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Abstract Our research interest is in cooperative multiagent
learning, where multiple agents (a team) learn to solve
Concurrent learning is a form of cooperative multiagenta joint task or to maximize utility. More specifically, this
learning in which each agent has an independent learningaper focuses on applications where multiple agents si-
process and little or no control over its teammates’ acmultaneously learn how to better interact with one an-
tions. In such learning algorithms, an agent’s perceptiorpther; we refer to this asoncurrent learning9].
of the joint search space depends on the reward received Early multiagent learning approaches attempted to di-
by both agents, which in turn depends on the actionsectly apply machine learning techniques to multiagent
currently chosen by the other agents. The agents wilkystems: each agent behaves rationally and attempts to
tend to converge towards certain areas of the space b@nprove its own behavior. Recent work debates the use
cause of their learning processes. As a result, an agentst rationality and Nash equilibria [6, 13], and suggest
perception of the search space may benefit if computedoncepts such as reputation and mutual trust to improve
over multiple rewards at early stages of learning, butiearning [1, 8]. We continue this thrust of research with
additional rewards have little impact towards the end.an argument fotenience each agent should be lenient
We thus suggest that agents should be lenient with theiith its teammates at early stages of learning, when each
teammates: ignore many of the low rewards initially, andis exploring the space of actions. Lenience may be re-
fewer rewards as learning progresses. We demonstratficed as learning progresses and agents have begun fo-
the benefit of lenience in a cooperative co-evolution al-cusing on a solution. We demonstrate this notion in sim-
gorithm and in a new reinforcement learning algorithm. ple two-agent scenarios, although it is easily extended to
multiple agents.

. We will begin with an argument for lenience based on

1 Introduction illustrations of a single agent’s perspective of the joint

search space. We then apply lenience to two widely used

Recently there has been increased interest in decentrgly ,iagent learning paradigms, cooperative coevolution
ized approaches to solving complex real-world problemsg ,q yeinforcement learning, and we show how the learn-

Among such approaches, the area of multiagent systemg nrocesses benefit as a result. The paper ends with a
(MAS) emphasizes the joint behaviors of agents Withget of conclusions and directions for future work.
some degree of autonomy. Unfortunately, hard-coding

agents to achieve desired behaviors for the entire team

may be difficult: problem complexity increases tremen- ; ;

dously with more agents or more complex agent behav-2 S ngl e-Agent Perspectlves on the

iors and interactions. Additionally, agents might need to Search Space

adapt to new conditions that were unforeseen when their

behaviors were designed. Machine learning promises vitmagine a simple scenario where two agents learn to co-
able solutions to these difficulties. ordinate. IfX is the set of actions that the first agent can



ally afforded only a partial glimpse of the search space.
Specifically, each agent can only detect and respond to
the difference in rewards it has received for different ac-
tions it has chosen in the past. Given the joint search
space in Figure 1, an ideal search space for one of the
learning agents is illustrated in Figure 2: for each action
X, we plottedg(x) = maxcy f(x,y). If both agents per-
ceived the search space in this manner, they could both
learn the actions corresponding to the the globally opti-
p— mal team performance.
Figure 1: A bimodal search space for the possible re- More realistic projections of the joint search space in
wards received by a two-agent team. Wider peaks mayrigure 1 are illustrated in Figure 3. Here, we compute the
attract many search trajectories, even though such peak¥ojection at poink as the average and the maximum of
may be globally suboptimal. the rewards obtained by the agents when the first agent
chooses actiom and the second agent chooses 5 or 20
random actions. The graphs show that taking the average
of all rewards results in noisy projections that lose the de-
sired ranking of actions. On the other hand, ignoring all
but the maximum reward results in better projections, es-
pecially for larger numbers of such rewards: the projec-
tion obtained for 20 rewards closely resembles the ideal
one in Figure 2. This supports the empirical analysis and
conclusions reported in [17].
The assumption that agents choose actions with uni-
 m m m . o form probability is usually reasonable at the beginning
Stategies fo First Player of a multiagent learning process if there is no a pri-
Figure 2: A desirable projection of solution quality for Ofi knowledge about the search space. However, as the
the first population provides enough information about29€nts learn, they tend more and more to choose those
the location of the optimal peak. Such a projection may?@ctions that resulted in higher rewards in the past. This
be computed at each poiriasmax.y f (x,y), whereY departure from uniformity alters_ the prOJ(_acuons of the
denotes the range of the second argument. search space, and thus the rank_mg (_)f_act|0ns for each of
the agents. Let us assume for simplicity that the second

agent chooses its actions according to a normal distri-
choose from, ant is the set of actions available to the bution. How does this affect the projection of the joint

second agent, the task is for the agents to independentBearch space as perceived by the first agent?
choose one action each (sayndy) such as to maxi- First, suppose that the second agent starts to prefer ac-
mize the joint rewardf (x,y) that they receive. Figure tions around the wider, suboptimal peak. Different pro-
1 illustrates a search space of joint rewards for a simplgections of the search space as perceived by the first agent
coordination game. are illustrated in Figure 4. The projections resemble the
The figure shows two peaks of different sizes. Theone in Figure 2 when the standard deviation and the num-
lower peak represents a locally-optimal but globally- ber of rewards are high. However, all information about
suboptimal solution, and the wide coverage of that pealthe optimal solutions is lost in the projections that corre-
implies that solution quality changes only a little when spond to small standard deviations: coordinated actions
any agent chooses a somewhat different action. Thef bothagents are required to achieve higher payoffs on
higher peak represents the global optimum, and itgshe optimal peak. On the other hand, suppose that the
smaller coverage implies that the solution quality maysecond agent tends to prefer actions corresponding to the
change rapidly if any agent chooses slightly different ac-higher, globally optimal peak (Figure 5). The contour
tions. Both peaks represent Nash equilibria— modifyingof the optimal peak is clearly distinguishable on each
either thex or they value (but not both) would lead to a of those projections, while the projection of the subopti-
decrease in the function value. This implies that if bothmal peak becomes noisier at reduced standard deviation

agents decide to choose actions corresponding to a Nagpgiven the higher peak, this is relatively inconsequential
equilibrium, neither of them has a rational incentive toto the learning process).

choose any other action on its own. We also observe that differences between pairs of
In concurrent multiagent learning, each agent is usugraphs decrease with standard deviation: while in Fig-
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Figure 3: Projected search space for the first agent in theptveds domain, assuming the second agent chooses his
action randomly with uniform probability. Due to noise, fhcess is repeated three times —there are three curves
on each graph. (a) The projection at poins computed by averaging 5 and respectively 20 joint rewé(dsy;) for
different actionsy;. (b) The projection at point is computed as the maximum of 5 and respectively 20 joint résva
(the lower 4 and respectively 19 rewards are ignored).

ure 3(b) there is a clear differentiation between using 5 A standard approach to applying cooperative coevo-
and 20 actions (this setting is equivalent to a normal disutionary algorithms (CCEAS) to multiagent learning as-
tribution with standard deviation =), such differences signs each agents its own population of actto®CEAs
are less obvious in Figures 4(a) and 5(b). This suggestdo not evaluate actions for an agent in isolation, but they
that agents may benefit from additional rewards at earlyather evaluate only the performance of a complete team
stages of learning to increase the accuracy of their prowith an action specified for each agent. The fitness (as-
jection of the joint search space. It also indicates that thesessed quality) of an action is determined by testing it
impact of additional rewards may be minimal towards thein combination with tuples containing actions for the
end of the learning process: there is little increase in thether agents (as sampled from their current populations
accuracy of the projection when using different numberseither randomly or based on their performance during the
of rewards. past evaluation phase). When combined with such tuples
What do Figures 2-5 have to do with lenience? First,(which are calleatollaboratorsin coevolution parlance),
we observe that using the maximum of multiple re-an agent’s candidate action receives a reward that is in
wards provides agents with valuable information aboutfact the joint reward for the entire team of agents. The
the search space. We thus suggest learning agents shotfilthess of the candidate action is then computed by ag-
be lenient with their teammates during early stages ofjregating multiple such rewards (via taking the average
concurrent learning processes: ignore many of the lowor the maximum, similar to the process used for Figure
joint rewards, and only take into consideration the higher3). Aside from this collaborative assessment, each agent
ones. Second, the quality of projections increases alfollows its own independent evolutionary process in par-
most insignificantly with more rewards once the learnersallel with other agents.
start to converge. As a consequence, we suggest learning For example, suppose we are learning the optimal joint
agents should become more critical with respect to jointeward for a team with three agents. If the agents choose
rewards (ignore fewer of them) during advanced stageactionsx, y, andz respectively, the joint reward is spec-
of learning. ified by f(x,y,z). When applying CCEAs to this prob-
lem, one might assign the first population to represent
. . . the actions for the first agent, the second population to
3 Lenient Cooper ative Coevolution represent the actionsfor the second agent, and simi-

) . . larly the third population to represent the actiarts the
Cooperative coevolutionary systems [11] are variants ofhirq agent. Each population is evolved separately, ex-
evolutionary computation — a stochastic optimizationcept that when evaluating an action in some population
technique — which apply multiple parallel learners (0p- g g ) collaborating actions are chosen from the other
timization processes) to work jointly on different aSpeCtspopuIationsy and2) in order to obtain a joint reward

of the problgm. This makgs_them a goo_d fit for multi- f(x,y,2). An action’s fitness is computed as an aggrega-
agent learning, where the joint problem is decomposed

into several (Iikew intertwined) individual agent sub- 1For more complex domains, the population could insteadatont
problems. state-to-action mappings.




tion of joint rewards from one or more evaluations with reward. Each agent maintained a population of 32 ac-
various collaborators: for example, the fitnesxobuld  tions. Agents kept unmodified their best action from
be computed as md&x(x,y1,2), f(X,y2,22)), where the one learning stage (generation) to another, and the re-
sets{y1,y»} and{z,z} are selected from the second maining population of actions was created by mutating
and from the third populations. actions chosen via tournament selection of size 2 (two
The effects of different settings of cooperative coevo-random actions were picked with replacement from the
lutionary algorithms on search performance have beepopulation, and the fitter of the two was selected). Mu-
the focus of research studies such as [2, 17]. The resultstion worked as follows: a coin was repeatedly tossed,
indicate that computing the fitness of actions as the maxand the action (an integer number) was increased or de-
imum of multiple joint rewards performs significantly creased (the direction chosen at random beforehand) un-
better than computing it as the minimum or as the averdil the coin came up heads, making sure it did not go
age. Also, while using multiple collaborators might fare outside the allowed bounds. The coin was biased such
better in domains involving complex non-linear interac-that it came up heads with probability 0.05. One of the
tions among the components, it additionally increases theollaborators was always set to the best action from the
computational requirements. Wiegand [16] argues thabther agent’s population at the previous generation; the
the sampling of collaborators introduces a certain bias owthers were chosen by a tournament selection of size 2.
the search: wider peaks (see Figure 1) are more likely to The coevolutionary algorithm had a budget of 17600
have collaborators sampled from them, and this may biagvaluations of joint rewards. With these settings, CCEAs
the search toward suboptimal solutions; this is termedvith 5 collaborators ran for around 110 generations.
relative overgeneralizatianRelative overgeneralization When choosing this budget, we felt that too small of
may shift the focus of the search from optimality to ro- a value might prevent differentiations among the algo-
bustness —depending on the problem, one criterion mayithms because they would not be allowed to search
be more important than the other. The impact of multi-enough. Similarly, too large of a budget might dimin-
ple collaborators on the learning process is graphicallyish the differences between methods that waste evalua-
illustrated in [10]. tions and methods that use them effectively. The value
Most cooperative coevolutionary algorithms assumewe chose seemed to be a good compromise.
that each action is evaluated as the maximum joint re- Qur experiments compared the performance of meth-
ward obtained with a fixed number of collaborators. Us-ods using a fixed number of collaborators against our
ing the maximum to compute the fitness implies that alltechnique employing a variable-sized number of collab-
but one of the joint rewards are completely ignored. Inorators. We tested 10 different numbers of collaborators
terms of our earlier discussion, this translates into a con¢1 to 10). Using a single collaborator allowed for many
stant level of lenience for each agent toward its teamgenerations, while more collaborators promised more ac-
mates. We argue that a better setting involves a higleurate fitness assessment mechanisms at the expense of
level of lenience at the beginning of the learning pro-fewer generations.
cess. In coevolution, this translates into a higher number The experiments were performed using the ECJ library
of collaborators at early generations, followed by fewer[7] and they involved 250 runs per method. Performance
collaborators at later stages of search. was computed as the average of the best performing pair
There are many approaches to decreasing the numbegf actions (one per each agent) at the last generation. Sta-
of collaborators over time, including methods that con-tistical significance was verified using t-tests assuming
sider the diversity of the populations. Here, we apply aunequal variances at 95% confidence.
trivial ad-hoc setting: start with 10 collaborators for the  \e must point out a few problems with our experi-
first 5 evaluation phases, followed by using only 2 col-ments. First, the same collaborators are used to evaluate
laborators until exhausting the computational resourcesyn entire population at each generation, as opposed to
In short notation, we refer to this collaboration setting grawing random collaborators for each action. This re-
as 10*5+2*rest We leave the analysis of other such gyces the evaluation noise in the population, but it also

schemes for future work. limits the exploration of the search space. We are not
aware of much literature comparing these two settings,
31 Experiments& Results but we do not expect the difference to be significant. Sec-

ond, the collaborators are chosen based on a tournament
We constructed several simple coordination games basesklection of size 2, as opposed to choosing them ran-
on benchmark optimization problems with well-known domly. This setting might diminish the benefit of mul-
properties as described in [12]. All domains were dis-tiple collaborators later on in the search (the extra se-
cretized into 1024 1024 intervals: an agent learns to lection pressure might make the population seem more
select one of its 1024 actions so as to maximize the jointonverged than it actually is). In our defense, we point
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Figure 4: Projected search space for the first agent in thepveds domain, assuming the second agent chooses his
actions according to a normal distribution centered on thmptimal peak. The projection at poits computed as

the maximum of 5 and respectively 20 joint rewafds, y;) (the lower 4 and respectively 19 rewards are ignored). The
y; are randomly generated from normal distributions with m&@r{centered on the suboptimal peak) and standard
deviations 20 and 5, respectively. The process is repelated times.

Number Mean St Dev Number Mean St Dev
Collaborators| Performance| Performance Collaborators| Performance Performance

1 960.308064| 30.622387 1 999.805368| 0.702603

2 989.164076| 48.826596 2 999.931824| 0.165259

3 1004.111361 49.314857 3 999.948679| 0.151703

4 1020.230865 44.603223 4 999.946774| 0.133769

5 1031.04927Q0 37.868720 5 999.939639| 0.142567

6 1035.819193 32.235383 6 999.947729| 0.110188

7 1036.992860 30.671499 7 999.951085| 0.082815

8 1042.224061 22.536767 8 999.943306| 0.107280

9 1042.303012 22.076877 9 999.940341| 0.117084

10 1041.991019 20.991886 10 999.945124| 0.088891

10*5+2*rest | 1047.110667 | 16.520011 10*5+2*rest | 999.986614 0.054527

Table 1: Performance of different collaboration Table 2: Performance of different collaboration schemes
schemes in the discretized two-peak problem domainin the discretized Rosenbrock-like problem domain.
10*5+2*rest significantly outperforms all other settings. 10*5+2*rest significantly outperforms all other settings.

as
. . . . x-16\2 , (y-16)2
to the relationship between this selection pressure and 950— 500+ ( (%52%)" + (L5~
the diversity in the population: the results of the selec-f(x,y) =max 4en2 [y agn?
tion process might be similar (in terms of expectation) 1050— 9600+ ((X64 )+ (yw) )

if using random selection from a less diverse population,
or using tournament selection with size 2 from more di-wherex andy range from 0 to 64, discretized into 1024

verse populations. Thus, we argue that other collaborantervals. This problem domain is illustrated in Figure 1.
tion schemes could work better than the fixed collaboraThe results are summarized in Table 1. The results for

tion schemes even if random selection were used instea@dur decreasingly lenient setting, 10*5+2*rest, are signif
icantly better than the ones for all other settings.

The first experiment compared the results of the set- The second experiment tested the methods using
tings described above in the Two-Peaks domain illusa Rosenbrock-like functign two-dimensional search
trated ".1 Figure 1. SpeC|f|caIIy, the joint reward for a This function resembles the two-dimensional Rosenbroek, b
t_eam with two agents, where the first ag_ent chooses aGyith a diminished influence of the non-linear component effiness
tionx and the second agent chooses agfiage computed  function.
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Figure 5: Projected search space for the first agent in thepveds domain, assuming the second agent chooses his
actions according to a normal distribution centered on i@l peak. The projection at poirtis computed as

the maximum of 5 and respectively 20 joint rewarfds,y;) (the lower 4 and respectively 19 rewards are ignored).
They; are randomly generated from normal distributions with mé&ifcentered on the optimal peak) and standard
deviations 20 and 5, respectively. The process is repelated times.

Number Mean St Dev Number Mean St Dev
Collaborators| Performance Performance Collaborators| Performance Performance

1 999.974879| 0.087959 1 999.944621| 0.258064

2 999.992303| 0.017698 2 999.945253| 0.278818

3 999.992725| 0.014395 3 999.896547| 0.624545

4 999.994459| 0.003547 4 999.927854| 0.182885

5 999.994457| 0.003247 5 999.940833| 0.168899

6 999.994630| 0.003522 6 999.911407| 0.215897

7 999.994800| 0.003434 7 999.912132| 0.194326

8 999.995458 0.003786 8 999.893961| 0.227951

9 999.994743| 0.004014 9 999.903006| 0.208813

10 999.994870| 0.004457 10 999.877023| 0.315515

10*5+2*rest | 999.995700 0.003646 10*5+2*rest | 999.996837 0.022781

Table 3: Performance of different collaboration Table 4: Performance of different collaboration schemes
schemes in the discretized Griewangk problem domainin the discretized Booth problem domain. 10*5+2*rest
10*5+2*rest significantly outperforms all other settings, significantly outperforms all other settings.

except for 8 collaborators.

The results of different collaboration methods on this

space with problem domain are presented in Table 3. The results
) ) 5 indicate that 10*5+2*rest is significantly better than all
f(x,y) = 1000— (2* (X =y) " +(1-x) ) other settings except for 8 collaborators.

) . The fourth experiment used the Booth problem do-
wherex andy range between -5.12 and 5.12 discretizedmain. In this domain, the two-argument optimization

into 1024 intervals. The results are presented in Table Zynction equals

The results for 10*5+2*rest are again significantly better

than the ones for all fixed collaboration schemes. f(x,y) = 1000— ((X+ 25y~ TP+ (2% x+y— 5)2)
A third experiment used the Griewangk function ’

X2 y2 y (again transformed to a maximization problem), with
f(x,y) = 1000 <1+ 2000 2000~ COS(X) * COS(ﬁ)) andy between -5.12 and 5.12, discretized into 1024 in-
tervals. This is a challenging problem for coevolutionary
with x andy between -5.12 and 5.12, discretized againsearch because of non-linearities among the variables;
into 1024 intervals. This modified function has severalthe optimum of the function is at (1,3) and it has a value

suboptimal peaks, and an optimum of value 1000 at (0,0)of 1000. The results of the methods in this domain are



presented in Table 4. The 10*5+2*rest method has a siggorithm called FMQ, which uses the maximum reward
nificantly better performance than all fixed settings. received per action to bias the probability of choosing
that action. This improved algorithm shows advantages

. . . in domains with limited amounts of noise, but its per-

4 Lenient Multiagent Reinforce-  formance is poor when there is a lot of noise. Finally,
ment L earni ng Verbeeck et al [15] propose coordinated restarts of sub-

optimal learning algorithms in combination with action
exclusions (similar to tabu search) to guarantee conver-
gence to the globally optimal solution. But the restarts

estimates of utilities for performing actions in various M&Y require a significantamount of time, and the conver-
states of the environment, or for being in those state§€Nce o optimais guaranteed only if all Nash equilibria

themselves [14]. These utilities are used for both the?"® Visited infinitely often.
exploration of the space, as well as for the exploitation In contrast, our proposed lenient algorithm improves
of the agent’s knowledge about the environment. As thghe performance of each learning trial without requir-
memory requirements of traditional RL grow exponen-ing any a priori coordination. It is based on the fol-
tially with the number of agents, multiagent reinforce- lowing idea: if at early stages of learning an agent re-
ment learning reduces the memory consumption by deCeives rewardss,ra,...,rk when choosing actioa; at
composing the joint utility tables into simpler utility ta- various times, the agent ignores most of these rewards
bles, one per agent. This in essence projects the joirand only updates the utility of; based on the maxi-
utility tables into per-agent tables which discount othermum of ry,r2,....rc. The reason for this is that those
agents. We assume for simplicity that the environmentewards were obtained while the other learning agent se-
has a single state, and we only focus on computing théected some actiorts, ..., bk, most of which might be ig-
utility of choosing different actions; this is similar toeth nored in the future due to lower utilities. As both agents
analysis of multiagent RL in [3, 5, 4]. become more selective at choosing their actions, it is ex-
Previous research in multiagent RL has focused orPected that they will each tend to primarily select a single
straightforward applications of traditional techniques t action (the best one) after some time. At this point, we
multiagent problems. This led to algorithms where would prefer that each agent updates the utility of that ac-
agents update their utility estimates based on each arfPn based on every reward he observes. This will lower
every reward they observe, similar to applications of RLthe optimistic estimation of the utility for that action un-
to single-agent environments. From a higher-level perdil it equals the mean reward obtained by the agents for
spective, these algorithms approach the multiagent learrihat joint reward. If this mean reward becomes lower
ing problem using agents with no lenience for one anthan the estimated utility of other actions, the agent will
other (this resembles a Cooperative Coevo|utionary Seﬁ.end to prefer other actions instead. This is desirable for
ting using a single collaborator). We continue with a 9ames with stochastic rewards, such as the ones in Table
brief discussion of previous multiagent reinforcement6.
learning literature, followed by lenient multiagent re- We implement the algorithm as follows. We always
inforcement learning algorithm that selectively updatesupdate the utility of the action if the current reward ex-
the utilities of actions based only csomeof the re-  ceeds the utility of the action. Otherwise, we use a proba-
wards. The results of preliminary experiments suggesbilistic approach: if the agent has not explored that action
that agents learning via RL techniques significantly bensufficiently, it should show lenience to its teammates and
efit when showing lenience toward one another. not update its policy; but if the agent has explored that
Claus and Boutilier [3] show that straightforward ap- action many times in the past, it should tend to be more
plications of RL to concurrent learning are not guaran-critical and use the reward to lower the utility of that ac-
teed to find the optimal solution for these games, everion. The algorithm associates a temperature with each
in the case when agents are able to observe the othaction, as opposed to a single temperature for the entire
agents’ actions. The authors suggest that the seardbarning process. If the temperature associated with an
could be improved by using more optimistic exploration action is high, the agent is more lenient and ignores low
actions. This direction is further explored in [5], who rewards it receives for choosing that action. The temper-
update the utilities of actions based in part on the maxature of an action is decreased slightly every time that
imum reward previously received when performing thataction is selected. As a consequence, actions that have
action. Kapetanakis and Kudenko [4] observe that suclibeen chosen more often have their utilities updated more
biasing of utility computation may not work in domains often as well, while the utilities for actions that have been
where the joint reward information is noisy. They pro- chosen rarely are mainly updated with higher rewards.
pose an improved multiagent reinforcement learning al-This initially leads to an overoptimistic evaluation of the

Drawing inspiration from dynamic programming con-
cepts, reinforcement learning (RL) methods update th



utility of an action. An agent may thus be temporarily Agent 2 Agent 2

fooled into choosing suboptimal actions. However, the | a b ¢ | a b ¢
utilities of such actions will decrease with time, andthe 2 ~a| 11  -30 0 < "al| 10 0 -10
agent is more likely to end up choosing the optimal ac- é b|-30 7 6 §) b| 0 2 0
tion. There is also a small @1) probability of ignor- < ¢ | O 0 5 < c¢|-10 0 10

ing small rewards at all times: we found this to work in ) ) )
our experimental setup because the agents have non-zefgPle 5: Joint reward matrixes for the Climb (left) and
probabilities of selecting an action at each time step. ~ Penalty (right) domains.

Aside from these enhancements, the algorithm follows
a traditional RL approach: the action selection uses the
Boltzman distribution, and the utility is updated based inagents start with low utilities for all actions, and they
part on the reward currently received for an action. Onslowly start to believe that actidmhas a utility value of
top of the memory required to store the utility table, the 14, higher than all other actions. As both agents choose
proposed algorithm needs storage to encode a temperaetionb, they decrease the temperature associated with
ture for every action. This is about the same as the memthis action, and soon they start to incorporate lower re-
ory requirement of the algorithm proposed in [5], andwards (remember that the joint actifim b) has an aver-
half that of FMQ [4]. The pseudocode for the algorithm age utility of 7). As a consequence, the utility of action

is as follows: b decreases, and the agents start to explore other actions
Leni ent Mul tiagent RL as well. This generates extra miscoordination penalties
Parameters which lower the estimates for the utilities of all actions.

Given the higher temperature for actiayits utility is af-
fected by high rewards, and both agents start to prefer it
over the other actions. This leads to a decrease in misco-
ordination penalties, and both agents end up with precise
utilities associated with that action.

MaxTemp maximum temperature

o: temperature multiplication coefficient

B: exponent coefficient

J: temperature decay coefficient

A: learning rate

N: number of actions

Initial Settings

For each actiom
U; = random value between 0 and)01
Temp= MaxTemp

4.1 Experiments & Results

We experiment with learning in repeated coordination
games, in which agents repeatedly and independently
choose one action each, and they are rewarded equally
Leni ent Multiagent RL (continued) based on the joint action they have selected. The goal is
Algorithm for the agents to learn a joint action that has a maximum
Repeat reward (or maximum average reward for the stochastic
games). We employ four problem coordination games

/I Action Selection (Tables 5;— 6): the Climb and Penalty domains intro-

MinTemp= 106+ min , Temp
Yj
MinTemg
VVI _ eMin emjp
Z?Zlemp
Use probability distributiomV, ..., Wy
to select action

Temp=Temp* o

/I Utility Update
Perform action and observe rewand

RandVal= random value between 0 and 1

If (Ui<r)or
(RandVal< 1072+ B~@*TeMR) Then
U =AxUi+(1-A)x*r

duced in [3], and two stochastic variations of the Climb
domain as discussed in [4]. Climb is difficult because
of the large penalties associated with miscoordination of
actions corresponding to the two higher optima, while
Penalty is challenging because the agents need to select
among two joint actions with equal reward. Agents may
also select suboptimal actions that avoid miscoordination
penalties in each domain: actierin Climb, and action

b in the Penalty domain. The stochastic variations of the
Climb domain are challenging due to the additional noise
in the rewards for joint actions.

We experimented with the lenient multiagent RL al-
gorithm in all four problem domains. We performed a
preliminary sensitivity study for the parameters; as a re-
sult, we seMaxTemp=500,a = 2,3 =2.5,6 =0.995,

For additional clarity, Figure 6 illustrates the utilities andA = 0.95. The agents learned over 7500 moves. Ta-
associated with each action during a concurrent learnble 7 reports the number of runs that converged to each of
ing process in the Fully-Stochastic Climb domain. Boththe nine joint actions (based on each agent’s action with
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Figure 6: Utility of each agent’s three actions.

Agent 2 5 Conclusions
| a b ¢
E a| 11 -30 O This paper argues that multiple agents that learn concur-
¢ b|-30 14/0 6 rently can benefit from showing lenience to each other,
< c¢| O 0 5 especially during early interactions. We illustrated this
Agent 2 concept graphically based on projections of the joint
. a b c search space that each agent would perceive during dif-
= a 10/12  5/-65 8/-8 ferent stages of learning. We then extended two popular
¢ b 5-65 14/0 12/0 multiagent learning algorithms, namely cooperative co-
< c| 5-5 5-5 10/0 evolution and multiagent reinforcement learning, to in-

clude lenience in the agents’ decision processes, and we

Table 6:, Joint reward matrixes for i the Partially- showed the superiority of these extensions in several co-
Stochastic (top) and the Fully-Stochastic (bottom) Ver-o dination games

E'Ot?ls of thte Crll'mb dorr:%nt.hThe revx(/jaiti /'8 _stocI:_has;tr;c:t i Future work is required in multiple directions. What
oth agents choose actiopine rewar impliesthal ¢ mal guarantees can be proved for these algorithms?

both agents receive either a reward of 14 or a reward OLOW can agents automatically detect the appropriate

i il 0,
O with prabability 50% each. level of lenience? Are these algorithms readily applica-
ble to teams with tens, hundreds, or thousands of agents,
or what further extensions are required for this purpose?

maximal utility at the end of the run). These numbers areWe hope future research will help us find answers to

averaged over 10 trials of 1000 runs each. these challenging questions.

The lenient multiagent RL algorithm consistently con-
verged to the global optimum in the Climb, Penalty,
and Partially-Stochastic Climb domains. According to
[4], this is equivalent to the performance of FMQ in
these problem domains, and it is also significantly betteRefer ences
than the performance of both traditional Q-learning ap-
proaches, as well as to the algorithm previously proposed[1] B. Banerjee, R. Mukherjee, and S. Sen. Learn-
in [5]). However, the lenience also helped the agents ing mutual trust. InNorking Notes of AGENTS-00
learn the global joint action in the Fully-Stochastic Climb Workshop on Deception, Fraud and Trust in Agent
domain in more than 93.5% of the runs. This contrasts Societiespages 9-14, 2000.
FMQ’s poor performance in this domain as mentioned
in [4]; we also found that FMQ converged to the global [2] L. Bull. Evolutionary computing in multi-agent en-

optimum solution in only around 40% of runs in this dif- vironments: Partners. In T. Back, edit®roceed-
ficult domain, despite an extensive sensitivity study for ings of the Seventh International Conference on
parameter values and a higher number of joint actions Genetic Algorithmgpages 370-377. Morgan Kauf-
(7500 instead of 2000 in previous work) mann, 1997.



Climb domain

a b ¢
al9924 0 O
b 0 76 0

c 0 0 O
Penalty domain

a b c
al 4946 O 0
b 0 0 0
c 0 0 505.4

Partially-Stochastic Climb

a b c
al999.0 O 0
b 0 0.0 0.6
c 0 0 0.4

Fully-Stochastic Climb

a b c
a| 935.2 0 0.001
b 0 20.2 204
c 0 0 24.1

Table 7: Average number of runs (out of 1000) that con-
verged to each of the joint actions for the four coordina-
tion games.
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