
Scheduling Weighted Packets With Deadlines Over A Fading Channel∗

Fei Li Zhi Zhang
Department of Computer Science

George Mason University
Fairfax, VA 22030

{lifei, zzhang8}@cs.gmu.edu

Abstract

We consider scheduling weighted packets with time con-
straints over a fading channel. Packets arrive at the trans-
mitter in an online manner. Each packet has a value and
a hard deadline by which it should be sent. The fade state
of the channel determines the throughput obtained per unit
of time and the channel’s quality may change over time. In
this paper, we design both offline and online algorithms to
maximize weighted throughput, which is defined as the to-
tal value of the packets sent by their respective deadlines.
We first present polynomial-time exact offline algorithms for
this problem. Then, we present online algorithms and their
competitive analysis as well as the lower bounds of compet-
itive ratios. Our work is the first one addressing weighted
throughput for this important problem in the areas of infor-
mation theory and real-time communications.

1 Introduction

Time-varying signal strength is a fundamental charac-
teristic of wireless channels. Scheduling packets over fad-
ing wireless channels has received much attention (see [20,
11, 10, 19, 22, 5] and the references therein). A schedul-
ing algorithm can significantly improve the communication
performance by taking advantages of the changing channel
states. Specifically, the packets to be scheduled are associ-
ated with deadlines. Time constraints (deadlines) are speci-
fied on packets to model the possible network protocol time-
outs and the time sensitivity of the information carried by
the packets. In the previously studies, the objective is usu-
ally to maximize the total number of packets delivered by
their deadlines. However, for many practical problems, it
is more reasonable to differentiate various packets and take
into account the amount and/or the significance level of the

∗Research is partially supported by Seed Award from the Office of the
Vice President for Research and Economic Development at George Mason
University.

information associated with the packets. Thus, in this paper,
we address the problem of optimizing weighted throughput
of packets with time constraints in a fading wireless chan-
nel. Our results show that the algorithmic solutions in max-
imizing weighted throughput as well as their computational
complexity are significantly different from those optimizing
throughput of uniform-value packets.

Resource allocation for fading channels has been a well-
studied topic in the area of information theory. The quantity
to maximize is often the Shannon capacity, which is defined
as the tightest upper bound of the amount of information
(i.e., the total number of packets) that can be reliably trans-
mitted over a communication channel. Tse and Hanly [20]
have found capacity limits and optimal resource allocation
policies for such fading channels. They also studied the
greedy approach for channel allocations in multi-access fad-
ing channels, assuming all packets arriving at the transmit-
ter are successfully delivered. Prabhakar et al. [11] have
considered proactively adjusting the rate of packet trans-
mission for saving energy where the quality of the fading
channel is assumed to be fixed and the consumed energy
is a convex function of the transmission speed. The dis-
crete version of this algorithm has been proposed in [21] in
a more general problem setting. In [10], the authors applied
a dynamic programming approach to get the optimal solu-
tion for scheduling uniform-value packets under both time
and energy constraints. However, this algorithm [10] runs
in exponential-time in overloaded systems. A polynomial-
time optimal offline solution of scheduling packets with
hard deadlines was given in [19, 22]. In their problem set-
tings, energy is minimized under the assumption that all ar-
riving packets are successfully delivered. An optimal offline
algorithm maximizing throughput and a heuristic online ap-
proach of scheduling uniform-value packets with possibly
different deadlines were given in [5]. No theoretical anal-
ysis has been provided for their heuristic online solution.
Note that in these previous studies, packets have uniform
values and their arrivals at the transmitter are usually mod-
eled by a Poisson distribution.

In the existing models discussed above, packets are dis-
tinguished by their deadlines and release dates only (they
have uniform values and sizes). However, packets from
different users and various applications may have different
significance levels of embedded information. For the sake
of being realistic and practical, we associate packets with
weights (values) that indicate the significance of their em-
bedded information. We also associate packets with dead-
lines to represent the information’s time sensitivity in real-
time applications. None of the previous algorithms for de-
livering packets can be generalized to this problem setting,
because a schedule with the maximum throughput does not
imply its optimality on maximizing weighted throughput.
In this paper, we design efficient scheduling algorithms to
maximize weighted throughput for packets with time con-
straints over a fading channel. Our contributions include:

1. Offline algorithms for this model (Section 3.1).

2. Competitive online algorithms and lower bounds of
competitive ratios for this model and its variants (Sec-
tion 3.2).

2 Model

We consider scheduling weighted packets with deadlines
over a wireless fading channel. In this model, time is as-
sumed to be discrete. Each unit of time is called a time
step and a few continuous time steps are called a time in-
terval. Packets are released over time. All packets are with
the same length l ∈ R+ (l is a constant). Each packet p has
an integer release time (arriving time) rp ∈ Z+, a positive
real value wp ∈ R+ to represent its weight (value), and an
integer hard deadline dp ∈ Z+ to denote the time by which
it should be delivered. The time required to send a packet
depends on the state quality qt (qt ∈ [qmin, qmax]) of the
fading channel during a time step t. Without loss of gen-
erality, we assume l = 1, qmin > 0, qmax = 1, and the
fade state in a single time step keeps unchanged. If the fad-
ing channel is at its highest quality qmax, one packet can
be sent in a time step. A packet has to be sent in consecu-
tive time steps. Sending a packet p takes t(p) steps where
t(p) = t2 − t1 subject to

∑t2
t=t1

qt ≥ l, t1, t2 ∈ Z+. Two
or more packets cannot share (i.e., to be sent in) the same
time step. If a packet p is sent by its deadline dp, its weight
wp is contributed to our objective. Our goal is to maximize
weighted throughput subject to the deadline constraints of
packets and the varying fading channel qualities.

We design two kinds of algorithms: offline algorithms
and online algorithms. All input information (including
the fade channel states, the packets’ characteristics, and the
packet sequence) is known to an offline algorithm in ad-
vance. For an online algorithm, the packet input sequence
is unknown and each packet’s characteristics is known to

the algorithm only at the time when it actually arrives at
the transmitter. The fade state of the channel is unknown
or partially known to the online algorithm; which depends
on the assumptions in the variants of the online version of
this problem. Note that essentially, delivering packets with
deadlines in a wireless channel is an online decision making
problem. We address the online version under two settings:

• In the non-preemption setting, a packet, once it is be-
ing delivered, is committed to send without being pre-
empted until it is finished.

• In the preemption-restart setting, an online algorithm
is allowed to abort a packet during its transmission,
and the aborted packet can be restarted (from scratch)
and completed later.

In either setting, the algorithm gets credit only for pack-
ets that are executed continuously from the beginning to the
end by its deadline. Our model can be an overloaded system
— it is feasible that due to packets’ deadline constraints, no
algorithm can deliver all packets in the input instance. Note
that in an underloaded system, the solution is relatively triv-
ial. The classic algorithm EDF (Earliest-Deadline-First) de-
livers all packets non-preemptively by their deadlines and it
is optimal in both offline and online settings.

We have realized the connection between this problem
and the bounded-delay model in buffer management. The
bounded-delay model [16, 14, 17, 9, 18] implicitly applies
an assumption of idealized channel quality all the time such
that in every time step, one packet can be delivered. The of-
fline version of the bounded-delay model has been solved
optimally via maximizing a weighted bipartite matching.
The online version still remains a very intriguing open prob-
lem.

3 Algorithms and Analysis

We classify our algorithms and present them as offline
algorithms and online algorithms in Section 3.1 and Sec-
tion 3.2 respectively. Note that in designing offline algo-
rithms, there is no difference between these two settings,
non-preemption and preemption-restart.

Let the input sequence be I and |I| = n. All packets
have the same length l.

3.1 Offline algorithms

In this section, we present a few exact algorithms run-
ning in polynomial time for several variants of the problem,
assuming all input information is known.

Theorem 1 [12] Assume the fading channel has a fixed
quality q ∈ [0, 1] during all time steps. If all packets

are with the same value (but they can have arbitrary dead-
lines), then there exists an exact polynomial-time optimal
algorithm running in time O(n log n).

We consider an important variant in which packets are
with agreeable deadlines, i.e., for any two packets pi and
pj , rpi < rpj implies dpi ≤ dpj . This variant allows an op-
timal algorithm running in an online manner. Here, we look
into the Earliest-Deadline-First (EDF) algorithm: If there is
no packet being sent, schedule the earliest-deadline pending
packet until it is finished. EDF is one of the most studied
policies in the area of real-time scheduling. We have

Theorem 2 Assume the fading channel has a fixed quality
q ∈ (0, l] during all time steps. If all packets are with the
same value and if they are with agreeable deadlines, then
EDF is an exact polynomial-time optimal algorithm running
in linear time O(n).

Proof To prove Theorem 2, it is sufficient to show that
at any time t (t does not have to be an integer), EDF finishes
no fewer packets than any algorithm ALG. We use A(I) to
denote the number of packets delivered by their deadlines
in the algorithm A.

The proof consists of proving the following two parts:

1. Given any algorithm ALG and the set of packets I ′
(⊆ I) that ALG schedules, we can create an earliest-
deadline-first scheduler EDF′ finishing all packets in I ′
by their deadlines; that is,

EDF′(I ′) = |I ′| = ALG(I). (1)

2. Given the input I for EDF and the input I ′ for EDF′,
EDF is no worse than EDF′ in finishing as many as
packets by their deadlines at any time t; that is,

EDF(I) ≥ EDF′(I ′). (2)

Equation 1 and Equation 2 imply EDF(I) ≥ ALG(I).
Given the set of packets I ′ that is finished by an algo-

rithm ALG as the input of EDF′, we can use the exchange
argument to show that EDF′ can finish the packets in I ′.
Note that if the fading channel is at a fixed quality, for any
packet p with length l, it takes dl/qe time steps to deliver
p. Since all packets are with the same value and processing
time, we can always replace the packets ∈ (I ′ \ I) using
packets ∈ (I \ I ′) with no later release dates or deadlines.
Thus, the second part of the proof is true as well.

The running time analysis is as follows. If packets are
with agreeable deadlines, newly arriving packets can be ap-
pended at the end of the packet queue. EDF sends the first
pending packet which has not expired yet in the next dl/qe
time steps when there is no packet currently being sent. The
scheduling algorithm runs in linear time O(n). 2

In the following, we can prove that there exists an opti-
mal offline policy for this problem. First, we assume that
the channel quality’s is a fixed constant number. Then, we
apply the algorithm into the general setting in which the
fade states of the channel vary.

Theorem 3 Assume the fading channel has a fixed and con-
stant quality q ∈ [0, 1] during all time steps. There exists
an optimal algorithm in maximizing weighted throughput.

Before we proceed to the proof of Theorem 3, we would
like to point out that since it may not be feasible to deliver
all packets ever arrive at the transmitter in an overloaded
system, the optimal solutions in the previously studied mod-
els in [10, 5, 15] cannot be directly applied in our model.
Instead, we design an exact algorithm that depends on the
following two critical observations on the matroidal struc-
ture of the model:

Remark 1 Given a set S of packets, any feasible schedule
on S can be converted to an earliest-deadline-first schedule
where the earliest-deadline packet ∈ S is scheduled as long
as it is available for the transmitter.

Remark 2 Denote S∗ as both the optimal solution maxi-
mizing the weighted throughput and the set of packets de-
livered. If a packet pj ∈ S∗ is pending at time t and it is not
scheduled at time t, there must exist a packet pi ∈ S∗ such
that rpi

≤ t+ dl/qe and pi is scheduled at time rpi
.

Proof Let the set of packets arriving at the transmitter
be {p1, p2, . . . , pn}. It takes dl/qe continuous time steps to
deliver one packet. The set of time steps that a packet can
be sent is a subset of all the time steps T

T :=
⋃
i

[rpi , rpi + n · d l
q
e], (3)

where q is the constant channel quality. Let the time steps in
T be t1, t2, . . . , tm, where |T | ≤ n·n·dl/qe ≤ n2 ·l/q+n2.

We have a greedy algorithm as follows. Based on Re-
mark 1 and Remark 2, we know that if there are two pend-
ing packets available for delivery, we can always pick the
one with the earlier deadline to send in a time step ∈ T . We
call this order a canonical order. Our following algorithm
is based on the matroidal property of the model.

The generated schedule in P ′ is the optimal solution and
its correctness is based on the fact that feasible schedules
form a matroid. The running time of this algorithm is O(n ·
log n+n · log n · |T |) = O(l ·n3 · log n/q), where the factor
O(n·log n) for |T | is the time spent on sorting packets inP ′
in decreasing order of weights. For each packet p, it takes
time O(|T |) to verify the feasibility of adding p into the
existing schedule. For this variant, our result improves the
algorithm in [3], whose running time is O(n10) and which
also holds when q is fixed but not a constant number. 2

Algorithm 1 Offline-Optimal
1: Initialize the set of packets to be sent P ′ = ∅. Ini-

tialize the set of packets to be considered P = I
(= {p1, p2, . . . , pn}).

2: Sort all packets in P in decreasing order of values.
3: while |P ′| ≤ n and there are packets left in P do
4: Remove the maximum-value packet p from P .
5: if the set P ′ ∪ {p} can be feasibly scheduled in T

under the canonical order (i.e., all packets can be sent
by their deadlines) then

6: Insert the packets in P ′ and update P ′ as P ′∪{p}.
7: end if
8: end while
9: return P ′.

Following the proof of Theorem 3, we immediately have

Corollary 1 Consider scheduling weighted packets with
deadlines in a fading channel. There exists an optimal al-
gorithm in maximizing weighted throughput in time O(n ·
log n ·m), wherem is the number of time steps we consider.

In our model, as long as each interval with time steps
[t1, t2] has

∑t2
t=t1

qt ≥ l, a packet can be sent. For
each release time rp, we seek the following n consecu-
tive time intervals such that for each time interval [ts, te],∑te
t=ts

qt ≥ l. Let the union of all such time steps be T ′.
Then, the number m in Corollary 1 has m = |T ′|.

Note that our proofs depend on the following three as-
sumptions that (1.) all packets have the uniform length,
(2.) packets are sent continuously, and (3.) packets do not
share a time step. If any one of these assumptions does
not hold, it is easy to conclude that the offline version of
this problem is a NP-complete one, via the reduction from
the NP-complete Bin-Packing problem or the NP-complete
Set-Partition problem. For example,

Theorem 4 Consider packet scheduling in fading chan-
nels. Assume a packet can be preempted before the trans-
mitter finishes it. Only unfinished part of the packet is re-
sumed later. Then, maximizing (weighted) throughput is a
NP-complete problem, even if all packets share a common
release date and a common deadline.

Proof To prove the NP-hardness, it is sufficient to show
that we can reduce a well-known NP-complete problem to
our problem in polynomial time and a candidate solution
can be verified in polynomial time. Verifying a candidate
solution can be done in linear time. To prove Theorem 4,
the remaining work is to reduce the Set-Partition problem
to our problem.

The Set-Partition problem is defined as follows. Given
an instance that has a finite set I and a size si ∈ Z+ for

i ∈ I, the objective is to find out if there exists a subset
I ′ ⊆ I such that

∑
i∈I′ si =

∑
i∈I\I′ si. This problem is

NP-complete [13].
Now we introduce our NP reduction. Given any instance

I of the Set-Partition problem, we normalize I such that∑
i∈I si = 2. Then we generate the channel quality qi = si

for each i ∈ I and we have two packets whose deadlines
are

∑
i∈I si = 2. This conversion takes polynomial time.

Consider any algorithm ALG. If ALG returns a throughput
of 2, ALG returns two sets of fading states such that each of
them is with a total quality

∑
j qj = 1. The time step of

delivering one packet (respectively, the other packet) con-
sists of one partition set (respectively, the other partition
set) for the Set-Partition problem. Since Set-Partition prob-
lem is NP-complete, ALG cannot schedule two packets by
their deadlines optimally in polynomial-time. Hence, max-
imizing (weighted) throughput with time varying quality, is
NP-complete. 2

3.2 Online algorithms

Scheduling packets with deadlines (even in a fading
channel whose quality is at its maximum) is essentially an
online decision problem. In order to evaluate the worst-
case performance of an online algorithm lacking of future
input information, we compare it with an optimal offline al-
gorithm. The offline algorithm is a clairvoyant algorithm,
empowered to know the whole input sequence (including
the fading states of the channel, the packet sequence, and
all packets’ characteristics) in advance to make its deci-
sion. In contrast to stochastic algorithms that provide sta-
tistical guarantees under some mild assumptions on in-
put sequences, competitive online algorithms guarantee the
worst-case performance.

Definition Competitive ratio [4]. A deterministic
(randomized) online algorithm ONd (ONr) is called k-
competitive if its (expected) weighted throughput on any
instance is at least 1/k of the weighted throughput of an
optimal offline algorithm on this instance:

k := max
I

OPT(I)− δ
ONd(I)

, ONd is a deterministic algorithm

k := max
I

OPT(I)− δ
E[ONr(I)]

, ONr is a randomized algorithm

where δ is a constant, OPT(I) is the optimal offline solution
of an input I, and r is the set of random variables flipped
by a randomized online algorithm ONr. The parameter k is
known as the online algorithm’s competitive ratio 1.

1In real-time scheduling terminologies, 1/k, the reciprocal of the com-
petitive ratio, is called competitive factor.

The upper bounds of competitive ratios are achieved by
some known online algorithms. A competitive ratio less
than the lower bound is not reachable by any online al-
gorithm. An online algorithm is said to be optimal if its
competitive ratio reaches the lower bound. If the additive
constant δ is no larger than 0, the online algorithm ON is
called strictly k-competitive. Note that a randomized al-
gorithm does not depend on any assumptions on the input
sequence and the randomness r is internal to the algorithm.
Competitiveness has been widely accepted as the metric to
measure an online algorithm’s worst-case performance in
theoretical computer science and operations research [4]. In
this section, we design and analyze some competitive online
scheduling algorithms for maximizing weighted throughput
in a fading channel.

We first investigate the challenge of designing efficient
online algorithms for this problem. Without time con-
straints on packets, (weighted) throughput is maximized by
simply delivering all packets that ever arrive at the transmit-
ter. When time constraints are enforced on uniform-value
packets, the objective of this problem becomes to send as
many packets as possible before their respective deadlines
— this variant is the same problem of scheduling equal-
length jobs [8]. A 2-competitive deterministic algorithm
and a 1.5-competitive deterministic algorithm have been
given for this variant in the non-preemption setting and the
preemption-restart setting respectively [8]. Both online al-
gorithms’ competitive ratios are tight.

Though optimal competitive online algorithms have been
proposed in [8] for a variant in which throughput (of
uniform-value packets) is maximized, scheduling packets
with deadlines is open and becomes more interesting and
complicated when packet weights are considered. Now we
present an instance in which the fade state of the channel
is ideal (i.e., qt = qmax = l,∀t) but packets have weights.
Consider two packets p1 and p2 with dp1 = 1 < dp2 = 2
andwp1 < wp2 at time 1 in an overloaded system. Note that
the transmitter has no knowledge of future arriving packets.
Sending the packet p1 in the first time step may cause p2

not to be sent anymore if we assume that another packet
p3 with dp3 = 2 and wp3 > wp2 arrives at time 2 (since
p2 and p3 cannot be sent simultaneously in step 2 by their
deadlines). A better (clairvoyant) way is to send p2 in the
first time step and send p3 in the second time step. One the
other hand, if the online algorithm picks p2 to send in the
first time step, it potentially leads to the expiration of the
packet p1. In case p3 is not released in step 2 in the actual
input sequence, the online algorithm loses the value of p1

— it is better to send p1 and p2 in the first two consecu-
tive time steps clairvoyantly. In summary, even under ideal
fade states, the challenge of designing efficient online al-
gorithms who are lacking of information about future input
is to balance wisely between sending an earliest-deadline

packet and a largest-weight packet. Our proposed online al-
gorithms are based on this intuition. Another challenge of
this model is due to the uncertainty of the fade states of the
wireless channel. We will address more on these challenges
and our solutions in the following.

We consider non-preemption and preemption-restart set-
tings separately. We also call the optimal offline algorithm
adversary. Let wmax and wmin denote the maximum and
the minimum value of a packet in the input sequence I re-
spectively.

3.2.1 In the non-preemption setting

We first show a negative result and then show an optimal
online algorithm for a variant of this model.

Theorem 5 In the non-preemption setting, no online algo-
rithm has a constant competitive ratio, even if the fade state
is a fixed number q (q < qmax = l) and if packets are with
agreeable deadlines. The lower bound of competitive ratios
can be up to wmax/wmin.

Note that if packets are with the uniform value and the
if the fading channel has a fixed quality (but packets can
have arbitrary deadlines), EDF is 2-competitive [8]. Thus,
associating values to packets complicates the model.

Proof We set the channel’s quality q = 0.5. Any packet
can be sent in consecutive 2 time steps. Let an online algo-
rithm be ON. We use (w, d) to denote a packet with value
w and deadline d.

In the first time step, a packet (wmin, 2) is released. The
adversary keeps releasing a packet (wmin, 2 ·i) in each time
step 2 · i until one of the events happens: (1.) ON picks up
a packet (wmin, 2 · k) to send, or (2.) the adversary has
released a such packets with value wmin, and ON has not
picked up any one of them to send.

For the second case, the adversary stops releasing new
packets and it schedules all packets ever released with a
total gain of a · wmin. On the other side, ON gains noth-
ing overall. For the first case, when ON picks up a packet
(wmin, 2 · k) to send, the adversary releases a packet
(wmax, 2 · k + 3) at time 2 · k + 1. Note that in the
non-preemption setting, ON cannot stop sending the packet
(wmin, 2 · k) till the time 2 · k + 2 when this packet is fin-
ished. Thus, ON cannot execute the packet (wmax, 2 ·k+3)
at time 2 · k + 1 to get it finished by its deadline. After re-
leasing the packet (wmax, 2 · k+ 3), the adversary releases
nothing. Overall, the optimal offline algorithm will send all
packets (wmin, 2 · 1), (wmin, 2 · 2), . . . , (wmin, 2 · (k− 1))
and (wmax, 2 · k + 3). On the other side, ON executes only
one packet (wmin, 2 · k). The competitive ratio is

(k − 1) · wmin + wmax

wmin
= k − 1 +

wmax

wmin
≥ wmax

wmin
.

Then, ON is no better than (wmax/wmin)-competitive. 2

To complement Theorem 5, we note

Theorem 6 [1, 2] In the non-preemption setting, no online
algorithm has a constant competitive ratio, if the fade state
is ideal (q = qmax = l). The lower bound of competitive
ratios can be up to

√
wmax/wmin.

Given the assumptions that the channel state is a fixed
number and packets are with agreeable deadlines, we have
proved that for any time t EDF finishes no fewer packets
than any algorithm (see the proof of Theorem 2). Given
an input I, we assume EDF finishes s packets with a total
value W ≥ s ·wmin. Any algorithm finishes no more than s
packets with a total value ≤ s ·wmax ≤W · (wmax/wmin).
Thus, we immediately have

Corollary 2 In the non-preemption setting, if the fade state
is a fixed number and if packets are with agreeable dead-
lines, EDF is an optimal online algorithm.

If the fade state is at its maximum all the time (such that
a packet is sent in a single time step), this variant of the
online problem is same as the bounded-delay model [16, 14,
17, 9, 18]. An optimal online algorithm has been proposed
for the agreeable deadline case [17]. For the general case,
the best known lower bound of competitive ratios is φ :=
(1 +

√
5)/2 ≈ 1.618 [14] and the best known upper bound

is 1.832 [9, 18]. Closing the gap [1.618, 1.832] is still an
intriguing open problem [7].

3.2.2 In the preemption-restart setting

In the preemption-restart setting, we first provide a bad ex-
ample to show that if the fading states are unknown to the
online algorithms, no online algorithm can have a competi-
tive ratio better than wmax/wmin.

Theorem 7 If the fading states are unknown to online al-
gorithms, no online algorithm can have a competitive ratio
better than wmax/wmin.

Proof Consider time 0 and two packets are released. We
use (w, d) to represent a packet pwith valuew and deadline
d. Let an online algorithm be ON. The fading state at time 0
is 0.5. A packet p1 := (wmin, 2) is released at time 0.

The fade state keeps its quality 0.5 since time 0 to time
2. At time 1, a packet p2 := (wmax, 3) is released. If
ON schedules p1, we keep the fading state at 0.5 till time 3
and ON cannot finish p2 by its deadline. The optimal offline
algorithm will schedule p2 instead and the competitive ratio
is wmax/wmin. On the other hand, if ON schedules p2 at its
arrival, the fade state shapely changes to 0 at the end of time
2 and keeps 0 eventually. Thus, even ON starts to schedule
p2, it cannot finish it thought. Instead, the optimal offline

algorithm schedules p1 and the competitive ratio is wmin/0,
which is arbitrarily large. 2

Based on Theorem 7, we know that if the fade states
are unpredictable, without one step of look-ahead, no on-
line algorithm can have a competitive ratio better than
wmax/wmin. Again, EDF is optimal in this setting. In the
following, we consider a practical scenario and make the
following assumption that is well-known:

Assumption 1 [20, 19, 22] The online algorithms have the
ability of looking one-step ahead of knowing the fade states
of the wireless channel. At the time when an online algo-
rithm starts to schedule a packet, this “committed” packet
can be scheduled based on the future fading states. How-
ever, note that the online algorithm is allowed to preempt-
restart this packet later.

Assumption applies to all the variants we consider in the
following.

In [8], an optimal 1.5-competitive deterministic algo-
rithm has been proposed for a variant in which the fade state
is a fixed number (the lower bound of competitive ratios for
that variant is 1.5). We note the lower bound can be im-
proved to φ for the weighted version of this problem.

Theorem 8 [6] Assume the channel’s quality is fixed at
qmax = l. The lower-bound of competitive ratios for this
variant is φ := (1 +

√
5)/2 ≈ 1.618. This lower bound

holds even for agreeable deadline instances.

Theorem 9 [8] Assume the channel’s quality is fixed < l.
The lower-bound of competitive ratios for deterministic on-
line algorithms is 2. This lower bound holds even for maxi-
mizing the number of packets sent by their deadlines.

From Theorem 9, we know that the variant (in which the
fade state is a constant) has the lower bound of 2. For this
invariant (we also called it a bounded-delay model), given
a set of pending packets S, an online algorithm can cal-
culate the optimal provisional schedule S∗ (S∗ is the one
that achieves the maximum total value of packets among
all provisional schedules on pending packets S) and send
one packet from S∗. Note that S∗ can be calculated only if
the channel’s quality is known beforehand. Since the fade
state of the channel is unpredictable, all prior online algo-
rithms on the bounded-delay model cannot be applied in our
model.

Assume the fade states and future input informa-
tion are unknown. Here, we study an algorithm called
SEMI-GREEDY. In each time step, the maximum-value
pending packet p aborts the currently running packets i, if
wp ≥ α · wi.

Algorithm 2 SEMI-GREEDY(α > 1)
1: Let the maximum-value pending packet with the earli-

est deadline be p and let the currently being sent packet
be i. If p (or i) does not exist, we set wp = 0 (or
wi = 0).

2: if wp ≥ α · wi then
3: Abort i and send p.
4: end if

Before we prove the competitive ratio for the algorithm
SEMI-GREEDY, we define a concept that is useful to the
proof.

Definition Packet chains. We define a packet chain C of
k packets as

C := {p1, p2, p3, . . . , pk},

with the following property (α > 1),

wpi
≤ wpi+1 / α, ∀ i = 2, 3, . . . , k − 1.

We use W (C) to represent the total value of the packets of
C.

Lemma 1 Given a chain C of k ≥ 2 packets
p1, p2, . . . , pk, we have

W (C) ≤ (
1

α− 1
· (αn+1 − 1)/αn) · wpk

. (4)

Proof

W (C)
wpk

=
∑k
i=1 wpi

wpk

=
wp1 + wp2 + · · ·+ wpk−1 + wpk

wpk

=
wp1 + wp2 + · · ·+ wpk−1 + α · wpk−1 + ε

α · wpk−1 + ε

= 1 +
1
α
·
wp1 + wp2 + · · ·+ wpk−1

wpk−1

≤ 1 +
1
α
· (1 +

1
α
·
wp1 + wp2 + · · ·+ wpk−2

wpk−2

)

= 1 +
1
α

+
1
α2
·
wp1 + wp2 + · · ·+ wpk−2

wpk−2

≤ . . .

≤ 1 +
1
α

+
1
α2

+ · · ·+ 1
αk−2

+
1

αk−1
+

1
αk

=
1

α− 1
· (αk+1 − 1)/αk

2

Theorem 10 The SEMI-GREEDY algorithm has a com-
petitive ratio max{1 + α, 1

α−1 · (α
n+1 − 1)/αn)}. It is

(φ2 ≈ 2.618)-competitive when α = φ ≈ 1.618.

Proof We use a charging scheme to prove Theorem 10.
Let the subset of packets chosen by the adversary (= an
optimal offline algorithm) (respectively, SEMI-GREEDY)
be Π1 (respectively, Π2). Without loss of generality, we
assume the adversary sends packets in a canonical order,
i.e., for any two pending packets pi and pj , the adversary
sends the packet with an earlier deadline. We are going to
prove that∑

pj∈Π1
wpj∑

pi∈Π2
wpi

≤ max{1 + α,
1

α− 1
· (αn+1 − 1)/αn)}.

The proof depends on the following two observations:

1. Given a set of packets S at time t, we assume an online
algorithm schedules a packet pi. We consider time t′ >
t. Since all packets are with the same length, if the
packet pi cannot be finished by time t′, any packet in
S cannot be finished completely by time t′, no matter
what the fade state of the channel is.

2. Given a set of packets S at time t, the SEMI-GREEDY
algorithm schedules a packet pi. We have wpi ≥
maxpj∈S wpj

/α. We assume pi is aborted at time t′ >
t by a packet pk, we have wpi

< wpk
/α and pk /∈ S.

If the preempting packet pk is not sent by the algo-
rithm SEMI-GREEDY, pk must be aborted by another
packet which has the potential of being sent. So on and
so forth, we regard all aborted packets and the last-sent
packet pl as a chain. From Lemma 1, all ever-aborted
packets have value≤ wpl

· 1
α−1 · (α

n+1−1)/αn. Note
that no chains share a same packet.

For any packet p ∈ (Π1 \Π2) sent by the optimal offline
algorithm, either p expires before SEMI-GREEDY sends
it or p is sent, aborted before it is finished, and is never
completed by its deadline. If p expires, any packet that
SEMI-GREEDY sends since time rp has a value ≥ wp/α
(from the algorithm).

We examine the time intervals (a single packet is sent in
such an interval) for the optimal offline algorithm and this
online SEMI-GREEDY algorithm in a sequential order. Our
charging scheme works as follows:

1. For any packet p ∈ (Π1\Π2) that SEMI-GREEDY has
not ever run, we charge it to the corresponding time
interval that SEMI-GREEDY sends a packet. We note
that SEMI-GREEDY must have one pending packet to
send in this time step since this packet p is a candi-
date. The packet SEMI-GREEDY sends, let it be p′,
in this corresponding time interval has a value no less
than wp/α. Also, SEMI-GREEDY finishes p′ no later
than the adversary finishes p since p and p′ have the
same processing time and p and p′ are being executed
in corresponding time steps when both algorithms send
packets.

2. For any packet p ∈ (Π1 \ Π2) that SEMI-GREEDY
ever sends but aborts it later, we know that (from
above observations) that p belongs uniquely to a chain
and the last element of this chain, say p′, is sent by
SEMI-GREEDY. Thus, we charge wp to the time in-
terval when p′ is sent by SEMI-GREEDY.

3. For any packet p ∈ (Π1 ∩ Π2), we charge wp to the
time interval when SEMI-GREEDY sends p. Clearly,
for any packet acting as the last-element of a chain, this
charging scheme results that the value ratio is bounded
by 1

α−1 · (α
n+1 − 1)/αn (see Lemma 1).

The remaining part of the proof is to argue that when
we charge a packet p ∈ (Π1 \ Π2) that SEMI-GREEDY
has not ever run yet, in the corresponding time interval,
SEMI-GREEDY sends a packet p′,wp′ ≥ wp/α. This claim
is easy to prove since SEMI-GREEDY chooses the earliest-
deadline-first qualified packet to send. If wp′ < wp/α, p′

will be aborted by p immediately at the time when p ar-
rives. Thus, for each packet p that SEMI-GREEDY sends,
the charged value to p for the adversary is bounded by 1+α
and 1

α−1 · (α
n+1 − 1)/αn and all packet that the adversary

sends have been charged. Theorem 10 is proved. 2

Closing or shrinking the gap [2, 2.618] is still an open
problem.

Assume the fade states are known to the online algo-
rithms, but the packet input sequence are unknown.
We note at first that given the channel quality at its maxi-
mum, delivering uniform-value packets in a greedy manner
(which runs in an online manner) achieves the best through-
put for any algorithms. However, if the channel quality
is less than qmax, the lower bound of competitive ratios
for any deterministic online algorithms is 2 [8]. For this,
we conclude that a c-competitive algorithm for the vari-
ant with channel quality qmax consistently does not imply
a c-competitive algorithm for the variant in which the fade
states are known to the online algorithms. The latter variant
has its own interests and difficulties.

Now we present an instance in which the fade state of
the channel is with qt = l/2, wpi

= 1,∀t, i) to illustrate the
challenge. Consider one packet p1 with deadline 5 at time
1. If an online algorithm executes it, the adversary releases
another packet p2 with deadline 3 at time 2. So, the online
algorithm cannot finish both jobs and the competitive ratio
is 2, given the adversary finishes both in order of packets p2

and p1. If the online algorithm aborts p1 but executes p2, the
adversary releases another packet p3 at time 2 with deadline
4. Here, the online algorithm cannot finish both p2 and p3,
but the adversary can finish p1 and p3 by their deadlines in
order. Thus, the lower bound of competitive ratios for this
variant (wpi

= 1, ∀i and fade states keep the same) is 2. It

is intuitive to abort a running packet if it can be sent later
with the given set of pending packets and fade states of the
channel. Our proposed online algorithms are based on this
intuition.

We provide an almost earliest-deadline-first algorithm
called EDFβ . We use pmax to denote the packet with the
maximum value wmax at time t. Since the fade states are
known, there exists an efficient algorithm in calculating the
provisional schedule, a feasible schedule of sending a sub-
set of the pending packets by their deadlines. We calculate
the optimal provisional schedule at time t. Let the earliest-
deadline pending packet be pe. We either schedule pe or an-
other packet pf satisfying wpf

≥ max{β ·wpe
, wpmax/β}.

Algorithm 3 EDFβ
1: Abort the currently running packet p only if the new

arrival with value ≥ β · wp, ties are broken in favor of
the packet with the earliest deadline.

2: if there is no currently running packet then
3: Calculate the optimal provisional schedule, based on

the set of pending packets and the known fade states.
4: if wpe

≥ wpmax/β then
5: Execute pe.
6: else
7: Execute a packet pf satisfying

wpf
≥ max{β · wpe , wpmax/β}.

where ties are broken in favor of the earliest-
deadline packet. Note pmax itself is a candidate
for pf .

8: end if
9: end if

Theorem 11 Assume fade states are known to online al-
gorithms. Algorithm EDFβ is max{2, β, (1

β−1 · (β
n+1 −

1)/βn)}-competitive in scheduling packets with deadlines
by one transmitter with restarts. EDFβ is 2-competitive
when β = 2.

Proof We use a potential function method to prove The-
orem 11. We compare our algorithm EDFβ with the adver-
sary ADV. Let ΦADV

t and ΦBR
t denote the potentials of the

adversary and EDFβ respectively. Specifically, ΦADV
t denotes

the total value achieved since time t from the pending pack-
ets at time t for the adversary. Let this set of packets be
S∗t . Let ΦBR

t denote the total value of the optimal petitional
schedule of the pending packets at time t for EDFβ . We use
pt and p′t to denote the t-th packet sent by EDFβ and ADV
respectively. If such a packet does not exist, pt (p′t) is a null
packet with value 0. To prove Theorem 11, we need to show
that for any t (let c := max{2, β, (1

β−1 ·(β
n+1−1)/βn)})

c ·wpt + ∆ΦBR
t ≥ wp′t + ∆ΦADV

t . We provide the following
invariants and prove their correctness by case study.

• Denote the pending packets at time t for ADV and EDFβ
as P ′t and Pt. P ′t ⊆ Pt. Note that EDFβ may not
deliver all packets in Pt.

• In each packet sent, the sum of the actual gain and the
credit change is called amortized gain. We prove that
for the i-th packet sent, ADV’s amortized gain is no
more than c times of EDFβ’s amortized gain. c · wpt

+
∆ΦBR

t ≥ wp′t + ∆ΦADV
t .

For arrivals, with the first invariant, the invariants are
easy to prove. Note wpt

= wp′t = 0. In the following,
we consider packet deliveries only. Let the packet EDFβ
chooses to send in this duration be p. One fact that we will
use is: Given two packet p and a packet p∗ with dp ≤ dp∗ , if
p is not in the optimal provisional schedule, but p∗ is, then
wp∗ ≥ wp. This fact further implies that if p is the packet
EDFβ is currently sending, any packet not in the optimal
provisional schedule has a value ≤ β · wp.

1. Assume ADV sends a packet p′. Assume p is sent suc-
cessfully.

Based on the invariants, wp′ , wp ≤ wpmax . From
the algorithm itself, wp ≥ wpmax/β. Since all pack-
ets have the same length, under any fade states, EDFβ
finishes p no later than ADV finishes p′. If dp′ < dp,
we have wp′ < wp in the optimal provisional sched-
ule. Then we charge wp′ +wp to the adversary and we
have wp′ +wp ≤ 2 ·wp. If dp′ > dp, p will not be sent
by the adversary. Then we charge wp′ to ADV and we
have β · wp ≥ wpmax ≥ wp′ .

2. Assume ADV sends a packet p′. Assume p is aborted
before it is finished.

If the adversary will send p, we will charge wp to the
packet that preempts it. Like the chain we have calcu-
lated in Lemma 1, the value gained by sending the last
packet of the chain is at least (β − 1) · βn/(βn+1 − 1)
times of the total value we charge the adversary.

3. Assume ADV has nothing to send from the currently
pending packets for EDFβ .

We claim that either p has been sent by ADV or ADV
must have one new arrival before EDFβ finishes the
packet p it chooses to send. Otherwise, ADV can get
more credit by delivering p. It does not hurt if we have
run p till new arrivals come. This analysis is similar to
what we have had for above cases.

2

Theorem 11 implies that extra information (fade states)
helps improve the competitive ratio from 2.618 to 2.

Assume the fade states are unknown, but the packet in-
put sequence is known. We first provide the lower bound
φ ≈ 1.618 of competitive ratio for deterministic online al-
gorithms for this variant. Then we provide competitive al-
gorithms for it.

Theorem 12 Consider a variant in which the fade states
are unknown, but the packet input sequence is known to on-
line algorithms. The lower bound of competitive ratio for
deterministic online algorithms is φ ≈ 1.618.

Proof An instance is easy to construct. Assume there
are two packets in the input sequence only. One packet p1

is with value 1 and deadline 2. The other packet p2 is with
value φ and deadline 3. These two packets are released at
time 0. Let an online algorithm be ON.

If ON schedules p1, the optimal offline algorithm sched-
ules p2 and the fade states are 0.5 from time 0 to 3. Note
here the Assumption 1 still holds. Then the competitive ra-
tio is φ. If ON schedules p2, the optimal offline algorithm
schedules both p1 and p2 given the fading states are 0.5
from 0 to 4. Thus, the competitive ratio is (1 + φ)/φ = φ.
2

In the following, we reveal the relationship between this
variant and the bounded-delay model, and we prove that
given a c-competitive online algorithm for the bounded-
delay model, there exists a c-competitive algorithm for this
variant in which fade states are unknown but packet se-
quence is known to online algorithms. In the bounded-
delay model, packets are released in an online manner. Each
packet is associated with a value and a deadline by which it
should be sent. In each time step, a packet can be sent and
the goal is to maximize the total value of the packets sent
by their respective deadlines.

Theorem 13 Consider a variant in which the fade states
are unknown, but the packet input sequence is known to on-
line algorithms. A c-competitive algorithm for the bounded-
delay model implies a c-competitive algorithm for this vari-
ant.

Proof Consider an input sequence I for the bounded-
delay model. Let the packets sent by an optimal offline
algorithm be O and the algorithm itself be OPTd. Let the
length of a packet be l.

Given a time t, we create the fade states such that the
optimal offline algorithm OPTf for the variant achieves the
same weighted throughput as OPTd, also, for an online al-
gorithm, the extra given information about the whole in-
put sequence cannot avoid the difficulty brought by the un-
predictably of the fade states. The construction of the fade
states is as follows.

For the bounded-delay model, let the set of packetsO be
p1, p2, . . . , pm and they are sent in time steps 1, 2, . . . , m

respectively. (If there is no packet sent in a step i, we cre-
ate a dummy packet pi for step i with wpi = 0. Without
loss of generality, all packets pi can be sent in the earliest-
deadline-first manner. Then we modify the deadlines of the
packets in O such that dpi

< min{dpi+1 , . . . , dpm
}, for

all i = 1, 2, . . . ,m − 1. At last, we force the quality of
the fade states from time dpi to dpi+1 be l/(dpi+1 − dpi).
This guarantees a packet can be sent under such fade states
and if pi is pending to an online algorithm at time dpi−1 and
the online algorithm sends any other packet than pi, pi can-
not be sent by the online algorithm any more. We ensure
that the optimal offline algorithm for this variant works the
same as the optimal offline algorithm for the bounded-delay
model. Also, the extra information about the packet input
sequence does not help the online algorithm since it has no
known about the fade states. With Assumption 1, the online
algorithm known that only one packet can be sent once it
is committed and this is exactly as what is assumed in the
bounded-delay model. 2

Closing or shrink the gap of competitive ratios
[1.618, 1.832] for the bounded-delay model is an intriguing
problem and thus, from Theorem 13, the gap still applies
to the variant in which the fade states are unknown, but the
packet input sequence is known to online algorithms.

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen.
Competitive queue policies for differentiated services. In
Proceedings of the 19th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFO-
COM), pages 431–440, 2000.

[2] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Com-
petitive queue policies for differentiated services. Journal of
Algorithms, 55(2):113–141, 2005.

[3] Baptiste. Polynomial time algorithms for minimizing the
weighted number of late jobs on a single machine with equal
processing times. Journal of Scheduling, 2:245–252, 1999.

[4] A. Borodin and R. El-Yaniv. Online Computation and Com-
petitive Analysis. Cambridge University Press, 1998.

[5] W. Chen, M. J. Neely, and U. Mitra. Energy-efficient trans-
mission with individual packet delay constraints. IEEE
Transactions on Information Theory, 54(5):2090–2109,
2008.

[6] F. Y. L. Chin and S. P. Y. Fung. Online scheduling with
partial job values: Does timesharing or randomization help?
Algorithmica, 37(3):149–164, 2003.

[7] M. Chrobak. 2007 — An offine perspective. SIGACT News
Online Algorithms, 13:96–121, 2008.

[8] M. Chrobak, W. Jawor, J. Sgall, and T. Tichy. Online
scheduling of equal-length jobs: Randomization and restart
help? SIAM Journal on Computing (SICOMP), 36(6):1709–
1728, 2007.

[9] M. Englert and M. Westermann. Considering suppressed
packets improves buffer management in QoS switches. In
Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 209–218, 2007.

[10] A. Fu, E. Modiano, and J. Tsitsiklis. Optimal transmission
scheduling over a fading channel with energy and deadline
constraints. IEEE Transactions on Wireless Communica-
tions, 6(1):630–641, 2006.

[11] A. El Gamal, E. Uysal, and B. Prabhakar. Energy-efficient
transmission over a wireless link via lazy packet schedul-
ing. In Proceedings of the 20th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFO-
COM), volume 1, pages 384–394, 2001.

[12] M. Garey, D. Johnson, B. Simons, and R. Tarjan. Schedul-
ing unit-time tasks with arbitrary release times and dead-
lines. SIAM Journal on Computing (SICOMP), 10(2):256–
269, 1981.

[13] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man, 1979.

[14] B. Hajek. On the competitiveness of online scheduling of
unit-length packets with hard deadlines in slotted time. In
Proceedings of 2001 Conference on Information Sciences
and Systems (CISS), pages 434–438, 2001.

[15] T. Heikkinen and A. Hottinen. Delay-differentiated schedul-
ing in a fading channel. IEEE Transactions on Wireless Com-
munications, 7(3):848–856, 2008.

[16] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko. Buffer overflow man-
agement in QoS switches. SIAM Journal of Computing
(SICOMP), 33(3):563–583, 2004.

[17] F. Li, J. Sethuraman, and C. Stein. An optimal online al-
gorithm for packet scheduling with agreeable deadlines. In
Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 801–802, 2005.

[18] F. Li, J. Sethuraman, and C. Stein. Better online buffer man-
agement. In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 199–208,
2007.

[19] A. Tarello, J. Sun, M. Zafer, and E. Modiano. Minimum en-
ergy transmission scheduling subject to deadline contraints.
Wireless Neworks, 14(5):633–645, 2007.

[20] D.N. Tse and S.V. Hanly. Multiaccess fading channels: Poly-
matroid structure, optimal resource allocation and through-
put capacities. IEEE Transactions on Information Theory,
44(7):2796–2815, 1998.

[21] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. In Proceedings of the 36th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), 1995.

[22] M. Zafer and E. Modiano. Optimal rate control for
delay-constrained data transmission over a wireless chan-
nel. IEEE Transactions on Information Theory, 54(9):4020–
4039, 2008.

