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Abstract

Concurrent learning is a form of cooperative multiagent
learning in which each agent has an independent learning
process and little or no control over its teammates’ ac-
tions. In such learning algorithms, an agent’s perception
of the joint search space depends on the reward received
by both agents, which in turn depends on the actions
currently chosen by the other agents. The agents will
tend to converge towards certain areas of the space be-
cause of their learning processes. As a result, an agent’s
perception of the search space may benefit if computed
over multiple rewards at early stages of learning, but
additional rewards have little impact towards the end.
We thus suggest that agents should be lenient with their
teammates: ignore many of the low rewards initially, and
fewer rewards as learning progresses. We demonstrate
the benefit of lenience in a cooperative co-evolution al-
gorithm and in a new reinforcement learning algorithm.

1 Introduction

Recently there has been increased interest in decentral-
ized approaches to solving complex real-world problems.
Among such approaches, the area of multiagent systems
(MAS) emphasizes the joint behaviors of agents with
some degree of autonomy. Unfortunately, hard-coding
agents to achieve desired behaviors for the entire team
may be difficult: problem complexity increases tremen-
dously with more agents or more complex agent behav-
iors and interactions. Additionally, agents might need to
adapt to new conditions that were unforeseen when their
behaviors were designed. Machine learning promises vi-
able solutions to these difficulties.

Our research interest is in cooperative multiagent
learning, where multiple agents (a team) learn to solve
a joint task or to maximize utility. More specifically, this
paper focuses on applications where multiple agents si-
multaneously learn how to better interact with one an-
other; we refer to this asconcurrent learning[9].

Early multiagent learning approaches attempted to di-
rectly apply machine learning techniques to multiagent
systems: each agent behaves rationally and attempts to
improve its own behavior. Recent work debates the use
of rationality and Nash equilibria [6, 13], and suggest
concepts such as reputation and mutual trust to improve
learning [1, 8]. We continue this thrust of research with
an argument forlenience: each agent should be lenient
with its teammates at early stages of learning, when each
is exploring the space of actions. Lenience may be re-
duced as learning progresses and agents have begun fo-
cusing on a solution. We demonstrate this notion in sim-
ple two-agent scenarios, although it is easily extended to
multiple agents.

We will begin with an argument for lenience based on
illustrations of a single agent’s perspective of the joint
search space. We then apply lenience to two widely used
multiagent learning paradigms, cooperative coevolution
and reinforcement learning, and we show how the learn-
ing processes benefit as a result. The paper ends with a
set of conclusions and directions for future work.

2 Single-Agent Perspectives on the
Search Space

Imagine a simple scenario where two agents learn to co-
ordinate. IfX is the set of actions that the first agent can
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Figure 1: A bimodal search space for the possible re-
wards received by a two-agent team. Wider peaks may
attract many search trajectories, even though such peaks
may be globally suboptimal.
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Figure 2: A desirable projection of solution quality for
the first population provides enough information about
the location of the optimal peak. Such a projection may
be computed at each pointx asmaxy∈Y f (x,y), whereY
denotes the range of the second argument.

choose from, andY is the set of actions available to the
second agent, the task is for the agents to independently
choose one action each (sayx andy) such as to maxi-
mize the joint rewardf (x,y) that they receive. Figure
1 illustrates a search space of joint rewards for a simple
coordination game.

The figure shows two peaks of different sizes. The
lower peak represents a locally-optimal but globally-
suboptimal solution, and the wide coverage of that peak
implies that solution quality changes only a little when
any agent chooses a somewhat different action. The
higher peak represents the global optimum, and its
smaller coverage implies that the solution quality may
change rapidly if any agent chooses slightly different ac-
tions. Both peaks represent Nash equilibria — modifying
either thex or they value (but not both) would lead to a
decrease in the function value. This implies that if both
agents decide to choose actions corresponding to a Nash
equilibrium, neither of them has a rational incentive to
choose any other action on its own.

In concurrent multiagent learning, each agent is usu-

ally afforded only a partial glimpse of the search space.
Specifically, each agent can only detect and respond to
the difference in rewards it has received for different ac-
tions it has chosen in the past. Given the joint search
space in Figure 1, an ideal search space for one of the
learning agents is illustrated in Figure 2: for each action
x, we plottedg(x) = maxy∈Y f (x,y). If both agents per-
ceived the search space in this manner, they could both
learn the actions corresponding to the the globally opti-
mal team performance.

More realistic projections of the joint search space in
Figure 1 are illustrated in Figure 3. Here, we compute the
projection at pointx as the average and the maximum of
the rewards obtained by the agents when the first agent
chooses actionx and the second agent chooses 5 or 20
random actions. The graphs show that taking the average
of all rewards results in noisy projections that lose the de-
sired ranking of actions. On the other hand, ignoring all
but the maximum reward results in better projections, es-
pecially for larger numbers of such rewards: the projec-
tion obtained for 20 rewards closely resembles the ideal
one in Figure 2. This supports the empirical analysis and
conclusions reported in [17].

The assumption that agents choose actions with uni-
form probability is usually reasonable at the beginning
of a multiagent learning process if there is no a pri-
ori knowledge about the search space. However, as the
agents learn, they tend more and more to choose those
actions that resulted in higher rewards in the past. This
departure from uniformity alters the projections of the
search space, and thus the ranking of actions for each of
the agents. Let us assume for simplicity that the second
agent chooses its actions according to a normal distri-
bution. How does this affect the projection of the joint
search space as perceived by the first agent?

First, suppose that the second agent starts to prefer ac-
tions around the wider, suboptimal peak. Different pro-
jections of the search space as perceived by the first agent
are illustrated in Figure 4. The projections resemble the
one in Figure 2 when the standard deviation and the num-
ber of rewards are high. However, all information about
the optimal solutions is lost in the projections that corre-
spond to small standard deviations: coordinated actions
of bothagents are required to achieve higher payoffs on
the optimal peak. On the other hand, suppose that the
second agent tends to prefer actions corresponding to the
higher, globally optimal peak (Figure 5). The contour
of the optimal peak is clearly distinguishable on each
of those projections, while the projection of the subopti-
mal peak becomes noisier at reduced standard deviation
(given the higher peak, this is relatively inconsequential
to the learning process).

We also observe that differences between pairs of
graphs decrease with standard deviation: while in Fig-
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(b) Maximum Reward
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Figure 3: Projected search space for the first agent in the two-peaks domain, assuming the second agent chooses his
action randomly with uniform probability. Due to noise, theprocess is repeated three times — there are three curves
on each graph. (a) The projection at pointx is computed by averaging 5 and respectively 20 joint rewardsf (x,yi) for
different actionsyi . (b) The projection at pointx is computed as the maximum of 5 and respectively 20 joint rewards
(the lower 4 and respectively 19 rewards are ignored).

ure 3(b) there is a clear differentiation between using 5
and 20 actions (this setting is equivalent to a normal dis-
tribution with standard deviation =∞), such differences
are less obvious in Figures 4(a) and 5(b). This suggests
that agents may benefit from additional rewards at early
stages of learning to increase the accuracy of their pro-
jection of the joint search space. It also indicates that the
impact of additional rewards may be minimal towards the
end of the learning process: there is little increase in the
accuracy of the projection when using different numbers
of rewards.

What do Figures 2–5 have to do with lenience? First,
we observe that using the maximum of multiple re-
wards provides agents with valuable information about
the search space. We thus suggest learning agents should
be lenient with their teammates during early stages of
concurrent learning processes: ignore many of the low
joint rewards, and only take into consideration the higher
ones. Second, the quality of projections increases al-
most insignificantly with more rewards once the learners
start to converge. As a consequence, we suggest learning
agents should become more critical with respect to joint
rewards (ignore fewer of them) during advanced stages
of learning.

3 Lenient Cooperative Coevolution

Cooperative coevolutionary systems [11] are variants of
evolutionary computation — a stochastic optimization
technique — which apply multiple parallel learners (op-
timization processes) to work jointly on different aspects
of the problem. This makes them a good fit for multi-
agent learning, where the joint problem is decomposed
into several (likely intertwined) individual agent sub-
problems.

A standard approach to applying cooperative coevo-
lutionary algorithms (CCEAs) to multiagent learning as-
signs each agents its own population of actions1. CCEAs
do not evaluate actions for an agent in isolation, but they
rather evaluate only the performance of a complete team
with an action specified for each agent. The fitness (as-
sessed quality) of an action is determined by testing it
in combination with tuples containing actions for the
other agents (as sampled from their current populations
either randomly or based on their performance during the
past evaluation phase). When combined with such tuples
(which are calledcollaboratorsin coevolution parlance),
an agent’s candidate action receives a reward that is in
fact the joint reward for the entire team of agents. The
fitness of the candidate action is then computed by ag-
gregating multiple such rewards (via taking the average
or the maximum, similar to the process used for Figure
3). Aside from this collaborative assessment, each agent
follows its own independent evolutionary process in par-
allel with other agents.

For example, suppose we are learning the optimal joint
reward for a team with three agents. If the agents choose
actionsx, y, andz respectively, the joint reward is spec-
ified by f (x,y,z). When applying CCEAs to this prob-
lem, one might assign the first population to represent
the actionsx for the first agent, the second population to
represent the actionsy for the second agent, and simi-
larly the third population to represent the actionszof the
third agent. Each population is evolved separately, ex-
cept that when evaluating an action in some population
(e.g.,x), collaborating actions are chosen from the other
populations (y and z) in order to obtain a joint reward
f (x,y,z). An action’s fitness is computed as an aggrega-

1For more complex domains, the population could instead contain
state-to-action mappings.
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tion of joint rewards from one or more evaluations with
various collaborators: for example, the fitness ofx could
be computed as max( f (x,y1,z1), f (x,y2,z2)), where the
sets{y1,y2} and {z1,z2} are selected from the second
and from the third populations.

The effects of different settings of cooperative coevo-
lutionary algorithms on search performance have been
the focus of research studies such as [2, 17]. The results
indicate that computing the fitness of actions as the max-
imum of multiple joint rewards performs significantly
better than computing it as the minimum or as the aver-
age. Also, while using multiple collaborators might fare
better in domains involving complex non-linear interac-
tions among the components, it additionally increases the
computational requirements. Wiegand [16] argues that
the sampling of collaborators introduces a certain bias on
the search: wider peaks (see Figure 1) are more likely to
have collaborators sampled from them, and this may bias
the search toward suboptimal solutions; this is termed
relative overgeneralization. Relative overgeneralization
may shift the focus of the search from optimality to ro-
bustness — depending on the problem, one criterion may
be more important than the other. The impact of multi-
ple collaborators on the learning process is graphically
illustrated in [10].

Most cooperative coevolutionary algorithms assume
that each action is evaluated as the maximum joint re-
ward obtained with a fixed number of collaborators. Us-
ing the maximum to compute the fitness implies that all
but one of the joint rewards are completely ignored. In
terms of our earlier discussion, this translates into a con-
stant level of lenience for each agent toward its team-
mates. We argue that a better setting involves a high
level of lenience at the beginning of the learning pro-
cess. In coevolution, this translates into a higher number
of collaborators at early generations, followed by fewer
collaborators at later stages of search.

There are many approaches to decreasing the number
of collaborators over time, including methods that con-
sider the diversity of the populations. Here, we apply a
trivial ad-hoc setting: start with 10 collaborators for the
first 5 evaluation phases, followed by using only 2 col-
laborators until exhausting the computational resources.
In short notation, we refer to this collaboration setting
as 10*5+2*rest. We leave the analysis of other such
schemes for future work.

3.1 Experiments & Results

We constructed several simple coordination games based
on benchmark optimization problems with well-known
properties as described in [12]. All domains were dis-
cretized into 1024× 1024 intervals: an agent learns to
select one of its 1024 actions so as to maximize the joint

reward. Each agent maintained a population of 32 ac-
tions. Agents kept unmodified their best action from
one learning stage (generation) to another, and the re-
maining population of actions was created by mutating
actions chosen via tournament selection of size 2 (two
random actions were picked with replacement from the
population, and the fitter of the two was selected). Mu-
tation worked as follows: a coin was repeatedly tossed,
and the action (an integer number) was increased or de-
creased (the direction chosen at random beforehand) un-
til the coin came up heads, making sure it did not go
outside the allowed bounds. The coin was biased such
that it came up heads with probability 0.05. One of the
collaborators was always set to the best action from the
other agent’s population at the previous generation; the
others were chosen by a tournament selection of size 2.

The coevolutionary algorithm had a budget of 17600
evaluations of joint rewards. With these settings, CCEAs
with 5 collaborators ran for around 110 generations.
When choosing this budget, we felt that too small of
a value might prevent differentiations among the algo-
rithms because they would not be allowed to search
enough. Similarly, too large of a budget might dimin-
ish the differences between methods that waste evalua-
tions and methods that use them effectively. The value
we chose seemed to be a good compromise.

Our experiments compared the performance of meth-
ods using a fixed number of collaborators against our
technique employing a variable-sized number of collab-
orators. We tested 10 different numbers of collaborators
(1 to 10). Using a single collaborator allowed for many
generations, while more collaborators promised more ac-
curate fitness assessment mechanisms at the expense of
fewer generations.

The experiments were performed using the ECJ library
[7], and they involved 250 runs per method. Performance
was computed as the average of the best performing pair
of actions (one per each agent) at the last generation. Sta-
tistical significance was verified using t-tests assuming
unequal variances at 95% confidence.

We must point out a few problems with our experi-
ments. First, the same collaborators are used to evaluate
an entire population at each generation, as opposed to
drawing random collaborators for each action. This re-
duces the evaluation noise in the population, but it also
limits the exploration of the search space. We are not
aware of much literature comparing these two settings,
but we do not expect the difference to be significant. Sec-
ond, the collaborators are chosen based on a tournament
selection of size 2, as opposed to choosing them ran-
domly. This setting might diminish the benefit of mul-
tiple collaborators later on in the search (the extra se-
lection pressure might make the population seem more
converged than it actually is). In our defense, we point
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(a) Standard Deviation = 20
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(b) Standard Deviation = 5
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Figure 4: Projected search space for the first agent in the two-peaks domain, assuming the second agent chooses his
actions according to a normal distribution centered on the suboptimal peak. The projection at pointx is computed as
the maximum of 5 and respectively 20 joint rewardsf (x,yi) (the lower 4 and respectively 19 rewards are ignored). The
yi are randomly generated from normal distributions with mean16 (centered on the suboptimal peak) and standard
deviations 20 and 5, respectively. The process is repeated three times.

Number Mean St Dev
Collaborators Performance Performance

1 960.308064 30.622387
2 989.164076 48.826596
3 1004.111361 49.314857
4 1020.230865 44.603223
5 1031.049270 37.868720
6 1035.819193 32.235383
7 1036.992860 30.671499
8 1042.224061 22.536767
9 1042.303012 22.076877
10 1041.991019 20.991886

10*5+2*rest 1047.110667 16.520011

Table 1: Performance of different collaboration
schemes in the discretized two-peak problem domain.
10*5+2*rest significantly outperforms all other settings.

to the relationship between this selection pressure and
the diversity in the population: the results of the selec-
tion process might be similar (in terms of expectation)
if using random selection from a less diverse population,
or using tournament selection with size 2 from more di-
verse populations. Thus, we argue that other collabora-
tion schemes could work better than the fixed collabora-
tion schemes even if random selection were used instead.

The first experiment compared the results of the set-
tings described above in the Two-Peaks domain illus-
trated in Figure 1. Specifically, the joint reward for a
team with two agents, where the first agent chooses ac-
tion x and the second agent chooses actiony, is computed

Number Mean St Dev
Collaborators Performance Performance

1 999.805368 0.702603
2 999.931824 0.165259
3 999.948679 0.151703
4 999.946774 0.133769
5 999.939639 0.142567
6 999.947729 0.110188
7 999.951085 0.082815
8 999.943306 0.107280
9 999.940341 0.117084
10 999.945124 0.088891

10*5+2*rest 999.986614 0.054527

Table 2: Performance of different collaboration schemes
in the discretized Rosenbrock-like problem domain.
10*5+2*rest significantly outperforms all other settings.

as

f (x,y)= max















950−500∗
(

(

x−16
64

)2
+

(

y−16
64

)2
)

1050−9600∗
(

(

x−48
64

)2
+

(

y−48
64

)2
)

wherex andy range from 0 to 64, discretized into 1024
intervals. This problem domain is illustrated in Figure 1.
The results are summarized in Table 1. The results for
our decreasingly lenient setting, 10*5+2*rest, are signif-
icantly better than the ones for all other settings.

The second experiment tested the methods using
a Rosenbrock-like function2 two-dimensional search

2This function resembles the two-dimensional Rosenbrock, but
with a diminished influence of the non-linear component of the fitness
function.
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(a) Standard Deviation = 20
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(b) Standard Deviation = 5
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Figure 5: Projected search space for the first agent in the two-peaks domain, assuming the second agent chooses his
actions according to a normal distribution centered on the optimal peak. The projection at pointx is computed as
the maximum of 5 and respectively 20 joint rewardsf (x,yi) (the lower 4 and respectively 19 rewards are ignored).
Theyi are randomly generated from normal distributions with mean48 (centered on the optimal peak) and standard
deviations 20 and 5, respectively. The process is repeated three times.

Number Mean St Dev
Collaborators Performance Performance

1 999.974879 0.087959
2 999.992303 0.017698
3 999.992725 0.014395
4 999.994459 0.003547
5 999.994457 0.003247
6 999.994630 0.003522
7 999.994800 0.003434
8 999.995458 0.003786
9 999.994743 0.004014
10 999.994870 0.004457

10*5+2*rest 999.995700 0.003646

Table 3: Performance of different collaboration
schemes in the discretized Griewangk problem domain.
10*5+2*rest significantly outperforms all other settings,
except for 8 collaborators.

space with

f (x,y) = 1000−
(

2∗
(

x2−y
)2

+(1−x)2
)

wherex andy range between -5.12 and 5.12 discretized
into 1024 intervals. The results are presented in Table 2.
The results for 10*5+2*rest are again significantly better
than the ones for all fixed collaboration schemes.

A third experiment used the Griewangk function

f (x,y)= 1000−
(

1+
x2

4000
+

y2

4000
−cos(x)∗ cos

(

y√
2

))

with x andy between -5.12 and 5.12, discretized again
into 1024 intervals. This modified function has several
suboptimal peaks, and an optimum of value 1000 at (0,0).

Number Mean St Dev
Collaborators Performance Performance

1 999.944621 0.258064
2 999.945253 0.278818
3 999.896547 0.624545
4 999.927854 0.182885
5 999.940833 0.168899
6 999.911407 0.215897
7 999.912132 0.194326
8 999.893961 0.227951
9 999.903006 0.208813
10 999.877023 0.315515

10*5+2*rest 999.996837 0.022781

Table 4: Performance of different collaboration schemes
in the discretized Booth problem domain. 10*5+2*rest
significantly outperforms all other settings.

The results of different collaboration methods on this
problem domain are presented in Table 3. The results
indicate that 10*5+2*rest is significantly better than all
other settings except for 8 collaborators.

The fourth experiment used the Booth problem do-
main. In this domain, the two-argument optimization
function equals

f (x,y) = 1000−
(

(x+2∗ y−7)2 +(2∗ x+y−5)2
)

(again transformed to a maximization problem), withx
andy between -5.12 and 5.12, discretized into 1024 in-
tervals. This is a challenging problem for coevolutionary
search because of non-linearities among the variables;
the optimum of the function is at (1,3) and it has a value
of 1000. The results of the methods in this domain are
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presented in Table 4. The 10*5+2*rest method has a sig-
nificantly better performance than all fixed settings.

4 Lenient Multiagent Reinforce-
ment Learning

Drawing inspiration from dynamic programming con-
cepts, reinforcement learning (RL) methods update the
estimates of utilities for performing actions in various
states of the environment, or for being in those states
themselves [14]. These utilities are used for both the
exploration of the space, as well as for the exploitation
of the agent’s knowledge about the environment. As the
memory requirements of traditional RL grow exponen-
tially with the number of agents, multiagent reinforce-
ment learning reduces the memory consumption by de-
composing the joint utility tables into simpler utility ta-
bles, one per agent. This in essence projects the joint
utility tables into per-agent tables which discount other
agents. We assume for simplicity that the environment
has a single state, and we only focus on computing the
utility of choosing different actions; this is similar to the
analysis of multiagent RL in [3, 5, 4].

Previous research in multiagent RL has focused on
straightforward applications of traditional techniques to
multiagent problems. This led to algorithms where
agents update their utility estimates based on each and
every reward they observe, similar to applications of RL
to single-agent environments. From a higher-level per-
spective, these algorithms approach the multiagent learn-
ing problem using agents with no lenience for one an-
other (this resembles a cooperative coevolutionary set-
ting using a single collaborator). We continue with a
brief discussion of previous multiagent reinforcement
learning literature, followed by lenient multiagent re-
inforcement learning algorithm that selectively updates
the utilities of actions based only onsomeof the re-
wards. The results of preliminary experiments suggest
that agents learning via RL techniques significantly ben-
efit when showing lenience toward one another.

Claus and Boutilier [3] show that straightforward ap-
plications of RL to concurrent learning are not guaran-
teed to find the optimal solution for these games, even
in the case when agents are able to observe the other
agents’ actions. The authors suggest that the search
could be improved by using more optimistic exploration
actions. This direction is further explored in [5], who
update the utilities of actions based in part on the max-
imum reward previously received when performing that
action. Kapetanakis and Kudenko [4] observe that such
biasing of utility computation may not work in domains
where the joint reward information is noisy. They pro-
pose an improved multiagent reinforcement learning al-

gorithm called FMQ, which uses the maximum reward
received per action to bias the probability of choosing
that action. This improved algorithm shows advantages
in domains with limited amounts of noise, but its per-
formance is poor when there is a lot of noise. Finally,
Verbeeck et al [15] propose coordinated restarts of sub-
optimal learning algorithms in combination with action
exclusions (similar to tabu search) to guarantee conver-
gence to the globally optimal solution. But the restarts
may require a significant amount of time, and the conver-
gence to optima is guaranteed only if all Nash equilibria
are visited infinitely often.

In contrast, our proposed lenient algorithm improves
the performance of each learning trial without requir-
ing any a priori coordination. It is based on the fol-
lowing idea: if at early stages of learning an agent re-
ceives rewardsr1, r2, ..., rk when choosing actiona1 at
various times, the agent ignores most of these rewards
and only updates the utility ofa1 based on the maxi-
mum of r1, r2, ..., rk. The reason for this is that those
rewards were obtained while the other learning agent se-
lected some actionsb1, ...,bk, most of which might be ig-
nored in the future due to lower utilities. As both agents
become more selective at choosing their actions, it is ex-
pected that they will each tend to primarily select a single
action (the best one) after some time. At this point, we
would prefer that each agent updates the utility of that ac-
tion based on every reward he observes. This will lower
the optimistic estimation of the utility for that action un-
til it equals the mean reward obtained by the agents for
that joint reward. If this mean reward becomes lower
than the estimated utility of other actions, the agent will
tend to prefer other actions instead. This is desirable for
games with stochastic rewards, such as the ones in Table
6.

We implement the algorithm as follows. We always
update the utility of the action if the current reward ex-
ceeds the utility of the action. Otherwise, we use a proba-
bilistic approach: if the agent has not explored that action
sufficiently, it should show lenience to its teammates and
not update its policy; but if the agent has explored that
action many times in the past, it should tend to be more
critical and use the reward to lower the utility of that ac-
tion. The algorithm associates a temperature with each
action, as opposed to a single temperature for the entire
learning process. If the temperature associated with an
action is high, the agent is more lenient and ignores low
rewards it receives for choosing that action. The temper-
ature of an action is decreased slightly every time that
action is selected. As a consequence, actions that have
been chosen more often have their utilities updated more
often as well, while the utilities for actions that have been
chosen rarely are mainly updated with higher rewards.
This initially leads to an overoptimistic evaluation of the
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utility of an action. An agent may thus be temporarily
fooled into choosing suboptimal actions. However, the
utilities of such actions will decrease with time, and the
agent is more likely to end up choosing the optimal ac-
tion. There is also a small (0.01) probability of ignor-
ing small rewards at all times: we found this to work in
our experimental setup because the agents have non-zero
probabilities of selecting an action at each time step.

Aside from these enhancements, the algorithm follows
a traditional RL approach: the action selection uses the
Boltzman distribution, and the utility is updated based in
part on the reward currently received for an action. On
top of the memory required to store the utility table, the
proposed algorithm needs storage to encode a tempera-
ture for every action. This is about the same as the mem-
ory requirement of the algorithm proposed in [5], and
half that of FMQ [4]. The pseudocode for the algorithm
is as follows:

Lenient Multiagent RL
Parameters

MaxTemp: maximum temperature
α: temperature multiplication coefficient
β : exponent coefficient
δ : temperature decay coefficient
λ : learning rate
N: number of actions

Initial Settings
For each actioni

Ui = random value between 0 and 0.001
Tempi = MaxTemp

Lenient Multiagent RL (continued)
Algorithm
Repeat

// Action Selection
MinTemp= 10−6+minN

i=1Tempi

Wi = e
Ui

MinTemp

∑N
j=1 e

Uj
MinTemp

Use probability distributionW1, ...,WN

to select actioni
Tempi = Tempi ∗ δ

// Utility Update
Perform actioni and observe rewardr
RandVal= random value between 0 and 1
If (Ui ≤ r) or

(

RandVal< 10−2 + β−α∗Tempi
)

Then
Ui = λ ∗Ui +(1−λ )∗ r

For additional clarity, Figure 6 illustrates the utilities
associated with each action during a concurrent learn-
ing process in the Fully-Stochastic Climb domain. Both

A
g

en
t1

Agent 2
a b c

a 11 -30 0
b -30 7 6
c 0 0 5 A

g
en

t1

Agent 2
a b c

a 10 0 -10
b 0 2 0
c -10 0 10

Table 5: Joint reward matrixes for the Climb (left) and
Penalty (right) domains.

agents start with low utilities for all actions, and they
slowly start to believe that actionb has a utility value of
14, higher than all other actions. As both agents choose
actionb, they decrease the temperature associated with
this action, and soon they start to incorporate lower re-
wards (remember that the joint action(b,b) has an aver-
age utility of 7). As a consequence, the utility of action
b decreases, and the agents start to explore other actions
as well. This generates extra miscoordination penalties
which lower the estimates for the utilities of all actions.
Given the higher temperature for actiona, its utility is af-
fected by high rewards, and both agents start to prefer it
over the other actions. This leads to a decrease in misco-
ordination penalties, and both agents end up with precise
utilities associated with that action.

4.1 Experiments & Results

We experiment with learning in repeated coordination
games, in which agents repeatedly and independently
choose one action each, and they are rewarded equally
based on the joint action they have selected. The goal is
for the agents to learn a joint action that has a maximum
reward (or maximum average reward for the stochastic
games). We employ four problem coordination games
(Tables 5;– 6): the Climb and Penalty domains intro-
duced in [3], and two stochastic variations of the Climb
domain as discussed in [4]. Climb is difficult because
of the large penalties associated with miscoordination of
actions corresponding to the two higher optima, while
Penalty is challenging because the agents need to select
among two joint actions with equal reward. Agents may
also select suboptimal actions that avoid miscoordination
penalties in each domain: actionc in Climb, and action
b in the Penalty domain. The stochastic variations of the
Climb domain are challenging due to the additional noise
in the rewards for joint actions.

We experimented with the lenient multiagent RL al-
gorithm in all four problem domains. We performed a
preliminary sensitivity study for the parameters; as a re-
sult, we setMaxTemp= 500,α = 2,β = 2.5,δ = 0.995,
andλ = 0.95. The agents learned over 7500 moves. Ta-
ble 7 reports the number of runs that converged to each of
the nine joint actions (based on each agent’s action with
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Figure 6: Utility of each agent’s three actions.

A
g

en
t1

Agent 2
a b c

a 11 -30 0
b -30 14/0 6
c 0 0 5

A
g

en
t1

Agent 2
a b c

a 10/12 5/-65 8/-8
b 5/-65 14/0 12/0
c 5/-5 5/-5 10/0

Table 6: Joint reward matrixes for the Partially-
Stochastic (top) and the Fully-Stochastic (bottom) ver-
sions of the Climb domain. The reward is stochastic: if
both agents choose actionb, the reward 14/0 implies that
both agents receive either a reward of 14 or a reward of
0 with probability 50% each.

maximal utility at the end of the run). These numbers are
averaged over 10 trials of 1000 runs each.

The lenient multiagent RL algorithm consistently con-
verged to the global optimum in the Climb, Penalty,
and Partially-Stochastic Climb domains. According to
[4], this is equivalent to the performance of FMQ in
these problem domains, and it is also significantly better
than the performance of both traditional Q-learning ap-
proaches, as well as to the algorithm previously proposed
in [5]). However, the lenience also helped the agents
learn the global joint action in the Fully-Stochastic Climb
domain in more than 93.5% of the runs. This contrasts
FMQ’s poor performance in this domain as mentioned
in [4]; we also found that FMQ converged to the global
optimum solution in only around 40% of runs in this dif-
ficult domain, despite an extensive sensitivity study for
parameter values and a higher number of joint actions
(7500 instead of 2000 in previous work)

5 Conclusions

This paper argues that multiple agents that learn concur-
rently can benefit from showing lenience to each other,
especially during early interactions. We illustrated this
concept graphically based on projections of the joint
search space that each agent would perceive during dif-
ferent stages of learning. We then extended two popular
multiagent learning algorithms, namely cooperative co-
evolution and multiagent reinforcement learning, to in-
clude lenience in the agents’ decision processes, and we
showed the superiority of these extensions in several co-
ordination games.

Future work is required in multiple directions. What
formal guarantees can be proved for these algorithms?
How can agents automatically detect the appropriate
level of lenience? Are these algorithms readily applica-
ble to teams with tens, hundreds, or thousands of agents,
or what further extensions are required for this purpose?
We hope future research will help us find answers to
these challenging questions.
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