is the parent of Q3 and Q3 is an ancestor of Q3. In 

this case, if V is the variant of Q1 that leads to Q3, then we also say that V leads to Q2. 

Definition 10: Let Q1 and Q2 be two SYN-sequences exercised during reachability testing. Q1 and Q2 are siblings if neither Q1 

is an ancestor of Q2 nor Q2 is an ancestor of Q1. 

Definition 11: Let Q1 and Q2 be two SYN-sequences such that Q1 is an ancestor of Q2. Then, between(Q1, Q2) = {Q | Q1 is an 

ancestor of Q and Q is an ancestor of Q2 }. 

The main idea of our proof is to show that given two sequences Q1 and Q2 exercised by reachability testing, there exists a 

(race) difference between Q1 and Q2. This is equivalent to saying that no SYN-sequence is exercised more than once during 

reachability testing.  We show this by considering the two possible relations between Q1 and Q2: (1) Q1 is an ancestor of Q2 or Q2 

is an ancestor of Q1; (2) Q1 and Q2 are siblings. Again, we will use send(r, Q) to denote the sending partner of r in Q, and color(r, 

Q) the color of receiving event r in SYN-sequence Q. 

Lemma 4: Let CP be a concurrent program. Let Q1 and Q2 be two SYN-sequences exercised by algorithm Reachability-

Testing of CP with input X. There exists at least one (race) difference between Q1 and Q2 if Q1 is an ancestor of Q2 or Q2 is an 

ancestor of Q1. 

Proof: By symmetry, it suffices to show that if Q1 is an ancestor of Q2, then there is at least one difference between Q1 and Q2. 

Let V be the variant of Q1 that leads to Q2. Since V is a variant of Q1, there must exist at least one difference between Q1 and V. 

Let r be a receiving event that exists in Q1 and V such that send(r, Q1) and send(r, V) are both defined but send(r, Q1) ≠ send(r, 

V). Therefore, color(r, V) = black. According to our reachability testing algorithm, the sending partner of r cannot be changed in 

subsequent iterations. In addition, ∀r': r' →V r � color(r’, V) = black. This means that the sending partner of any receiving event 

happening before r in V cannot be changed in subsequent iterations either. Therefore, r cannot be removed in subsequent 

iterations. (Recall that an event e is removed from a variant when the sending partner of a receiving event that happened before e 
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is changed.) Hence, r must exist in both Q1 and Q2 and send(r, Q1) ≠ send(r, Q2). 

Property 4: Let Q be a SYN-sequence. Let e be an event in Q. If e is removed to derive a race variant V of Q, then e will never 

exist in any sequence that is reached afterwards during reachability testing.  

The above property is true because if e is removed, there must exist a receiving event r in the control structure of e whose 

sending partner was explicitly changed. Therefore, the color of r will be set to black, which means that its sending partner can 

never be changed again. Therefore, the control-structure of e can never be repeated in any sequence that is reached afterwards. 

Lemma 5: Let CP be a concurrent program. Let Q1 and Q2 be two sibling sequences that are exercised by reachability testing 

of CP with input X. Then, there must be at least one (race) difference between Q1 and Q2. 

Proof: Let Q be the youngest common ancestor of Q1 and Q2. Note that Q must exist, since Q0 is the common ancestor of all 

the SYN-sequences that can be exercised by CP with input X. Let V1 and V2 be the two variants of Q that lead to Q1 and Q2, 

respectively. We consider two cases: (I) There exists a race difference between V1 and V2; (II) There is no race difference 

between V1 and V2. (Note that Lemma 1 only applies to SYN-sequences that can be exercised by complete program executions. It 

is still possible for two variants, which are created by our race variant generation algorithm, to be different without any race 

differences. For example, in Fig. 1 (b), V2 and V3 are different but they do not have any race difference.) 

Case (I): There exists a race difference between V1 and V2 

Let r be a receiving event in V1 and V2 such that send(r, V1) and send(r, V2) are defined but send(r, V1) ≠ send(r, V2). Since r 

has different sending partners in V1 and V2, there are three conditions to consider: (1) send(r, V1) ≠ send(r, Q), and send(r, V2) ≠ 

send(r, Q); (2) send(r, V1) = send(r, Q) and send(r, V2) ≠ send(r, Q).) (3) send(r, V2) = send(r, Q) and send(r, V1) ≠ send(r, Q). 

Because conditions (2) and (3) are symmetric, we only need to consider conditions (1) and (2). 

Condition (1): send(r, V1) ≠ send(r, Q), and send(r, V2) ≠ send(r, Q). 

According to our reachability testing algorithm, color(r, V1) = color(r, V2) = black. This means that the sending partner of r 

will not be changed in any sequence in between(Q,Q1) or in between(Q,Q2). In addition, the color of any receiving event r’ that 

happens before r in V1 (or V2) is also black. This means that the sending partner of any receiving event that happens before r will 

not be changed in any sequence in between(Q,Q1) or in between(Q,Q2). Therefore, r will never be removed from any sequence in 

between(Q,Q1) or in between(Q,Q2). This means that the race difference with r is preserved in Q1 and Q2. 

Condition (2): send(r, V1) = send(r, Q) and send(r, V2) ≠ send(r, Q)). 

Let s = send(r, V2). Since send(r, V2) ≠ send(r, Q), color(r, V2) = black. Therefore, the sending partner of r can never be 

changed in any sequence in between(Q, Q2). This means that send(r, Q2) = send(r, V2) = s. In the following, we consider two 

conditions: (a) s is in V1; (b) s is not in V1. 



PRELIMINARY VERSION SUBMITTED TO IEEE TRANSACTION ON SOFTWARE ENGINEERING 
 

49 

Condition (2.a): s is in V1.  

Let Q’ be an arbitrary sequence in between(Q, Q1). If s or r is not in Q’, we will not be able to change the sending partner of r 

in Q’ to s. If both s and r are in Q’, they must be old events. Therefore, s will be pruned from race_set(r, Q’). Consequently we 

will not be able to change the sending partner of r in Q1 to s either. Therefore, send(r, Q1) ≠ send(r, Q2). 

Condition (2.b): s is not in V1. 

Note that s is in Q. By Property 4, s will never exist in any sequence in between(Q, Q1). Therefore, we will never be able to 

change the sending partner of r in Q1 to s. Therefore, send(r, Q1) ≠ send(r, Q2). 

Case (II): There is no race difference between V1 and V2. 

We first show that every event in V1 also exists in V2, and vice versa. Note that both V1 and V2 are variants derived from the 

same sequence Q. It suffices to show that an event in Q is removed from V1 if and only if it is removed from V2. By symmetry, we 

only need to show the if part. Assume that an event e in Q is removed from V1. Then, there must exist a receive event r such that r 

is in the control-structure of e and its send partner was explicitly changed to derive V1. This means that both send(r, Q) and 

send(r, V1) are defined but send(r, Q) � send(r, V1). Since there is no race difference between V1 and V2, send(r, V2) is either 

undefined or send(r, V2) = send(r, V1). In the former case, there must exist a receiving event r’ such that r’ happens before send(r, 

Q) in Q and the sending partner of r’ was explicitly changed to derive V2. Since r is in the control-structure of e, and r’ happens 

before r, r’ is also in the control-structure of e. Therefore, e must be removed from V2. In the latter case, send(r, V2) � send(r, Q). 

Since r is in the control-structure of e, e must also be removed from V2.    

Since V1 and V2 are different variants but they have no race difference and contain the same events, there must exist a receiving 

event r in V1 and V2 such that send(r, V1) or send(r, V2) is defined but not both. Without loss of generality, assume that send(r, V1) 

is defined and send(r, V2) is undefined. Let s = send(r, V1). As shown earlier, both s and r exist in V2. Hence, s and r will be 

prevented from being synchronized with each other during our modified prefix-based testing with V2. Note that both s and r’ will 

also be considered as “old” events in the sequence collected from prefix-based testing with V2, as well as any sequences in 

between(Q’, Q2), if they exist. Thus, s will always be pruned from the race set of r’. This means that s and r’ cannot be 

synchronized with each other afterwards. This concludes our proof. 

 


