
Towards Session-aware RBAC Administration

and Enforcement with XACML

Min Xu
George Mason University
Fairfax, Virginia, USA

mxu@gmu.edu

Duminda Wijesekera
George Mason University
Fairfax, Virginia, USA

dwijesek@gmu.edu

Xinwen Zhang
Samsung Information Systems
America, San Jose, CA, USA

xinwen.z@samsung.com

Deshan Cooray
George Mason University
Fairfax, Virginia, USA

dcooray@gmu.edu

February 4, 2009

Abstract

An administrative role-based access control (AR-
BAC) model specifies administrative policies over
a role-based access control (RBAC) system, where
an administrative permission may change an RBAC
policy by updating permissions assigned to roles,
or assigning/revoking users to/from roles. Conse-
quently, enforcing ARBAC policies over an active
access controller while some users are using pro-
tected resources would result in conflicts: a policy
may be in effect in the RBAC system while being
updated by an ARBAC operation. Towards solv-
ing this concurrency problem, we propose a session-
aware administrative model for RBAC. We show
how the concurrency problem can be resolved by en-
hancing the eXtensible Access Control Markup Lan-
guage (XACML) reference implementation. In order
to do so, we develop an XACML-ARBAC profile to
specify ARBAC policies, and enforce these polices
by building an ARBAC enforcement module and a
session administrative module. The former synchro-
nizes with the evaluation of access control requests.
The latter revokes conflicting ongoing user sessions
immediately prior to enforcing administrative oper-
ations. Experimental shows reasonable performance
characteristics of our initial enhancement to Sun’s
reference implementation.

1 Introduction

One of the fundamental tenants of role-based access
control (RBAC) model [22, 13] is that every role

is granted a set of permissions necessary and suffi-
cient to perform the job functions of an individual
in an organization. Over the years, many admin-
istrative role based access control (ARBAC) mod-
els have been proposed to achieve this goal [21, 10,
11, 8, 19, 18], following the spirit of administrating
an RBAC model using another RBAC model. AR-
BAC models specify the administrators’ privileges
with so called administrative roles that have per-
missions to configure the components in an RBAC
system, including creating/removing roles, changing
permissions granted to roles, and assigning/revoking
users to/from roles. Independently, the eXtensible
Access Control Markup Language (XACML) [2] has
become the standard to specify access control poli-
cies for Web Services. In order to specify RBAC
policies using XACML, an RBAC profile has been
defined in XACML [1]. However, to the best of our
knowledge, there is no XACML-ARBAC profile to
specify ARBAC policies.

Along our investigation to develop an XACML-
ARBAC profile for managing RBAC systems, we
have identified a set of challenging issues. Firstly,
when an administrator exercises any of those access
rights granted under an ARBAC policy, it would
result in altering the permissions of a user that is
granted under an already enforced RBAC policy.
For safety purposes in many applications, the en-
forcement of an ARBAC policy would entail imme-
diately changing the permissions to use a resource
while a user is accessing it. Secondly, an adminis-
trative operation usually updates an RBAC policy,
which results in read-write conflicts when the ac-

1

cess controller is evaluating a user’s request based on
the updated policy. The underlying reason for these
problems lies in the fact that all ARBAC models fo-
cus on defining policies to assign different adminis-
trative permissions to different administrative roles,
while in practice, enforcing these policies affects the
runtime state of the RBAC system which may result
in unexpected usage of permissions within ongoing
sessions and inconsistent policies configurations.

Towards solving these problems, we propose
a session-aware administrative model for RBAC.
Based on this model we specify concurrency re-
quirements of an ARBAC model and introduce the
concept of lock scope for a role, which captures
the affected roles when the permissions granted to
this role are updated due to administrative opera-
tions. We then propose an XACML-ARBAC pro-
file in XACML to specify ARBAC policies. Finally
we have implemented our solutions by extending
Sun’s XACML reference implementation engine [5].
Specifically, we have developed a special adminis-
trative policy enforcement point (A-PEP) that com-
petes for read-write locks for RBAC and ARBAC
polices along with the evaluation engine of the ac-
cess controller. We have also developed a session
administrator that terminates all user sessions that
are affected due to a pending administrative policy
change immediately before its enforcement.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes ARBAC and XACML essen-
tials. Section 3 introduces our session administrative
model for an RBAC system and concurrency con-
trol requirements. Section 4 presents our XACML-
ARBAC profile and the architecture to enforce this
profile in XACML. Section 5 describes our imple-
mentation and Section 6 presents some performance
characteristics. Section 7 presents related work and
Section 8 concludes this paper.

2 Preliminaries

2.1 RBAC and ARBAC

We use the notation RBAC = (USER, OBJECT ,
ACTION , ROLE, PERMISSION , ≤, U2R,
R2P) for the model of an RBAC system 1, where
the first four entities are the sets of users, objects,
actions, and roles, respectively. PERMISSION
is a subset of OBJECT × ACTION , represent-
ing the set of permissions. The partial order-
ing ≤⊆ ROLE × ROLE is the role hierarchy.

1Usually an RBAC model is the configuration of an RBAC
system. We do not distinguish them when the context is clear
in this paper.

U2R : USER 7→ 2ROLE and R2P : ROLE 7→
2PERMISSION are relations that are functional in
their first coordinate, modeling user-to-role and role-
to-permission assignments. That is, U2R(u,M)
and R2P (r,N) are true iff user u is allowed to
play the set of roles M and role r can execute
the permission set N respectively. We use func-
tion assignPerm(u) = ∪r∈U2R(u),r≥r′R2P (r′) to re-
turn the set of permissions that a given user obtains
through his or her assigned roles.

We base our work partially on ARBAC97 [21] and
SARBAC [10], which suggest having a set of admin-
istrative roles (AR) distinct from user roles, and per-
mit these administrative roles to create and remove
users, roles, assign and revoke users to (user) roles,
and grant and revoke permissions to (user and ad-
ministrative) roles. ARBAC97 has three sub-models
referred as URA97, PRA97, and RRA97, which
represent controls over user-role assignment (U2R),
permission-role assignment (R2P), and role-role as-
signment (≤), respectively. An ARBAC model is
defined as follows.

definition 1 (ARBAC) Let (USER, OBJECT ,
ACTION , ROLE, PERMISSION , ≤, U2R,
R2P) be an RBAC model. An administrative RBAC
model is a tuple ARBAC = (USER, A−OBJECT ,
A−ACTION , A−ROLE, A−PERM , ≤A, U2AR,
AR2AP), where

• A − OBJECT = USER ∪ ROLE ∪ U2R ∪
R2P∪ ≤ is the set of administrative objects;

• A − ACTION is the set of administrative ac-
tions given in Table 1;

• A−ROLE is a set of administrative roles;

• A − PERM ⊆ (A − OBJECT × A −
ACTION)∪(A−OBJECT ×A−OBJECT ×
A−ACTION) is the set of administrative per-
missions.

• ≤A⊆ A−ROLE ×A−ROLE is the adminis-
trative role hierarchy;

• U2AR : USER 7→ 2A−ROLE is the user-
administrative role assignment;

• AR2AP : A − ROLE 7→ 2A−PERM is the ad-
ministrative role-permission assignment.

As defined, administrative objects
(A − OBJECT) in ARBAC include the set of
users (USER), roles (ROLE), user-to-role (U2R)
and role-to-permission (R2P) mapping and the role

2

+ Operation - Operation
AddUser(u) DeleteUser(u)
AddRole(r) DeleteRole(r)
AssignUser(u,r) DeassignUser(u,r)
GrantPermission(r,P) RevokePermission(r,P)
AddEdge(rc, rp) DeleteEdge(rc, rp)

Table 1: Administrative Operations

inheritance relation (≤) in RBAC, and administra-
tive actions in Table 1 create, update, or destroy
these objects. For example, the AssignUser and
DeassignUser operation creates and removes en-
tries in the user-to-role mapping U2R, respectively.
Each execution of an administrative action changes
the RBAC system configuration or condition to a
new state. The pre-condition and post-condition
of these operations are specified in Appendix A.
An administrative permission is an application of
administrative action on one or two appropriate
administrative objects.

All administrative operations can be classified into
“+” operations and “-” operations. A “+” oper-
ation adds elements to existing administrative ob-
jects such as assigning a user or granting a permis-
sion to a role, while a “-” operation deletes elements
such as revoking a user or permission from a role.
Different administrative operations invoke different
session administrative actions in our session-aware
administrative model introduced later.

2.2 XACML and Reference Imple-
mentation

The eXtensible Access Control Markup Language
(XACML) is an XML-based language which spec-
ifies access control policies, requests, and responses
in distributed computing environments such as Web
Services. A request is from a <Subject> (e.g. a user
or a process) to perform an <Action> (e.g. read,
write) on a <Resource> (e.g. a file or a disk) within
an environment (e.g. from a secure machine).

Standard XACML uses three basic elements
in constructing access control policies: <Rule>,
<Policy>, and <PolicySet>, and allows hierarchical
nesting of them. An XACML <Rule> has two ele-
ments, a <Condition> and a <Target>, and an Ef-
fect attribute. The intuitive reading of an XACML
rule is that, if the condition of the rule is evaluated
to be true, the access control decision to perform
<Actions> by the <Subjects> on the <Resources>
are given by the Effect attribute. A <Policy> can
consist of a set of <Rule>s. A <PolicySet> holds
<Policy>s and other <PolicySet>s. For an access

request, the XACML policy evaluation algorithm re-
cursively computes a value from domain {permit,
deny, nonApplicable, indeterminate} and returns de-
cision in a bottom up manner and uses a collection
of (rule and policy) combining algorithms [2] to re-
solve possible conflicting decisions returned by their
sub parts. The OASIS specification [2] identifies
four standard combining algorithms: deny-override,
permit-override, first-one-applicable, and only-one-
applicable. For example, the deny-overrides algo-
rithm evaluates to deny if any applicable rule eval-
uates to deny.

<Target> is a set of simplified conditions for the
<Subject>, <Resource>, and <Action> that must
be met for a <PolicySet>, <Policy>, or <Rule>
to apply to an access request. The <Condition>
element further restricts the applicability of the
<Rule> already implied by the <Target> in the
rule. <Condition>s can be nested using Boolean
combinators over other <Condition>s. This can be
used to check of the pre-conditions of each adminis-
trative operation.

Any <PolicySet> can include one or more
<PolicyIdReference> or <PolicySetIdReference>
elements. The intended semantics of including
a <PolicySetIdReference> in a <PolicySet> is
that the content of the referenced <PolicySet> re-
places the <PolicySetIdReference> in the referring
<PolicySet>. This feature is used in the XACML-
RBAC profile [1] to specify role-to-permission as-
signments and role hierarchies.

Figure 1 shows an example XACML policy that
specifies a permission to add a role. This policy
has one <Policy> element containing two rules, Rule
“Permission:to:add:a:role”, and Rule2. Line 1 of the
policy says that the rule combining algorithm to be
used is permit-overrides. The policy’s target says
that this policy is applicable to any subject request-
ing permission to execute any action on any resource.
The target of Rule 1 narrows the scope of applicable
requests to those requesting accesses to the resource
role with action AddRole. The condition of Rule 1
says that if the role does not exist (computed using
our extended function role-exist), the request should
be permitted. Otherwise, according to Rule 2 and
the rule combining algorithm of the policy, a request
applicable to the policy should be denied.

Figure 2 shows the high-level architecture of Sun’s
XACML reference implementation [5]. In this ar-
chitecture, the Policy Administration Point (PAP)
is the entity that creates policies and policy sets;
the Policy Decision Point (PDP) is the entity that
evaluates policies and renders one of {permit, deny,
indeterminate, notApplicable} as the authorization

3

<Policy PolicyId="add:a:role"
RuleCombiningAlgId="permit-overrides">

<Target>
<Subjects><AnySubject/></Subjects>
<Resources> <AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
<Rule RuleId="Permission:to:add:a:role" Effect="Permit">

<Target>
<Subjects><AnySubject/></Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="string-equal">
<AttributeValue DataType="string">role
</AttributeValue>
<ResourceAttributeDesignator AttributeId="resource-id"
DataType="string"/>
</ResourceMatch>

</Resource>
</Resources>
<Actions>

<Action>
<ActionMatch MatchId="string-equal">

<AttributeValue DataType="string">AddRole
</AttributeValue>
<ActionAttributeDesignator AttributeId="action-id"
DataType="string"/>

</ActionMatch>
</Action>

</Actions>
</Target>
<Condition FunctionId="not">
<Apply FunctionId="role-exist">

<ResourceAttributeDesignator AttributeId="new-role-id"
DataType="role"/>

</Apply>
</Condition>

</Rule>
<Rule RuleID="2" Effect="Deny">

<Policy>

Figure 1: An XACML example policy.

decision; the Policy Enforcement Point (PEP) is the
entity that enforces the access control decision; and
the Context Handler is the entity that converts na-
tive request to one that is in the XACML format
(consisting of three components Subject, Resource,
and Action) and converts authorization decisions in
the XACML format to native formats.

The PAP creates policies at authoring time, e.g.,
by security administrators. At an access control re-
quest time, a subject sends an access request to the
PEP as shown in flow 2 of Figure 2. The PEP then
forwards this request to the context handler (flow 3)
and obtains all the values of the attributes passed
in the request. The context handler forms the ac-
cess control request based on the attributes of the
requester, action, resource, and environment, and
forwards the request to the PDP (flows 4, 5, 6, 7, 8).
PDP uses this information to find the access control
policy applicable to the request, which is defined in
terms of the attributes of the requestor, action, and
resource. The policy can also include functions de-
fined on these attributes. The PDP uses two steps
to evaluate the request: it first attempts to find all

Access

Requester
PEP

PDP

PAP

Context

Handler

PIP

Subjects

Obligation

Service

Resource

Environment

2. Access

Request

11 Obligations

1.Policy or Policy Set

 8.Target,

 Attributes, Resources

 9. Decision

5a Sub. Attrbs

3.Request

10.Response

7. Resource

5b Re. Attrbs

5c.Env. Attrbs

4.Attrbs Query 6.Attributes

Figure 2: XACML data flow diagram.

the polices applicable to the request by using target
matching (flow 1) algorithm, and it then evaluates
the rules of the applicable policies and returns its
decision back to the PEP via the context handler
(flows 9, 10). Finally the PEP enforces the autho-
rization decision.

3 Session Administrative
Model

3.1 RBAC Session Administration

The RBAC96 [22] and NIST RBAC [13] models in-
clude the concept of session, which is used to in-
teract with applications by users. Specifically, a
session is a unique context associated with a user,
within which the user activates a subset of as-
signed roles. Consequently, every activated role be-
longs to one session, and each session belongs to a
unique user. Some primitive session management
functions are specified in NIST RBAC model [13].
However, they are not included in existing ARBAC
modes [21, 10, 11, 8, 19, 18].

In order to specify appropriate ARBAC policies
for an RBAC system, we need to define a complete
administrative model for session management first.

definition 2 (Session Administration)
Let (USER, OBJECT , ACTION , ROLE,
PERMISSION , ≤, U2R, R2P) be the model of
an RBAC system. A session administrative model
is SAM = (ACTIV E − S, S − ACTION , U2S,
S2R, actRole, actPerms), where

• ACTIV E−S is the set of all active sessions at
a given system state;

• S − ACTION ={CreateSession(u, s),
DeleteSession(u, s), ActivateRole(u, s, r),
DeactivateRole(u, s, r)} is the set of session

4

administrative actions, where u ∈ USER,
r ∈ ROLE and s ∈ ACTIV E − S.

• U2S : USER 7→ 2ACTIV E−S is a function
mapping a user to a set of active sessions at
a system state;

• S2R : ACTIV E − S 7→ 2ROLE is a function
mapping an active session to a set of activated
roles at a system state;

• U2S ◦ S2R(u) ⊆ U2R(u) is the constraint
that at a system state, all activated roles of a
user is a subset of or equal to the set of his
or her assigned roles, where U2S ◦ S2R(u) =
∪s∈U2S(u)S2R(s);

• activeRoles(u) = ∪s∈U2S(u)S2R(s) is a func-
tion mapping a user to a set of activated roles
in all active sessions at a system state;

• activePerms(u) =
∪s∈U2S(u),r∈S2R(s),r≥r′R2P (r′) is a func-
tion mapping a user to a set of activated
permissions at a system state.

Each session administrative action changes the
system to a new state, e.g., by creating/deleting a
session for a user, or activating/deactivating a role
within a session. The formal semantics of these ac-
tions are defined in Appendix B.

3.2 Concurrency Control

Similar to an RBAC model, an ARBAC model de-
fines the configuration of the administrative func-
tions of an RBAC system. However, as aforemen-
tioned, any configuration change affects the running
system state, which may demand session adminis-
trative actions according to application specific re-
quirements. The interaction between session admin-
istrative actions and system administrative opera-
tions (i.e., the ARBAC operations defined in Sec-
tion 2.1) needs to be specified for a safe and complete
ARBAC model. As one of the major contributions
of this paper, we identify the following two concur-
rency requirements between the session administra-
tive model and the system administrative model for
an RBAC system.
Revoke activated role or delete active session imme-
diately Suppose an administrative action aact ∈
A−ACTION changes an RBAC model to RBAC ′,
according to the semantics of Appendix A. At a give
system state t, if ∃u ∈ USER, p ∈ PERMISSION ,
p ∈ activePerms(u)|t∧p /∈ assignPerms(u)|RBAC′ ,
then

• ∀s ∈ U2S(u), if ∃r ∈ R, p ∈ R2P (r) ∧ r ∈
S2R(r), DeleteSession(u, s)|t, or

• ∀s ∈ U2S(u), if ∃r ∈ R, p ∈ R2P (r) ∧ r ∈
S2R(r), DeactivateRole(u, s, r)|t,

where assignPerms(u)|RBAC′ is the set of permis-
sions that user u can activate under RBAC ′, and
DeleteSession(u, s)|t and DeactivateRole(u, s, r)|t
are session administrative actions at system state t.
This requirement specifies that, when aact removes
one or more activated permissions of a user in a
session at a system state, either the active session
should be deleted, or all corresponding roles which
the permissions are assigned with should be deacti-
vated. Obviously, only “-” administrative operations
cause these actions in a system.

Delay administrative operation At a give system
state t, when a permission is activated by a user
in an active session, any revocation of this per-
mission from the user by an administrative opera-
tion is delayed until the role corresponding to the
permission is deactivated, or the active session is
deleted. Formally, when aact ∈ A − ACTION
changes an RBAC model to RBAC ′, if ∃u ∈
USER, p ∈ PERMISSION, s ∈ U2S(u)|t, and
p ∈ activePerms(u) ∧ p /∈ assignPerms(u)|RBAC′ ,
then aact|t′ when p /∈ activePerms(u)|t′ . That is,
the administrative operation aact is executed at sys-
tem state t′ > t where the permission is not activated
anymore.

Note that these two requirements can be individ-
ually or jointly specified in a particular system, e.g.,
some permissions need to be immediately deacti-
vated in an active session when they are revoked
by an administrative action, while some permission
may delay the execution of an administrative oper-
ation. For example, the user session is performing
some activity that must be completed, such as wait-
ing for a reply from a remote database or rolling
back a transaction. Now suppose that an adminis-
trator wants to removed the permission granted to
the user which requires to kill the user session. In
this case, the enforcement of administrative opera-
tion is delayed until the user session ends to avoid
inconsistency.

When an administrative operation modifies a role,
we not only need to manage current active sessions,
but also any new sessions. This is especially nec-
essary in delayed administrative actions. Specifi-
cally, when an administrative operation is delayed,
although affected permissions or roles are not de-
activated at the moment, we need to prevent user
from activating them in a new session. To do this,

5

we lock the affected roles. The administrative op-
eration places write locks on the affected roles to
prevent the PDP evaluation “reading” the roles and
other administrative operation “writing” the roles.

definition 3 (Lock Scope) Let
(USER,OBJECT , ACTION , ROLE,
PERMISSION , ≤, U2R, R2P) be the model
of a RBAC system and r ∈ ROLE be a role.
We define the read scope and write scope of r
respectively as rScope(r) = {r′ ∈ ROLE|r′ ≤ r}
and wScope(r) = {r′ ∈ ROLE|r′ ≥ r}.

As stated in Definition 3, the read scope of a role
r includes all its junior roles and itself, and the write
scope of r includes all its senior roles and itself. This
is because, when a session using a role r may lose
permissions if any junior role r′ loses its permissions,
and therefore needs to ensure that if r′ is to lose per-
missions, then r needs to be deactivated. Conversely,
if role r is to lose permissions due to an administra-
tive operation, then all roles senior to r, that is the
write scope of r must not be allowed to be active.
For example in Figure 3, the read lock scope for
R3 is {R6,R5,R3}. The write lock scope for R3 is
{R0,R1,R2,R3}. The lock scopes of a role could be
changed because of an administrative operation. For
example, the write lock scope for R4 is {R0,R1,R4}.
If an administrative role executes the administrative
operation AddEdge(R4,R2), the write lock scope for
R4 becomes {R0,R1,R2,R4}.

R0

R2
R1

R3 R4

R5

R6

R7

Figure 3: An example role hierarchy.

With the concept of lock scope, we can define the
affected entities because of invoking an administra-
tive operation. Algorithm 1 in Figure 4 shows this
information for each administrative operation. For
example, deleting the role R3 from the role hierar-
chy in Figure 3 affects all the sessions where R0, R1,
R2 and/or R3 are activated. The affected entities
are those in wScope(R3).

Algorithm 1: Compute affected entities
Input: adminOp
Output: Return affected to A-PEP

1 switch adminOp do
2 case DeleteUser(u)
3 affected:=u;
4 case DeleteRole(r)
5 affected:=wScope(r);
6 case DeassignUser(u,r)
7 affected:=(rScope(r),u);
8 case RevokePermission(r,P)
9 affected:=wScope(r);
10 case DeleteEdge(rc, rp)
11 affected:=wScope(rp);
12 otherwise
13 affected:=NULL;
14 return affected;

Figure 4: Compute affected entities of an administra-
tive action.

4 XACML-ARBAC Profile
and Enforcement Architec-
ture

In this section, we present an XACML profile for
ARBAC and the architecture to enforce this pro-
file. Because ARBAC is an RBAC model with
administrative roles having specialized permissions
to administrate an underlying RBAC system, our
XACML-ARBAC profile is also an XACML-RBAC
profile. We first describe the XACML-RBAC pro-
file and then present our extensions for ARBAC.
We then show how the XACML-ARBAC compliant
policies can be used to administrate the XACML-
RBAC policies by executing administrative opera-
tions. Finally, we present the architecture to enforce
the XACML-ARBAC profile.

4.1 XACML-RBAC Profile

The XACML-RBAC profile 2.0 has been approved
as an OASIS standard [1] to specify core and
hierarchical components of RBAC models. In
this profile, objects, actions, and users are ex-
pressed as XACML <Resource>s, <Action>s and
<Subject>s. But roles are expressed as <Subject>
attributes or <Resource> attributes. This profile
also defines three generic XACML policies: a Per-
mission <PolicySet>, a Role <PolicySet>, and a
Role Assignment <Policy> or <PolicySet>. These
are used to express the remaining entities of an
RBAC model (i.e. permissions, U2R and R2P map-
pings, and role hierarchy ≤), and are briefly ex-
plained as follows.

A Permission <PolicySet> is a <PolicySet>
used to define a set of permissions associated with

6

a role. It may contain <PolicySetIdReference>
to other Permission <PolicySet>s. Stated
<PolicySetIdReference>s can be used to inherit per-
missions of a junior role. Currently, this is the only
way to specify the role inheritance in the XACML-
RBAC profile.

A Role <PolicySet> binds a set of at-
tributes defining a role in a <Target> to a
<PolicySetIdReference> outside of that <Target>.
The latter points to the Permission <PolicySet> of
the role.

A Role Assignment <Policy> or <PolicySet>
does not have a standard specification. The objec-
tive of the role assignment <Policy> or <PolicySet>
is to specify the user-to-role (U2R) assignment. This
part of an RBAC policy is supposed to be specified
by an entity external to the XACML policy frame-
work, referred to as the Role Enabling Authority
(REA). The XACML-RBAC profile does not specify
any more requirements of the REA.

4.2 The XACML-ARBAC Profile

In OASIS XACML-RBAC profile, roles are defined
as attributes of subjects and resources. We en-
hance the XACML syntax by introducing a new
data type Role. As our implementation needs to
distinguish administrative roles from user roles, we
introduce a roleType attribute that can take value
from {userRole,adminRole}. We use all other prim-
itive entities from the XACML-RBAC profile. In
particular, the role hierarchy and role-to-permission
assignments are expressed in the same way as in
the XACML-RBAC profile. We use an XML file to
maintain all user-to-role assignments in the policy
repository as the following shows:

<Subjects>
<Subject SubjectId="Alice">

<Roles> <Role>SSO </Role></Roles>
</Subject>
<Subject SubjectId="Bob">

<Roles> <Role>ManagerABC</Role></Roles>
</Subject>

</Subjects>

We can get all the roles that a user can invoke by
querying this XML file. That can be considered a
special internal Role Enabling Authority. Although
we could have maintained the user-to-role assign-
ment as a Role Assignment <PolicySet>, the reason
we do not do so is that the current XACML refer-
ence implementation does not answer a query such
as What are the roles assigned to Alice?. Using this
extra syntax, we state administrative policies using
the same machinery as the RBAC profile, but with
the following constraints.

Constraining the Permission <PolicySet> All per-
missions listed in a <PolicySet> of an administra-
tive role must be administrative permissions. By en-
forcing the following constraints on the syntax used
in a permission <PolicySet>, we ensure that it is an
administrative Permission <PolicySet>.

1. The <Condition>s are created from applying
Boolean operations to existing XACML condi-
tion functions and an enlarged set of condition
functions listed in Table 2.

2. The (<Action>, <Resource>) pair listed in
<Rule> must be an A− PERM . That is, the
actions must be chosen from operations in Ta-
ble 1.

Constraining the Role <PolicySet> The Role
<PolicySet> of an administrative role must be an
administrative <PolicySet> with the following ad-
ditional constraints:

1. All role names that appear in the <Target> of
the Role <PolicySet> should be administrative
roles.

2. The <PolicySetIdReference> contained in the
Role <PolicySet> should point to an adminis-
trative Permission <PolicySet>.

Sun’s reference implementation uses a set of meth-
ods, referred as condition functions, to compare re-
trieved attributes values with expected values in or-
der to make access decisions. An example condition
function provided by the reference implementation
is the form [type]-one-and-only, that accepts a bag
of values of the specified type and returns the sin-
gle value of there is exactly one item in the bag,
or an error if there are zero or multiple values in
the bag. The condition functions provided by Sun’s
implementation [5] are not capable of checking the
conditions for most administrative operations. For
example, to add a role r into the system, the access
controller needs to check if r is already defined. Con-
sequently, we add a new set of condition functions
listed in Table 2 to support all possible conditional
checks for administrative operations.

4.3 Enforcing XACML-ARBAC Pro-
file

In order to enforce our XACML-ARBAC profile, we
enhance the existing XACML reference implementa-
tion with the two entities shown in bold in Figure 5
and explained as follows.

7

Function Intuitive Meaning
role-exist(r) check the presence of the role r
inherited-by-assigned-role(r) check if the given role r is inherited by a role already assigned to the subject
inherit-assigned-role(r) check if the given role inherits a role already assigned to the subject
role-assigned-exist(s,r) check if the subject s is already assigned to the role r
permission-exist(r,p) check if the role r has been already granted the permission p
role-has-children(r) check if the given role has any children
role-has-parent(r) check if the given role has any parent
role-is-assigned(r) check if the give role is assigned or not
role-is-inherited-by(r1,r2) check if r1 is inherited by r2
role-is-parent-of(r1,r2) check if r1 is parent of r2

Table 2: Extended functions applied in <Condition> in XACML-ARBAC profile

The Administrative PEP (A-PEP) receives an ad-
ministrative access control request, returns a re-
sponse to the administrator, and if needed, updates
relevant polices as a consequence of enforcing the re-
quested administrative operation. The A-PEP func-
tions as a Role Enabling Authority. Consequently,
when a subject is assigned to a role and revoked
from a role, the A-PEP acts as an enabler/ disabler
by invoking the appropriate administrative opera-
tion and updates the U2R mapping in an XML file.
Consequently, when needed by the PDP or the con-
text handler, A-PEP provides appropriate instances
of the U2R mapping.

The Lock Manager provides the concurrency con-
trol used to maintain the transactional consistency
between simultaneous operations that the PDP re-
quires reading policies in order to evaluate them and
the A-PEP needs to modify polices to enforce admin-
istrative operations.

Admin
Requester

Admin PEP
Obligation

Service
2a. Access

Request
11a. Obligations

1.Policy or Policy Set

 8.Target,
 Attributes, Resources

3a.R
equest

10a. R
esponse

PDP

PAP

Context
Handler

PIP

Subjects

Resource

Environment

 9. Decision

5a Sub. Attrbs

7. Resource

5b Re. Attrbs

5c.Env. Attrbs

4.Attrbs Query 6.Attributes

Access

Requester

PEP

Lock
Manager

2c. Acquire lock

2b Access

 Request

10b.Response3.
b

 R
e

q
u

es
t

11b O
blig

atio
ns

Figure 5: Extended XACML architecture for
XACML-ARBAC enforcement.

4.4 Concurrency Control

When a non-administrative request arrives at the
PDP, the PDP requests a read lock on the policy
that is found using the target matching algorithm.
In case of an administrative request, the policy eval-
uation part is similar to the non-administrative re-
quest, where the PDP acquires a read lock on the
policy for evaluation. If the administrative request
is granted, the PDP sends a request to the A-PEP.
After receiving a permit decision from the PDP, the
A-PEP acquires a write lock on the policy (recall
that administrative request updates XACML poli-
cies) that is to be updated. We now describe the
details of these steps.

Evaluating Authorization Requests Sun’s reference
implementation does not alter any XACML poli-
cies, and it uses the policy evaluation algorithm ex-
plained in Section 2. As our enhancements update
policies, this evaluation algorithm needs to be pro-
tected by a semaphore. Consequently, when a non-
administrative request arrives at the PDP, the PDP
first requests a read lock (from the Lock Manager)
on the policy that is found using the target matching
algorithm, then it evaluates the request uses the ex-
isting XACML policy evaluation algorithm, updates
the run-time PEP-List (the list of PEPs), and fi-
nally releases the read lock on the policy and sends
the response back tho the requesting PEP, which in
turn returns the response back to the user and in-
vokes application dependent activity to enforce the
decision. If the PDP fails to acquire the read lock, it
returns indeterminate as a response to the request-
ing PEP. The PDP goes through the steps outlined
in Figure 6.

When an administrative request is submitted to
the A-PEP, the A-PEP forwards the request to the
PDP for evaluation. The PDP uses the same eval-
uation algorithm as the non-administrative request
(see Figure 6) and returns the decision to the ad-
ministrative PEP. If the returned value received at

8

Algorithm 2: PDP evaluating request
Input: Request, PEPID
Data: PEPList
Output: access control decision
/*PDP maintains the PEP-List accessible to A-PEP*/

1 policy:=targetMatching(request);
/*find the policy to be evaluated using target matching*/

2 if AcquireLock(policy,read) then
3 decision:=evaluate(Request,policy);
4 PEPList:=+PEPID;
5 ReleaseLock(policy,read);
6 else
7 decision:=Intermediate;
8 return decision;

Figure 6: PDP evaluation algorithm.

the A-PEP is not a permit, the A-PEP conveys the
decision to the administrator. Otherwise (e.g., the
return value is permit), the A-PEP goes through the
steps outlined in Figure 7.

Enforcing Administrative Operations When the
PDP returns back an authorization decision to the
A-PEP, the A-PEP uses the algorithm shown in
Figure 7 to enforce that decision. As the algo-
rithm states, if the decision is not a permit, the
A-PEP returns that decision to the administrator
(lines 19). Otherwise, it acquires a write lock on
the policy to be updated (line 3), calls the method
getAffected(adminOp) using algorithm shown in
Figure 4 to determine the parameters that are Af-
fected by administrative operation to be enforced
(Line 5). Then, the A-PEP sends a request to all
PEPs to kill user sessions that can be affected by
enforcing the administrative operation (lines 6-8),
so that updating a policy while these users access
earlier given permission does not render the access
controller unsafe. Because the access controller can-
not wait forever for those PEPs to confirm that the
requested sessions have been killed, the A-PEP sets
up a timer to consider all returned values from those
PEPs (line 7). If all those PEPs returns successful
answers (lines 12-14), the A-PEP updates the policy
to reflect the administrative operation, releases the
write lock on the policy (line 16), and finally informs
the administrator that the administrative operation
is enforced (the permit decision). Conversely, if all
PEPs fail to return a positive answer when the timer
expires, the administrative request is denied.

4.5 The Lock Manager

The Lock Manager maintains read/write locks
on policies, where the PDP is the only poten-
tial reader and the A-PEP is the only potential
writer of all policies. Since the polices are role-

Algorithm 3: Enforcing administrative operations
Input: adminOp, PDPdecision
/*PDP returns policy decision to A-PEP*/

Data: PEPList
Output: Return decision to administrator

1 if PDPdecision==permit then
2 decision:=deny;
3 if AcquireLock(policy,write) then
4 if adminOp is a (-) operation then
5 Affected:=getAffected(adminOp);
6 forall PEP ∈ PEPList do
7 set(timer, value);
8 sendRequest(PEP,(Affected,killSession));
9 if expires(timer) then
10 acceptFlag:=ok;
11 forall PEP ∈ PEPList do
12 recv(PEP,(Affected, killsSession, NotOK));
13 acceptFlag:=reject;
14 if acceptFlag=ok then
15 modifyPolicy(policy, adminOp);
16 ReleaseLock(policy,write);
17 decision:=permit;
18 else
19 decision:=PDPdecision;
20 return (admin, decision);

Figure 7: Enforcing administrative operations.

based, the locks are actually placed on the roles.
We implemented locking with two atomic op-
erations AcquireLock(role, read / write),
ReleaseLock(role, read / write) and an
AttemptLock(role, ReadLock, WriteLock) op-
eration. The method prevents dead-locks and
circular locks because all roles that we maintain
are in an ordered list and locks are acquired in the
same(increasing) order [17].

5 Prototype Implementation

To show the feasibility and performance of our
framework, we have implemented a prototype to en-
force the extended XACML profile for ARBAC and
concurrency control by augmenting Sun’s XACML
implementation [5]. In this prototype, we revoke the
conflicting ongoing user sessions immediately prior
to enforcing administrative operations.

5.1 The Birth Process

In our new design, when becomes alive, the access
controller follows the initialization sequence of cre-
ating a super user (SU) and a super role (SRole),
where the SRole is the administrative role. Our pro-
totype boots up the access controller with a default
administrative XACML policy, which permits the
creation of SU and SRole, assigns SU to SRole, and
grants the administrative permissions as shown in
Table 1 to SRole.

9

After the initialization phase, the super user SU
is endowed with SRole’s administrative permissions
described in Table 1. Also as specified, the SRole
does not have permissions to delete SU , nor revoke
SU from SRole. Consequently, permissions granted
to SRole remain un-alterable and SRole has no re-
lation with other roles through the role hierarchy,
as formally specified in the AddEdge administrative
operation in the Appendix A.

The access controller does not entertain any user
requests during this initialization phase. After the
RBAC system boots up, the SRole can create the
user roles, create users and assign users to roles, etc.
Here we simplify the administrative RBAC system
with only a single administrative role.

5.2 Implementing Condition Func-
tions and Administrative Opera-
tions

As aforementioned, the condition functions in Sun’s
reference implementation are not sufficient for en-
forcing ARBAC profiles. Two enhancements have
been made in our implementation. In order to check
for pre-conditions of each administrative operation,
condition functions given in Table 2 are implemented
by extending the function base provided in existing
reference implementation. In each function, we im-
plement the evaluate method that is used to evalu-
ate the condition. The input to the condition is pro-
vided through attribute designators that read
information from request context. In addition, the
condition evaluation also requires access to policies,
which is provided by initializing each function with
a reference to the policy finder module of PDP.

The second is a module used by the A-PEP to
modify policies once the PDP permits an admin-
istrative operation. This is achieved through a
PolicyManager that initializes and calls accessor
and mutator methods to update the policies. The
AbstractPolicy class in Sun’s reference implemen-
tation has been extended with mutator methods as
described in Table 3. To obtain and update user-
to-role assignment, we use standard DOM APIs [6]
to parse the XML file containing user-to-role assign-
ments.

5.3 Implementing the Lock Manager

The Lock Manager implements a waiting queue
with a vector, where index i indicates the ith ac-
cess request, and serves all requests in the order
of submitted requests. The vector of a waiting
process hold semaphores. When a process calls

AcquireLock(), the semaphore has “memory” if a
previous ReleaseLock() has been made. Our im-
plementation uses waiting thread that is woken up
when its turn arises in the waiting queue.

6 Performance Evaluation

The concurrency control and its waiting queue im-
plementation slow down the access controller. If ad-
ministrative operations are executed few and far be-
tween, there is a minimal waiting time for the PDP
to request and obtain read locks. However, when
an administrative operation is submitted, the total
service time becomes the sum of request generation
time to the PDP, PDP evaluation time, response
building time, lock acquisition time, time to com-
municate with affected PEPs, time to kill sessions
(optional), time to update a policy, and time taken
to release the locks. Thus when an administrative
request is submitted, it delays other user requests
that have been submitted after that request. Hence
our objective is to evaluate this overall effect on the
access controller due to administrative requests.

As a preliminary step towards determining the
timing overheads, we build the role hierarchy given
in Figure 3. As seen from Figure 3, our role hi-
erarchy has eight (8) roles. We grant ten (10)
permissions per each of these 8 roles. We assign
fifty (50) users per role, and assume that there are
ten (10) active user sessions per each role. After
building this RBAC policy, the sizes of our Role
<PolicySet>, Permission <PolicySet> and user-to-
role assignment file on disk became 12k, 122k, and
41k, respectively.

Our current implementation does not have an
elaborate PEP (although we have an A-PEP).
Therefore we simulate the PEP action using method
calls where the PEP takes an equal time to kill a ses-
sion. We also place the PDP, A-PEP, and all other
(user) PEPs on the same machine - a 3.4GHz Dual
Core Windows XP machine with 1.5G memory. We
measure the elapse time of administrative operations
by calling the Java method System.nanoTime() [3].
Under the given conditions, we have experimented
with executing the administrative operations. We
executed 8 out of the 10 administrative operations
and measured their execution delays, of which we re-
port one in Section 6.1. In addition, we executed two
other operations of removing some permissions from
a role and removing a role from the role hierarchy,
which requires executing a series of administrative
operations. They are described in Section 6.2.

10

Methods Intuitive Meaning
getInstance(XMLNode) create a instance of Policy or PolicySet object based on the DOM node
getChild(childId) return a child of the instance of the Policy or PolicySet
addChild(childId) add a child to the instance of the Policy or PolicySet
deleteChild(childId) delete the child from the instance of the Policy or PolicySet
getChildren(XMLNode) return all children of the Policy or PolicySet
setChildren(XMLNode) set the child policy tree elements for this node
encode(outputStream) encode the state of the Policy object to Policy Type XML reprentation

Table 3: Accessor and mutator methods used in the PolicyManager

6.1 Simple Administrative Opera-
tions

We built the role hierarchy shown in Figure 3 using
our administrative operations. That activity took
about 959 msecs to add 8 roles, 844 msecs to add
9 edges, and 711 msecs to grant 10 permissions per
each of the 8 roles, and about 3384 msecs to assign
50 users to each role. The average time taken for
each simple operation is between 68 to 120 msecs.
Out of all these operations, Figure 8 shows the in-
dividual time taken for assigning 50 users to each of
the 10 roles. We notice that the time grows due to
the growth of the U2R mapping. A further analysis
shows that this is due to the fact that time taken to
parse the XML policy is proportional to the file size.

AssignUser

0

1000

2000

3000

4000

5000

R0 R1 R2 R3 R4 R5 R6 R7

T
o

ta
l t

im
e

(m
se

c)

Figure 8: Total time taken to execute AssignUser.

6.2 Complex Administrative Opera-
tions

We further show the performance characteristics of
removing some permissions from a role that has been
activated by some users. We also study the perfor-
mance by removing a role from the role hierarchy
while some subjects actively use that role, which in-
vokes a series of administrative operations.

Recall that our definition of RevokePermis-
sion(r,(a,o)) removes the permission (a,o) from the
role r, provided that no user actively uses r. Conse-
quently, removing any permission, say (a,o) must be
preceded by killing all sessions that have activated

any role in wScope(r), locking all roles in wScope(r)
so that no other session activates any of them, and
then finally revoking the permissions using the ad-
ministrative operation RevokePermission(r,(a,o)).

0

500

1000

1500

2000

2500

R0 R1 R2 R3 R4 R5 R6 R7

T
o

ta
l t

im
e

(m
es

c)

Figure 9: Total time taken to execute
RevokePermission.

As Figure 9 shows, the time to remove a permis-
sion is proportional to the number of sessions that
need to be killed in order to lock all roles in wS-
cope(r). For example, revoking a permission from
R1 requiring killing 20 sessions, which takes a total
of 955 msecs. Revoking a permission from R5 requir-
ing killing 60 sessions, which consumes 1775 msecs.
Our observation is that revoking a permission from a
role at the bottom of the hierarchy takes more time
than at the top of the hierarchy.

Recall that our definition of the DeleteRole(r) as-
sumes that for r ∈ ROLE, no user has activated r in
any session and the r is not related to any other roles
in the hierarchy. Therefore, to remove a role, we
need to ensure that these pre-requisites are satisfied
by (1) terminating all sessions that have activated r,
(2) removing all (u, r) ∈ U2R for all u ∈ USER, (3)
removing all edges (r, rp) or (rc, r) ∈≤, and then (4)
calling the administrative operation DeleteRole(r).
Consequently, the time to remove a role from the
role hierarchy is the sum of time taken to do these
individual operation. Accordingly, in order to de-
termine the effect of time taken to delete a role on
the number of users permitted to use the role, the
number of sessions activating the role and the num-
ber of edges connecting the role, we conducted three
experiments.

11

In the first experiment, Figure 10 shows the total
time taken to delete a role with a fixed number (50)
of users permitted to use that role and fixed number
of sessions (3) that activated the role from the role
hierarchy given in Figure 3, with various number of
edges to be deleted. Starting with Figure 3, deleting
roles R6 and R7 requires deleting one edge, deleting
roles R0 and R4 requires deleting 2 edges, deleting
R1, R2, R3, and R5 requires deleting 3 edges. Fig-
ure 10 shows that the time taken to delete edges is
proportional to the number of edges that need to be
deleted.

3600

3700

3800

3900

4000

4100

4200

R6 R7 R0 R4 R1 R2 R3 R5

T
o

ta
l t

im
e

(m
ec

)

Figure 10: Effect of # edges on time to remove a role.

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80

Number of users de-assigned

T
o

ta
l t

im
e(

m
se

c)

Figure 11: Effect of # users on time to remove a role.

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80

Number of sessions killed

T
o

ta
l t

im
e

(m
se

c)

Figure 12: Effect of # sessions on time to remove a role.

In the second experiment, we fixed the number
of sessions activated by each user at 3, with vari-
ous number of users permitted to activate the role.
Figure 11 shows the total amount of time taken to
delete each role in Figure 3. Here we assigned 10,
20, 30, 40, 50, 60, 70, and 80 users to R0, R1, R2,

R3, R4, R5, R6, and R7, respectively. Figure 11
shows that the total time taken to delete a role is
proportional to the number of users that need to be
revoked from the role.

In the last experiment, we fixed the number of
users assigned to each role at 50, with various num-
ber of sessions where the role is activated. We acti-
vated 10, 20, 30, 40, 50, 60, 70, and 80 sessions by
R0, R1, R2, R3, R4, R5, R6, and R7, respectively.
As Figure 12 shows, the total time taken to remove
a role increases with the number of sessions where
the role is activated.

From this performance study, several observations
stand out. First, simple administrative operation
executes very fast because it does not affect users’
activities. Second, the complex operation, especially
DeleteRole operation, takes quite a bit time because
it requires executing a series of administrative oper-
ations. For example, in the last experiment, Delete-
Role(R3) requires executing 50 DeassignUser oper-
ations, 3 DeleteEdge operations, 1 DeleteRole oper-
ation, and killing 40 sessions. The amortized time
for each operation is about 83 msecs which is rea-
sonable. Fortunately, deleting a role in a system or
organization does not happen often.

7 Related Work

UARBAC [18] proposes a principled approach in
designing and analyzing administrative models for
RBAC motivated by scalability, flexibility, psy-
chological acceptability, and economy of mecha-
nisms. UARBAC consists of a basic model and
one extension: UARBACP . The basic model
adopts the approach of administrating RBAC with
RBAC. UARBACP adds parameterized objects and
constraint-based administrative domains. To the
best of our knowledge, UARBAC has not been im-
plemented.

SARBAC [10, 11] extends RBAC administration
by adding the concept of administration scopes. Ad-
ministrative scope is defined using the role hierarchy,
and is used for defining administrative domains. The
administrative scope of a role (r) consists of all roles
that are descendants of r and are not descendants
of any role that is incomparable with r. This defi-
nition of scopes works best when the role hierarchy
is a tree with an all-powerful root role. In this case,
each role’s administrative scope is the subtree rooted
at that role. When an operation may affect existing
administrative domains, ARBAC97 forbids these op-
erations, while SARBAC allows them and handles
them by changing existing administrative domains.

12

One feature of SARBAC is that one simple operation
may affect administrative domains of many roles. To
the best of our knowledge, SARBAC has not been
implemented yet.

NIST [7, 12, 14] has implemented RBAC with an
Administrative Tool and an RBAC database to store
instances of U2R, P2R, and ≤ relationships. The
administrative tool determines if an update to the
three relations stored in the database is permitted by
checking the consistency rules, and if so, updates the
relationships in the database. This implementation
is built for Intranet web servers which is not suitable
for distributed applications such as Web Services on
the Internet.

Crampton and Chen [9] propose an approach
implementing the RBAC model using XACML.
They attempt to implement the ANSI RBAC stan-
dard [13] using a suit of XACML polices. They use
attribute-based role assignment for the U2R assign-
ment, define an XML-based language for specifying
separation of duty constraints and propose an ex-
tension to the XACML reference architecture in or-
der to enforce these constraints. To the best of our
knowledge, these have not been fully implemented.

Recently, OASIS XACML v3.0 Administration
standard has been approved as an OASIS commit-
tee working draft [4]. It describes a profile to express
administrative meta-policies which can control dif-
ferent types of polices that individuals can create
and modify, but does not use role-based administra-
tive model to manage these XACML policies.

Concurrency control on XML data has been an
active research recently. Haustein et al. [16] intro-
duce a data model called taDOM tree to allow fine-
grained locking using a combination of node locks,
navigation locks, and logical locks, which we intend
to use for our future research.

Janicke et al. [15] propose a concurrent enforce-
ment model for usage control (UCON) [20] policies.
Their model separates user, access controller, and
system. While their technique enforces concurrency
control based on static analysis of dependencies be-
tween polices, we resolve concurrency issues during
the runtime of a system.

8 Conclusion and Future Work

An enforcement framework is proposed in this paper
to enforce ARBAC policies with XACML. To ad-
dress concurrency issues, an elaborate session-aware
administrative model for RBAC is used to manage
the interaction and conflicts between session man-
agement and administrative operations. We specify

concurrency requirements of an ARBAC model and
introduce the concept of lock scope for a role, which
captures the affected roles when the permissions
granted to this role are updated due to administra-
tive operations. We have developed an XACML-
ARBAC profile to specify ARBAC polices and ex-
tended the Sun’s XACML enforcement architecture
by introducing an administrative policy enforcement
point (A-PEP) and a Lock Manger to ensure the
safety and integrity of policy management. We have
implemented a prototype to enforce the extended
XACML-ARBAC profile and demonstrated the fea-
sibility of our framework. Our experimental study
shows that our solution has small performance over-
head and can be used for general policy management
systems.

One of our ongoing work is to refine the locking
granularity for policies. We are also working to-
wards enhancing the A-PEP functionality and creat-
ing a richer interface between the PEPs and A-PEP
for session management in distributed environments
such as Web Services.

References

[1] Core and hierarchical role based
access control (RBAC) profile of
XACML v2.0, http://docs.oasis-
open.org/xacml/2.0/access control-xacml-
2.0-rbac-profile1-spec-os.pdf.

[2] Core specification: extensible ac-
cess control markup language
(XACML), http://www.oasis-
open.org/committees/tc home php?wg abbrev=xacml.

[3] Java 2 platform standard edition 5.0,
http://java.sun.com/j2se/1.5.0/docs/api/.

[4] OASIS XACML v3.0 administration and del-
egation profile version 1.0, http://www.oasis-
open.org.

[5] Sun’s XACML implementation,
http://sunxacml.sourceforge.net/.

[6] W3c recommendations, http://www.w3c.org/.

[7] J. Barkley, A. Cincotta, D. Ferraiolo,
S. Gavrila, and D.R. Kuhn. Role based
access control for the world wide web. In
20th National Information System Security
Conference. NIST/NSA, 1997.

[8] J. Crampton. Understanding and develop-
ing role-based administrative models. In Pro-
ceedings of the ACM Conference on Computer

13

and Communications Security (CCS), Novem-
ber 2005.

[9] J. Crampton and L. Chen. Implementing
RBAC and ABRA using XACML. In submis-
sion.

[10] J. Crampton and G. Loizou. Administrative
scope and role hierarchy operations. In Pro-
ceedings of Seventh ACM Symposium on Ac-
cess Control Models and Technologies (SAC-
MAT 2002), June 2002.

[11] J. Crampton and G. Loizou. Administrative
scope: A foundation for role-based administra-
tive models. ACM Transactions on Information
and Systems Security, 6(2):201–231, 2003.

[12] D. F. Ferraiolo, J. Barkley, and D.R. Kuhn.
A role based access control model and ref-
erence implementation within a corporate in-
tranet. ACM Transactions on Information and
System Security, 1(2):201–231, February 1999.

[13] D. F. Ferraiolo, R. Sandhu, S. Gavrila,
D. Richard Kuhn, and R. Chandramouli. Pro-
posed NIST standard for role-based access con-
trol. ACM Transactions on Information and
System Security, 4(3):224–274, August 2001.

[14] S. Gavrila and J. Barkley. Formal specification
for role based access control user/role and role/-
role relationship management. In Third ACM
Workshop on Role Based Access Control, 1998.

[15] F. Siewe H. Janicke, A. Cau and H. Zedan.
Concurrent enforcement of usage control po-
lices. In Proceedings IEEE Workshop on Poli-
cies for Distributed Systems and Networks (Pol-
icy), July 2008.

[16] M. Haustein, T. Härder, and K. Luttenberger.
Contest of xml lock protocols. In VLDB ’06:
Proceedings of the 32nd international confer-
ence on Very large data bases, pages 1069–1080.
VLDB Endowment, 2006.

[17] H. Korth and A. Silberschatz. Database System
Concepts. McGraw-Hill, Inc, 1991.

[18] N. Li and Z. Mao. Administration in role based
access control. In ACM Symposium on Infor-
mAtion, Computer and Communications Secu-
rity (ASIACCS), March 2007.

[19] S. OH, R. Sandhu, and X. Zhang. An effec-
tive role administration model using organiza-
tion structure. ACM Transactions on Informa-
tion and Systems Security, 9(2):113–137, 2006.

[20] J. Park and R. Sandhu. The UCONabc usage
control model. ACM Transactions on Informa-
tion and Systems Security, 7(1):128–174, Febru-
ary 2004.

[21] R. Sandhu, V. Bhamidipati, and Q. Munawer.
The ARBAC97 model for role-based adminis-
tration of roles. ACM Transactions on Informa-
tion and Systems Security, 2(1):105–135, 1999.

[22] R. Sandhu, E. Coyne, H. Feinstein, and
C. Youman. Role based access control models.
IEEE Computer, 29(2):38–47, 1996.

[23] J. M. Spivey. The Z Notation: a reference man-
ual. Prentice Hall International Series in Com-
puter Science, 2nd edition, 1992.

A Formal Specification of Ad-
ministrative Operations

This appendix formally specifies the suggested ad-
ministrative operations in terms of pre-conditions
and post-conditions using the Z-notation [23]. A
value of a data item before the execution of a com-
mand (so called pre-state of a data structure) is de-
noted by a symbol, and its value after the execution
of the operation (i.e. the so called post state) is de-
noted by the same symbol followed by a prime (’).

AddUser(u): This command creates an RBAC
user u.

Pre-condition: u is not already a member of
the USER data set.
Formal Specification: u 6∈ User

Post-condition: The User data set is up-
dated. Initially, u is not assigned to any
role.
Formal Specification: User′ = User ∪
{u} ∧ U2R′ = U2R

DeleteUser(u): This command deletes an existing
user u from the USER data set. The command
is valid if only if u does not have any associated
roles.

Pre-condition: u is already a member of the
User data set and no roles are assigned to
u.
Formal Specification: u ∈ USER∧ 6 ∃r ∈
ROLE,M ⊆ ROLE : U2R(u,M) ∧ r ∈ U

Post-condition: The USER data set is up-
dated.
Formal Specification: USER′ = USER \
{u}

14

AddRole(r): This command creates a new role r.
The command is valid if and only if r is not
already a member of ROLE.

Pre-condition: r is not already a member of
ROLE.
Formal Specification: r 6∈ ROLE

Post-condition: The new role is added to the
role set ROLE set and U2R, R2P remain
unchanged. Furthermore, r cannot be as-
signed to a user until the permissions have
been granted to r.
Formal Specification: ROLE′ = ROLE ∪
{r} ∧ U2R′ = U2R ∧R2P ′ = R2P

DeleteRole(r): This command deletes an existing
role r from the ROLE data set.

Pre-condition: The role r is a member of the
set ROLE, no user is assigned to r and r
is not a part of the role hierarchy.
Formal Specification: r ∈ ROLE∧ 6 ∃u ∈
USER, M ⊆ ROLE : U2R(u,M)∧r ∈ M
∧ 6 ∃r′ ∈ ROLE(r ≤ r′ ∨ r′ ≤ r)

Post-condition: r is removed from the ROLE
data set.
Formal Specification: ROLE′ = ROLE \
{r}.

AssignUser(u,r): This command assigns a user u
to a role r.

Pre-condition: The user u is a member of the
USER data set. The role r is a member
of ROLE data set, and the role r is not
authorized for that u and is not a child of
another role assigned to u.
Formal Specification: [u ∈ USER ∧ r ∈
ROLE]∧ 6 ∃M ⊆ ROLES[r ∈ M :
U2R(u,M)]∧ 6 ∃r′ ∈ ROLE[r′ ≥ r ∧ r′ ∈
U ∧ U2R(u,M)].

Post-condition: The U2R is updated.
Formal Specification: [U2R(u,M) →
U2R′ = U2R \ (u,M) ∪ (u,M ∪
{r})] ∧ [6 ∃M ⊆ ROLESU2R(u, M) →
U2R′(u, {r})].

DeassignUser(u,r): This command deletes the as-
signment of the user u from the role r.

Pre-condition: The user u is a member of the
USER data set, the role r is a member of
ROLE data set and u is assigned to r.
Formal Specification: u ∈ USER ∧ r ∈
ROLE, ∃M ⊆ ROLE : r ∈ M ∧
U2R(u,M)

Post-condition: The U2R is updated.
Formal Specification: ∃M ⊆
ROLES,U2R(u,M) → U2R′(u,M \ {r})

GrantPermssion(r,(a,o)): This command grants
the permission to perform an action a on an
object o to a role r.

Pre-condition: The role r is a member of the
ROLE data set.
Formal Specification: r ∈ ROLE ∧ a ∈
ACTION ∧ o ∈ OBJECT

Post-condition: The R2P is updated.
Formal Specification: ∃N ⊆
PERMISSION : R2P (r,N) →
R2P (r,N ∪ {(a, o)})

RevokePermission(r,(a,o)): This command re-
vokes the permission to perform action a on an
object o from the set of permissions granted to
r.

Pre-condition: The role r is a member of the
ROLE data set. The permission(a,o) is as-
signed to the role r.
Formal Specification: r ∈ ROLE ∧ ∃N ⊆
PERMISSION : R2P (r,N{(a, o)})

Post-condition: The R2P is updated.
Formal Specification: ∃N ⊆
PERMISSION : R2P (r,N) → R2P ′ =
R2P \ (r,N) ∪ {(r,N \ {(a, o)})}.

AddEdge(rc, rp): This command makes the role rc

a child role of rp.

Pre-condition: rc and rp are members of the
ROLE data set, not related yet and adding
does not create cycles in the inheritance
hierarchy. SRole is not parent or child of
any role.
Formal Specification: rc, rp ∈ ROLE ∧
rp 6≤ rc ∧ rc 6≤ rp ∧ rp 6= SRole ∧ rc 6=
SRole ∧ [¬∃r, s ∈ ROLES(rc < r <
rP ∧ rp < s < rc)].

Post-condition: rp is the parent of rc.
Formal Specification: <′=< ∪{(rc, rp)}.

DeleteEdge(rc, rp): This command deletes an ex-
isting child-parent relationship rc < rp.

Pre-condition: rc and rp are members of the
ROLE data set and rp is a parent of rc.
Formal Specification: rc, rp ∈ ROLE ∧
[rc < rp].

15

Post-condition: The relationship rc < rp is
deleted.
Formal Specification:<′=< \{(rc, rP)}.

B Formal Specification of Ses-
sion Administrative Actions

CreateSession(u, s) , creates a new session s for
user u. U2S′= U2S \ {u 7→ U2S(u)} ∪ {u 7→
(U2S(u) ∪ {s})}.

DeleteSession(u, s) , deletes a given session of user
u.
U2S′=U2S \ {u 7→ U2S(u)} ∪ {u 7→ (U2S(u) \
{s})}.

ActivateRole(u, s, r) , adds role r as an active role
in a session s of user u. S2R′= S2R \ {s 7→
S2R(s)} ∪ {s 7→ (S2R(s) ∪ {r})}.

DeactivateRole(u, s, r) , deletes role r from the
active role set of session s of user u.
S2R′=S2R \ {s 7→ S2R(s)}∪ {s 7→ (S2R(s) \
{r})}.

16

