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Abstract
Configuration space (C-space) plays an important role
not only in motion planning but also in geometric model-
ing, shape and kinematic reasoning, and is fundamental
to several basic geometric operations, such as continuous
collision detection and generalized penetration depth
estimation, that also find their applications in motion
planning, animation and simulation. In this paper, we
developed a new method for constructing the boundary
of the C-space obstacles (C-obst) of polygons. This
method is simpler to implement and often more efficient
than the existing techniques. These main advantages are
provided by a new algorithm that allows us to extract
the Minkowski sum from the reduced convolution
of the input polygons. We also developed a method
for estimating the generalized penetration depth by
computing the distance between the query point and the
C-obst surface.

Keywords: Configuration space (3-d), Minkowski
sum (2-d), Geometric convolution (2-d), Generalized
penetration depth (2-d)

1 Introduction
The Configuration space (C-space) of a movable object
P is the enumeration of all configurations of P, and a
closed subset of the C-space that causes P to collide with
obstacles Q is called C-space obstacle (C-obst). It is the
mapping from the workspace obstacles to the C-obst that
has interested researchers since late 1970s.

It is well known that computing an explicit geometric
representation of C-space is intractable for objects with

high degree of freedom [8], and researchers have been
successfully solving difficult problems without comput-
ing the C-obst, e.g., using probabilistic motion planners
(see [18]). However, an explicit representation of C-
space remains important to many problems, including
problems that require complete motion planners (e.g.,
assembly/disassembly), CAD (e.g., Caine’s design of
shape [7]), virtual prototyping, object placement [1] and
containment [3]. In addition, C-space mapping is funda-
mental to basic geometric operations, such as continuous
collision detection and generalized penetration depth es-
timation. Since the early 1980s to the mid-1990s, many
researchers have proposed several methods to compute
and approximate various types of representation of the
C-obst. However, not until more recently have newer de-
velopments (e.g. the idea of configuration products by
Nelaturi and Shapiro [21]) been made toward improving
and generalizing these methods, partly because the need
for an explicit representation of C-obst diminished af-
ter the development of sampling-based motion planners.
See the survey done by Wise and Bowyer [26] for a com-
plete review on these earlier works and see Section 2 for
a brief overview of the related and recent works.

In this paper, we propose a new method for mapping
2-d polygons to their 3-d C-obst. Our method represents
the boundary (∂C-obst) of C-obst as a set of ruled sur-
faces. The proposed method is simpler to implement
than the existing methods in the literature [1, 6] and is
often more efficient. These main advantages are pro-
vided by a new algorithm that allows us to extract the
Minkowski sum (M-sum) boundary from the reduced
convolution (defined in Section 4.2) of the input poly-
gons. As a warm-up, we will first show that the C-obst
of convex polygons can be computed using the idea of
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convolution at critical orientations (in Section 4.1). We
then show that the M-sum of two simple non-convex
polygons can be computed efficiently using the filtering-
based approach from the reduced convolution. Finally,
the ∂C-obst of non-convex polygons is constructed by
updating the M-sum at the critical orientations (a super-
set of those of convex polygons). The time complexity of
our method is O(m3n3+bTcd) for polygons with m and n
vertices, where b is the number of boundaries of C-obst,
and Tcd is the time for a single collision query. We also
show that the resulting C-obst can be used for efficiently
estimating the generalized penetration depth by comput-
ing the closest feature between the query point and the
ruled surfaces (Section 5.2).

2 Related Work
The idea of C-space mapping is first proposed by
Lozano-Pérez [20]. His original idea was to construct
the C-obst by slicing it at a predefined resolution along
the rotational axis, and each slice can be computed as the
Minkowski sum (M-sum)

−P⊕Q = {−p+q | p ∈ P,q ∈ Q} (1)

of the robot P and the workspace obstacles Q. To con-
nect two consecutive slices at θ and θ ′, Lozano-Pérez
proposed to use the swept volume (area) of P rotating
from θ to θ ′ to replace P in Eq. 1.

Since then, more techniques and representations (in-
cluding grids [17], bounding shapes [27], analytical
functions [1, 6], and semi-algebraic set [10, 8]) have been
proposed, mostly in the context of solving motion plan-
ning problems. Note that the mapping techniques for
free-flying robots and fixed-base articulated (manipula-
tor) robots are very different. Since this paper focuses on
free-flying robots, for readers interested in the manipu-
lator, please refer to the work by Branicky and Newman
[4], by Hwang [16], and by Ward and Katupitiya [24] for
more recent work on this topic.

Among all these techniques, the slicing-based strategy
remains quite popular due to its simplicity. Notably, Zhu
and Latombe [27] generalized the idea to use the outer
and inner swept areas (which are the union and the in-
tersection of the areas swept out by the robot) to bound
∂C-obst. Kavraki [17] proposed a method to construct
C-obst by computing the convolution of two polygons
(represented as pixels) using the Fast Fourier Transform
algorithm. Curto and Moreno [9] extended Kavraki’s
method to handle both free-flying and articulated robots.
Later, Sacks and Bajaj [22] proposed a method to gen-
erate the slices for curved 2-d objects at fixed intervals.
There are two major drawbacks of the slicing-based ap-
proaches. First, computation is wasted. There are sig-

nificant performance improvements that can be gained
by exploiting the temporal and spatial coherence. Sec-
ond, the M-sums are normally separated by a fixed rota-
tional resolution, which is defined empirically. A better
approach is to identify “events” where the structure of
the M-sum changes.

Thus, another line of research focused on the exact
representation either the boundary using analytic func-
tions or the volume using semi-algebraic set. For ex-
ample, Donald [10] dealt with motion planning problem
with a 3-d free-flying robot amongst polyhedral obsta-
cles. Both robot and obstacles are composed of a set
of convex shapes; the C-obst are therefore a set of 6-d
contact surfaces. The intersections of these contact sur-
faces are computed to help the robot move along the in-
tersection or slide from one surface to another. Another
example is the work done by Halperin et al. [14]. They
studied the motion planning problem of a L-shaped robot
(composed of two line segments) among point obstacles.
In this setting, the C-obst is a set of rule-surfaces. The
simplicity of the problem allows them to construct the
complete C-obst by identifying all critical orientations to
determine the changes of the line segment arrangements.
In these techniques, the methods proposed by Avnaim et
al. [1] and Brost [6] are the ones closely related to our
work.

Avnaim et al. [1] proposed to compute ∂C-obst using
contact regions. A contact region is computed between a
vertex of P and an edge of Q or vice versa. Their method
computes sets of translations that result in contact be-
tween the polygons, excluding regions which represent
non-free contacts (formed by the rotating parallelogram
regions) by means of set-theoretic differences. This rota-
tion/intersection space is computed as analytic functions
that are put into one-to-one correspondence with the ac-
tual configuration space to compute the general contact
regions for a given contact. Their method pre-computes
a discrete set of contacts, and then computes the contact
regions for each contact, which become the facets of the
boundary. Though M-sums are not used in this method, a
similar configuration space is produced. Their algorithm
has time complexity O(n3m3 lognm) for polygons with n
and m vertices.

Similar to Avnaim et al. [1], Brost [6] also consid-
ered all possible contacts, and used local information be-
tween the contact vetex/edge pair to compute the contact
regions. Each contact region is a ruled surface. For non-
convex polygons, part of the contact region may belong
to the interior of the C-obst. Therefore, all contact re-
gions are tested for intersection. Finally, each contact
region is trimmed around the boundary created by the in-
tersections and the remaining area is part of the ∂C-obst.

Note that in both methods a contact region can have
zero area on C-obst. This means that the entire contact
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region is trimmed. In fact, even for simple shapes (for
example the star shape shown in Fig. 2), many contact
regions will not make to the surface of C-obst. As a
result, significant computation is wasted on finding the
intersections between contact regions (which is a com-
putational expensive operation). Our method avoids this
problem and accelerates the mapping process (1) by re-
ducing the number of contact regions and (2) by detect-
ing and resolving the intersection in the two dimensional
space. Another disadvantage of these approaches is that
no clear means for computing the distance (e.g. for pen-
etration depth estimation) is presented or easily derived
from the representations.

Recently, Varadhan and Manocha [23] also proposed
an approach that generates polygonal meshes to approx-
imate the ∂C-obst using a marching cube technique with
adaptive cell to extract the iso-surface from a signed
distance field. The construction of the non-directional
backprojection for solving compliant motion planning
problems under uncertainty is also similar to the C-
space mapping. Donald [11] and Briggs [5] have pro-
posed ways to accelerate the construction by identifying
the critical points of topological changes of the back-
projections with respect to the visibility graph of the
workspace. The main difference is that rays, instead of
line segments, are used in these computations.

3 Preliminaries

In this section, we define the notations that will be used
throughout the paper. We assume that P is movable while
Q is stationary. Both P and Q are simple polygons com-
posed of n and m (counterclockwise) ordered vertices,
respectively. Our approach is based on computing and
updating the M-sums using convolution. The convolu-
tion of two shapes P and Q, denoted as P×Q, is a set
of line segments in 2-d that is generated by “combin-
ing” the segments of P and Q [13]. One can think of the
convolution as the M-sum that involves only the bound-
ary, i.e., P⊗Q = ∂P⊕ ∂Q. It is known that the convo-
lution forms a superset of their M-sum boundary [12],
i.e., ∂ (P⊕Q) ⊂ P⊗Q. If both P and Q are convex,
∂ (P⊕Q) = P⊗Q. Otherwise, it is necessary to trim
the line segments or the facets of the convolution to ob-
tain the M-sum boundary. Recently, Wein [25] shows a
robust and exact method based on convolution for non-
convex polygons. To obtain the M-sum boundary from
the convolution, his method computes the arrangement
induced by the line segments of the convolution and
keeps the cells with non-zero winding numbers. A more
detailed review on the M-sum can be found in our previ-
ous work [19].

An edge pi pi+1 of P and a vertex q j of Q (or
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Figure 1: (a) Two convex polygons P and Q shown with
the edges outward normals. (b) Events for ~n1, ~n2, and ~n3
(from top to bottom) when P rotates counterclockwise
from 0 to 2π . For example, when P rotates π/4, ~n1 and
~m2 (and ~n2 and ~m3) become aligned and two events are
issued.

vice versa) form a segment of P ⊗ Q if −−−−→pi pi+1 ∈
[−−−−→q j−1 q j ,

−−−−→q j q j+1 ), and we say that pi pi+1 and q j are com-
patible. Equivalently, pi pi+1 and q j are compatible if the
outward normal of pi pi+1 lies between the normals of
the incident edges of q j. For example, in Fig. 1(a), p3 p1
and q1 are compatible. When rotation is considered, the
edges of P are rotated about a fixed center, c, and an
edge/vertex pair can become alive if they are compati-
ble and dead otherwise. Without loss of generality, we
assume that P rotates counterclockwise about c, and c is
the world origin, so that cx = cy = 0.

4 Our Methods

We will first discuss the case of convex polygons in Sec-
tion 4.1 and then extend the ideas the handle non-convex
polygons in Section 4.2.
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4.1 C-obst of Convex Polygons
Given two convex polygons P and Q (see Fig. 1(a)), an
edge of their convolution is the sum of an edge pi pi+1 of
P and a vertex q j of Q or vice versa. We let θ0 be the ori-
entation when an edge/vertex pair is alive until its death
at θ1. Then, each edge/vertex pair forms a parameteriz-
able ruled surface (i.e., a contact region) between θ0 and
θ1. Let pi = (x0,y0) and pi+1 = (x1,y1). We take a vector
~v = −−−−→pi pi+1 and a vector~t =

−−→
Oq j , where O is the world

origin. Then the surface defined by the pair (pi pi+1 and
q j) is parameterized as:

SR(r,θ) =

 (y0 + rvy)cosθ − (x0 + rvx)sinθ + tx
(x0 + rvx)cosθ +(y0 + rvy)sinθ + ty

wθ

 ,

(2)
where r∈ [0,1], θ ∈ [θ0,θ1) and w is the weighting factor
of the rotation.

Surfaces are also formed by the edges of Q as P ro-
tates. Similarly, we let q j = (x0,y0) and q j+1 = (x1,y1).
We take the vector~v=−−−−→q j q j+1 and a vector~t =

−−→
O pi . The

surface for the pair pi and q jq j+1 is parameterized as:

SN(r,θ) =

 y0 cosθ − x0 sinθ + tx + rvx
x0 cosθ + y0 sinθ + ty + rvy

wθ

 . (3)

In order to support operations like distance query
and line intersection, each surface is stored as a tuple
(p,q,θ0,θ1), where p and q are the indices to the ver-
tices and edges of P and Q, and θ0 and θ1 define the birth
and death orientations of the surface. To construct the
surfaces in this representation, we use a sweeping algo-
rithm that updates the convolution at critical orientations
(events). Fig. 1(b) shows all the events for each edge of
P. To handle each event, we delete two segments from
the convolution and create two new segments. For ex-
ample, at event ~n3m1 in Fig. 1(b), the pair p3 p1 and q1
and the pair p1 and q1q2 are both dead and the pair p3 p1
and q2 and the pair p3 and q1q2 both become alive. Note
that these changes are local, therefore each event can be
handled in a constant time, and there can be at most mn
events. Moreover the events for each edge of P is simply
an offset copy of the normals of Q, so all (sorted) events
can be built in linear time. Therefore, the entire computa-
tion takes only Θ(nm) time. This is much more efficient
than computing each convolution separately, which takes
Θ(n2m+nm2) time.

For two convex polygons, the surfaces trivially form
∂C-obst, as the surfaces will never penetrate into the in-
terior of the C-obst. However, in the case where one or
both of the inputs are non-convex, this is not guaranteed
to be the case. This poses fundamental problems in com-
puting the penetration depth on such a solid; for example,

the closest point on a non-manifold hull to a query point
inside the solid may consequently still be on the interior
of the solid.

4.2 C-obst of General Simple Polygons

We will discuss how to compute the M-sum for polygons
without rotation first in Section 4.2.1 and then generalize
the approach to consider rotation in Section 4.2.2.

4.2.1 The M-sum of General Simple Polygons

We propose a simple filtering-based method to com-
pute the M-sum of simple polygons. Our method can
also be considered as a type of convolution-based ap-
proach. However, unlike Wein’s method [25], the pro-
posed method avoids computing (1) the complete convo-
lution, (2) the arrangement of the segments of the convo-
lution, and (3) the winding number for each arrangement
cell.

Briefly, our method first computes a subset of the seg-
ments that is from the convolution of the inputs, and
identifies closed loops that are non-overlapping and ori-
entable. These loops form potential boundaries of the
M-sum and are further filtered by analyzing their nest-
ing relationship. Finally, the remaining boundaries are
filtered by checking the intersections between the input
polygons placed at the configurations along these loops.
Fig. 2 illustrates these steps.

In the first step of the algorithm, we compute a subset
of the segments of the convolution based on the follow-
ing simple observation.

Observation 4.1. Given a convolution segment s = eP⊕
vQ of an edge eP and a vertex vQ, if vQ is a reflex vertex,
s must not be a boundary of the M-sum of P and Q. This
observation remains true if s = vP⊕ eQ and vP is reflex.

Proof. Sketch. Because s must incident to the segments
S formed by the end points of eP and the edges inci-
dent to vQ, the incident vertex of s and S is locally non-
manifold. Moreover, by definition of convolution, s must
be enclosed by the turning range of S . Therefore, s can-
not be on the boundary of the M-sum. �

Figs. 2(b) and 2(c) show an example of the difference
between the complete convolution and the reduced con-
volution. By definition, the number of edges that are
compatible with a reflex vertex must be greater than that
of a convex vertex. Due to this, the number of segments
filtered by Observation 4.1 is significant, and the size of
the problem that we have to consider later is greatly re-
duced, in particular when the number of the reflex ver-
tices is large. See the more detailed analysis in Section 5.

4



(a) input/output (b) convolution (c) subset of the convolution

(d) segment normals (e) orientable loops (f) incorrect loop

Figure 2: Steps for computing the M-sum of two simple polygons. In (a), the boundary of the M-sum of a star and a
slightly rotated copy of it is shown.

Now, since the segments that we will be working with
are no longer a complete convolution, we cannot apply
the idea of computing the winding number for each ar-
rangement cell to extract the M-sum boundary as done
in [25]. Alternatively, we proceed by defining two addi-
tional filters.

Observation 4.2. we observe that the boundary of the
Minkowksi sum must be an orientable loop (if it encloses
an area, either positive or negative).

We say that a loop is orientable if all the normal direc-
tions of the edges in the loop are all either pointing in-
ward or outward. Note that the segments we considered
are edges from P and Q, therefore, they are directional
(as vertices in P and Q are ordered) and include normal
directions pointing outward (to P or Q). Fig. 2(d) shows
the normals of the segments. Therefore, given two adja-
cent segments s = {u,v} and s′ = {v,u′} sharing an end
point v, we can check if s and s′ belong to an orientable
loop if

−→uv ×~ns =
−→
vu′ × ~ns′ , (4)

where ~nx is the normal vector of segment x, and × is the
cross product. If s and s′ satisfy Eq. 4, we say they are
compatible segments.

To extract all orientable loops, we compute the inter-
sections of the segments and split all segments at the in-
tersections. A loop is then traced by starting at an ar-
bitrary segment s that has not been considered and then
iteratively including compatible segments adjacent to s.
Note that there can be multiple compatible segments ad-
jacent to s and all are incident to a single point v. This
problem is in fact easy to handle since all M-sum bound-
aries must be manifold. Thus, we simply pick the seg-
ment that makes the largest clockwise turn from s among
all the incident segments. Fig. 2(e) shows the loops gen-
erated by this step.

Observation 4.3. The loops must obey the nesting prop-
erty, i.e., the loops that are directly enclosed by the ex-
ternal loop must be holes and will have negative areas,
and the loops that are directly enclosed by the holes must
have positive areas.

This is because all loops we generated are all sepa-
rated (i.e., they don’t intersect or touch) due to the man-
ifold properties. The nesting property can be determined
efficiently using a plane sweep algorithm, e.g., [2], in
O(n logn) time for n segments. This filter removes the
inner loop in Fig. 2(e) because it has a positive area.

So far, we have introduce three quite efficient filters
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based on Observations 1 to 3. Unfortunately, not all the
remaining loops are the M-sum boundaries. For exam-
ple, the hole in Fig. 2(e) is a false loop. Therefore, we
will have to resort to collision detection to remove all the
false loops. That is, we will use the close relationship
between the M-sum boundary and the concept of “con-
tact space” in robotics. Every point in the contact space
represents a configuration that places the robot in contact
with (but without colliding with) the obstacles. Given a
translational robot P and obstacles Q, the contact space
of P and Q can be represented as ∂ ((−P)⊕Q), where
−P = {−p | p ∈ P}. In other words, if a point x is on the
boundary of the M-sum of two polygons P and Q, then
the following condition must be true:

(−P◦+ x)∩Q◦ = /0 ,

where Q◦ is the open set of Q and (P+ x) denotes trans-
lating P to x. Fig. 2(f) shows a hole loop that passes all
the filters except the last filter.

Although there are many methods to optimize the
computation time for collision detection, collision de-
tection is more time consuming than the previous filters.
Fortunately, it is easy to show that only a single collision
detection is needed to reject or accept a loop based on the
following lemma.

Lemma 4.4. All the points on a false hole loop must
make P collide with Q.

Proof. Sketch. Since each loop must belong a cell from
the arrangement of the segments in the complete convo-
lution, and all vertices in each cell must to have the same
winding number according to [25]. �

We will leave the discussion of time complexity until
Section 5, and talk about using this method to compute
C-obst next.

4.2.2 Handling Rotation

Similar to the algorithm that we proposed for comput-
ing the ∂C-obst for convex shapes, the algorithm for the
∂C-obst for non-convex shapes also consists of Θ(mn)
events for creating and deleting each contact patch. Each
patch is generated by a segment (with varying length)
in the reduced convolution. In addition to these events,
the intersection of line segments (from the reduced con-
volution) also changes during the rotation of P, and
these changes can affect the topological structure of the
M-sum. Therefore, the second type of event for a given
segment s is a list of rotations {θi}where the intersection
status of s changes (e.g., s starts to or stops intersecting
with a segment) when P rotates from 0 to 2π . There can
be O(C2) such events, where C is the size of the reduced
convolution.

The data structure that we use for representing the sur-
face is also a tuple (p,q,θ0,θ1,s1,s2), where p, q, θ0,
and θ1 are the same as the convex case, and s1 and s2 are
indices to the convolution segments intersecting with the
segment between θ0, and θ1. We use the same sweep-
ing algorithm to construct this data structure. To handle
the events where a segment s is created (or deleted), we
simply add (or remove) s to the reduced convolution and
add (or remove) the intersections due to s. To handle the
second type of event, intersections due to the events are
updated. For both events, we check if the event site (i.e.,
the new or dead intersection) is locally orientable (i.e.,
Eq. 4) and manifold to decide if a loop (of constant size)
should be created or deleted as described above. Note
that we will skip the last two filters (i.e., the polygon
nesting and the collision detection filters) during sweep-
ing. Both filters will only be needed at the end of the
sweep to reject the false 3-d hole boundaries. Similarly,
we can show that only one (2-d) point is needed to verify
each 3-d boundary; the proof is similar to Lemma 4.4.
An example of the results generated by our method is
shown in Fig. 4.

In the rest of this section, we will briefly discuss how
to detect the second type of event. Although each of
these events can be found in constant time, the computa-
tion is quite involved and requires us to classify the types
of edges and surfaces, i.e., SR and SN in Eqs. 2 and 3,
since they move (and rotate) in different ways.

Consider two rotating edges in the convolution e1 and
e2 that may intersect at some θ . We let θ0 be the first
value of θ for which e1 and e2 are both alive. An
edge ei lays along a line Li whose equation is yi(θ) =
mi(θ)xi(θ)+ bi(θ). The intersection (x(θ),y(θ)) of Li
can be computed so that

x(θ) =
b2(θ0)−b1(θ)

m1(θ)−m2(θ0)
,

where bi(θ) = x0 cosθ + y0 sinθ + ty−mi(θ)(y0 cosθ −
x0 sinθ + tx) and mi(θ) =

1+mi tanθ

mi−tanθ
, and mi is the initial

slope of Li. It is trivial to compute y(θ) from x(θ). Then
from the intersection of the lines, we solve for θ such
that the intersection (x(θ),y(θ)) will fall into the range
of the line segments e1 and e2. This is done by classi-
fying the segments into three cases that involving rotat-
ing and non-rotating edges. We say that the edges that
create SR surfaces are rotating edges and the edges that
create SN surfaces are non-rotating edges. Therefore e1
and e2 can be either (1) both rotating edges, (2) both non-
rotating edges or (3) a rotating and non-rotating pair. In
certain cases, the segments can be checked quickly to
determine if they ever intersect. The details are shown in
the Appendix.
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5 Experimental Results, Applica-
tion and Discussion

5.1 Results

We have implemented the proposed method in C++. In
this section, we will show some of the results that we
obtained from this implementation using the examples
shown in Fig. 3. In these examples, there are two con-
vex polygons and 9 non-convex polygons. The number
of the vertices of each polygon is also shown. Some of
these models are inspired by those in [15, 25]. All the
experiments are performed on a PC with Intel CPUs at
2.13 GHz with 4 GB RAM.

In Table 1, we show the computation time for con-
structing ∂C-obst using the proposed method. The run-
ning times range from a fraction of a second to close to
an hour. Since we have no other implementation to com-
pare to and our implementation is highly unoptimized
(for example, our collision detection takes Θ(mn) for
each collision check), it is important to look at these run-
ning times relatively. Therefore, we list the the number
of ruled surfaces before trimming (Ns), the number of
ruled surfaces on the final ∂C-obst (ns), and the number
(external and hole) of C-obst boundaries (nb). From the
values of Ns, ns, and nb, it is clear all of them can af-
fect the computation time. For example, both “star/star”
and “grate 1/grate 2” take about the same time to com-
pute, but the number of ruled surface patches in “grate
1/grate 2” is half of that in “star/star.” Therefore, it is the
large nb in “grate 1/grate 2” that increases the computa-
tion time. Moreover, it is clear that the reason that the
“dog/bird” takes nearly an hour to finish is because of
Ns, which is about 40 times the Ns of “grate 1/grate 2”
and “grate 3/grate 4.” One single example that we can-
not explain from Table 1 is the time difference between
“grate 1/grate 2” and “grate 3/grate 4.” Both Ns and ns
are smaller and nb is larger in “grate 1/grate 2.”

Fortunately, we can explain this in Table 2. In Ta-
ble 2, we show the number of segments and the number
of intersections in both complete convolution (N⊗ and
I⊗, resp.) and reduced convolution (n⊗ and i⊗, resp.) at
the orientation shown in Fig. 3. The reason that “grate
1/grate 2” takes less time to compute than “grate 3/grate
4” does is because “grate 1/grate 2” tends to have smaller
i⊗.

An important observation from Table 2 is the signif-
icant difference between N⊗ and n⊗. As we have men-
tioned earlier, when the full convolution is used, a large
number of ruled surfaces will be generated, and many of
these surfaces will never make to the surface of ∂C-obst.
As a result, much computation is wasted on computing
the intersections between these surfaces. To make the
problem worse, the values for I⊗ and i⊗ show that these

(a) M-sum

(b) C-obst

Figure 4: The M-sum and C-obst of grate 1 and grate 2
in Fig. 3. The darker (lighter) patches in (b) are SR (SN)
surfaces. More results can be found in the Appendix.

unnecessary surfaces produce drastically more intersec-
tions that those left in the reduced convolution. This dif-
ference can also be observed in Fig. 2. This property dis-
tinguishes our method from the existing methods [1, 6],
which consider all contact regions (surfaces). Therefore,
we believe that our method is more efficient.

5.2 Application: Generalized Penetration
Depth Estimation

The parameterizations in Eqs. 2 and 3 also yield dis-
tance functions in r and θ which can be used to find
the minimum distance to a given facet relatively eas-
ily. Let p be a query point and let f (r) = (x0 + rvx),
g(r) = (y0 + rvy), F(r) = g(r)cosθ − f (r)sinθ , and
G(r) = f (r)cosθ + g(r)sinθ , then the square distance
d(r,θ , p) for the rotating edges:

d(r,θ , p)= (F(r)+tx− px)
2+(G(r)+ty− py)

2+w2(θ− pz)
2

If we fix r, then d is a very well-behaved sinusoid, and
while there does not seem to be a closed-form solution
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(a) (b) circle (32) (c) sewing (10) (d) star (44) (e) hand (57) (f) grate 1 (30)

(g) grate 2 (34) (h) (i) grate 4 (43) (j) dog (145) (k) bird (275)

Figure 3: Examples used in the experiments. The numbers in the parentheses are the size of the polygon. (a) bar (4),
(h) grate 3 (24). Some of these models are inspired by those in [15, 25].

Table 1: Experimental results for C-space mapping. Here, Ns is the number of ruled surfaces before trimming, ns is
the number of ruled surfaces on ∂C-obst, ns is the number (both external and hole) C-obst boundaries, and t is the total
computation time in seconds.

P/Q bar/circle bar/sewing star/star star/hand grate 1/grate 2 bar/grate4 grate 3/grate 4 dog/bird
t 0.1 0.05 4.9 6.8 4.9 0.3 21.7 3350.6

Ns 256 68 2288 3286 1028 244 991 39145
ns 256 82 3499 3034 4097 1027 1947 18500
nb 1 1 1 1 126 17 39 1

for the global minimum, it is easy to find the minimum
using simple gradient descent. If by contrast we fix θ ,
then d is simply quadratic in r, and finding the global
minimum on [0,1] is also quite easy.

Computing d(r,θ). In the case of SR (see Fig. 5(a)),
the regularity of the surface of the distance function al-
lows us to easily calculate a global minimum by finding
θ values for the global minimums at r = 0 and r = 1 by
gradient descent, then finding the global minimums for
r when we fix θ at the values found by fixing r initially.
Picking the minimum of the yielded values gives us the
global minimum of the distance function, as well as yield
r and θ values which explicitly give us the closest point
on the facet (see Fig. 5(c)). The distance function follows
similarly for SN (see Fig. 5(b)), except that because the r
term is independent of the rotation, the surface is some-
what more regular. We still end up with no clear closed-
form solution for the sinusoid however, so we must solve
for the minimum using gradient descent as above.

In the case of non-convex polygons, a surface may
have a left-r-bound function rmin(θ) and a right-r-

bound function rmax(θ) that describe how its non-
manifold intersections move as θ changes, so that
its associated facet is r-bounded at a given θ by
[max{0,rmin(θ)},min{1,rmax(θ)}]. These same r-
bounds apply to the distance function. As a consequence,
finding seed values for r and θ in the general case is
more complicated. To deal with this issue, we choose
to seed at regular intervals. Let segment e have its birth
at θ0 and death at θ1, then seed values are taken for
θ ∈ {k |(θ0−θ1)|

8 : k ∈ Z,0 ≤ k ≤ 8}. For each of these
θ values, we seed at max{0,rmin(θ)}, min{1,rmax(θ)},
and (max{0,rmin(θ)}+min{1,rmax(θ)})/2± ε , just to
the left and right of the medial axis of the r-bounds.

This gives us a total of 36 seeds per surface. We use
so many seeds largely because the r-bounds are irregu-
lar enough that some descents may get caught along the
boundary. This spread however provides good coverage.
Because of the regularity of the surface itself, a particu-
lar iteration of the gradient descent tends to converge in
a small number of iterations and so the total cost of the
gradient descent is relatively low in any case.

8



Table 2: Experimental results for M-sum computation. Here, N⊗ is the number of segments in the convolution, n⊗
is the number of segments in the reduced convolution, I⊗ is the number intersections in the convolution and i⊗ is the
number intersections in the reduced convolution.

P/Q bar/circle bar/sewing star/star star/hand grate 1/grate 2 bar/grate4 grate 3/grate 4 dog/bird
N⊗ 36 42 1608 1689 1394 191 1162 38342
I⊗ 36 33 1300 2758 5243 131 10136 255635
n⊗ 36 30 382 281 469 92 400 2921
i⊗ 36 22 257 297 1204 77 1544 3742
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Figure 5: (a) An example distance function for SR, c = (0,0), p = (10,−5,π), v = (1,4), x0 = 1,y0 = 1. (b) An
example distance function for SN , same parameters as (a) except that v is elongated. (c) An example gradient descent
for the sinusoid portion zoomed in on the gradient descent. The descent converges in just 5 iterations (two iterations
in which only step-size is adjusted), and in this case finds not only the local minimum for the sinusoid at rmax, but also
the global minimum.

Computing penetration depth. Given a configura-
tion p of P, we would like to find the closest feature
on ∂C-obst. This problem can be decomposed into two
steps: (1) find the closest surface f to p and (2) find
the closest point on f to p. We have already proposed
a method for the second step. For finding the closest sur-
face, ideally, we can precompute the Voronoi tessellation
of the space using each surface as a site, and then find
which cell q is in. However, both computing the tes-
sellation and finding the enclosing cell seem to be dif-
ficult. The only properties that we know are that the
boundaries of the tessellation are also ruled surfaces, and
each cell forms a single connected component. Based
on these properties, we propose a sampling-based ap-
proach. Initially, a set of uniformly distributed samples
are taken, and the closest surface for each sample point
is computed offline using a brute-force search (through
all surfaces). Each query point is then categorized by its
k nearest neighbors, and only the n ≤ k surfaces associ-
ated with those neighbors are checked. For the results in
Table 3, we set k = 10 experimentally. For convex poly-
gons, this approach yields a very high rate (98.3% for
bar/circle) of identifying the actual closest facet and low
average error values (< 10−5) when a facet other than

the closest is chosen for distance comparison. For non-
convex polygons, this approach still yields very high rate
(> 95.7%) of identifying the actual closest facet and low
average error values (< 10−3). The accuracy and error
are estimated by comparing to the results of the brute
force approach.

5.3 Discussion

We will analyze the time complexity of the proposed
method and discuss the extension of our method to han-
dle 3-d convex polyhedra.

Complexity Analysis. When P and Q have n and m
vertices which include n′ and m′ reflex vertices, respec-
tively, there will be 2mn segments in the complete con-
volution; in the reduced convolution there are at most
(m−m′)n+ (n− n′)m segments. That is, the arrange-
ment of the reduced convolution is at least 4 times less
complex than that of the complete convolution when
n′ = 1/2n and m′ = 1/2m. Thus, the reduction will
further reduce the complexity of the arrangement of 3-
d rule-surface patches by at least 8 times. Note that
this analysis is based on the assumption that a convex
vertex is compatible with Θ(n) edges and in the worst
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Table 3: Results for penetration depth estimation. Here ε is the avg. distance error, t is the avg. query time over 1000
queries, and T is the time to pre-compute the distances for all samples.

P/Q bar/circle bar/sewing star/star grate 1/grate 2
ε 0.000004 0.00067 0.0004 0.0001
t 7.8ms 6.5ms 8.5ms 12.0ms
T 50.1s 80.1s 398.2s 862.2s

case that each segment will intersect all the other seg-
ments. In the examples that we have above, the differ-
ence between the reduced and complete convolutions is
more significant (e.g., “star/star” and “dog/bird”). The
time complexity for computing the M-sum of P and Q is
O((mn+ I) log(mn+ I)+ `Tcd), where I = O(m2n2) is
the complexity of the arrangement of the reduced con-
volution, ` is the number of loops, and Tcd = O(mn)
is the collision detection time in our implementation.
The time complexity for computing the C-obst of P and
Q is O

(
(mn+ I) log(mn+ I)+m2n2Te +bTcd

)
, where b

is the number of (hole) boundaries in the C-obst, and
Te =O(mn) is the time for handling each event (i.e., find-
ing all new/dead intersections and update the M-sum lo-
cally near the intersections).

C-obst of Convex Polytopes. Computing the C-obst
of 3-d polytopes is similar but involves more steps in cre-
ating and handling events. An important observation is
that the event list of each edge of P (see Fig. 1(b)) is
simply an offset of Q’s Gaussian map! Similarly, given
polytopes P and Q, the events for each facet of P can be
constructed by rotating Q’s Gaussian map. In 3-d, the
facets of the M-sum can only come from two sources:
f v-facets, generated from a facet of P and a vertex of
Q or vice versa, and ee-facets, generated from a pair of
edges from P and Q, respectively. Similar to polygons,
a M-sum facet ( fM) is valid if the orientations of fM’s
primitives (i.e., a vertex-facet pair or an edge-edge pair)
from P and Q match each other, and the events occur at
these boundary conditions, where the M-sum structure
changes. Finally, all the events can be enumerated by
overlaying all the rotated Gaussian maps (one for each
P’s facet).

The resulting data structure for representing the C-obst
of polytopes is a list of facets. Each facet fM is a tu-
ple (p,q,r), where p and q are the indices to the ver-
tices, edges or facets of P and Q, and r is a convex re-
gion (in the Gaussian map) in which fM remains valid.
One can show that the complexity of this data structure
is O(n2m+nm2), where n and m are the complexities of
P and Q. If a brute force method is used to enumerate all
possible M-sums, it will take O(n3m2 +n2m3).

6 Conclusion and Future Work

We proposed a new method for constructing ∂C-obst.
Our methods takes O(m3n3 +bTcd) for polygons with m
and n vertices and C-obst with b boundaries, where Tcd is
the collision detection time. We believe that this method
is easier to implement and more efficient than the exist-
ing methods. The main step in our method is the com-
putation of the Minkowski sum (M-sum) which is based
on the ideas of reduced convolution, orientable and man-
ifold loops, and polygon nesting and collision detection
filters (discussed in Section 4.2). Then the M-sum is up-
dated at each critical orientation to construct ∂C-obst.
The main efficiency gain is that there are significantly
fewer segments and surfaces produced compared to the
existing methods. The evidence supporting this observa-
tion was shown and discussed in Section 5.

We consider this work as the first step toward a more
interesting and challenging problem: computing the
C-obst of 3-d polyhedra. Donald [10] and several oth-
ers have studied the problems, but we believe that there
is still room for significant improvement. For example,
most of these methods depends on convex decomposi-
tion. As we have discussed above, computing C-obst for
convex polyhedra is not difficult. However, it is unclear
how to deal with non-convex polyhedra without using 3-
d convex decomposition, which is notoriously slow. We
hope to provide an answer to this by using the ideas from
the recent development in M-sum and the ideas from this
paper.
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Appendix

Compute the intersection of two rotating line seg-
ments. Consider two edges in the convolution e1 and
e2 that may intersect at some θ . We let θ0 be the
first value of θ for which e1 and e2 are both alive.
An edge ei lays along a line Li whose equation is
yi(θ) = mi(θ)xi(θ) + bi(θ). To compute the change
in intersection as e1 changes with θ but e2 remains
stationary, we compute:

y1(θ0) = y2(θ) = m1(θ)x1(θ) + b1(θ) =
m2(θ0)x2(θ0)+b2(θ0)

for x1(θ) = x2(θ0) = x(θ) = b2(θ0)−b1(θ)
m1(θ)−m2(θ0)

.

If we then hold the transformation of e1 stationary
and compute the intersection for the transformation
of e2, by similar computation we yield the composite
computation: x(θ) = b1(θ)−b2(θ)

m2(θ)−m1(θ)
. It is clear from this

that the order of transformations is inconsequential,
as it should be. In order to compute x(θ) however,
we need to compute b(θ) and m(θ) for any edge e.
To compute b(θ), we use the point-slope form of the line.

y(θ)−Sy(0,θ) = m(θ)(x(θ)−Sx(0,θ))

y(θ) = m(θ)x(θ) − m(θ)Sx(0,θ) + Sy(0,θ) =
m(θ)x(θ)+b(θ)

b(θ) = Sy(0,θ)−m(θ)Sx(0,θ)

When e is a non-rotating edge, m(θ) is a constant m,
and Sy(0,θ) = SNy(0,θ), Sx(0,θ) = SNx(0,θ):

b(θ) = x0 cosθ +y0 sinθ +ty−m(y0 cosθ−x0 sinθ +tx)

The derivation follows similarly when e is a rotating
edge, except that m(θ) is not constant, and so:
m(θ) =

SRy(1,θ)−SRy(0,θ)
SRx(1,θ)−SRx(0,θ)

= 1+m0 tan(θ)
m0−tan(θ)

b(θ) = x0 cosθ + y0 sinθ + ty − m(θ)(y0 cosθ −
x0 sinθ + tx)

b(θ) = x0 cosθ +y0 sinθ + ty−
(

1+m0 tan(θ)
m0−tan(θ)

)
(y0 cosθ −

x0 sinθ + tx)

Now that we have forms for m(θ) and b(θ) for both
types of edges, we can compute x(θ) for any pair of
edges, and the boundaries of a facet can be defined by
it. At each event point, the segment is split into parts
according to its intersections. We compute the θ bound-
aries for each intersection point, and these must become
a second type of event: when an intersection is born, the

facet must be split and culled again–when an intersection
dies, parts of the facet must be merged and restored.

Computing these θ boundaries however is non-trivial.
We cannot easily solve for them from x(θ), as the x and
y ranges of the segments vary depending on the segment
and its orientation, so for each type of edge, we look to
compute the function r(θ), which gives us the r-value for
a given intersection at θ . The birth and death of intersec-
tions between two segments on θ ∈ [0,2π) can only oc-
cur at endpoints of at least one of the two segments unless
those two segments become colinear, in which case the
intersection will still occur at the overlapping endpoints
at birth and disappear at death at the same event.

Endpoints are at r = 0 and r = 1. If we solve r(θ)
for θ at the end-points for both edges, the minimum θ -
value we find is the birth of the intersection, and each
subsequent θ -value alternates between death and birth,
respectively. We cull these according to the birth and
death events of the segments, leaving us with a list of
intersection events for these two segments. Note that it
is easier to solve for r = 0 than it is to solve for r = 1.
However, we can solve for r = 0 for both endpoints by
using −v instead of v, and picking the opposite endpoint
to use as the reference point (x0,y0) when we wish to
solve for r = 1 in the initial frame of reference.

To solve for r(θ) = 0, we set the parameterization of
the line’s x-coordinate equal to the intersection function
x(θ) when r = 0 and solve for θ :

x(θ)− y0 cos(θ)− x0 sin(θ)+ tx = 0 .

When both edges are non-rotating, then the equa-
tion simplifies to the form: α cos(θ) + β sin(θ) + γ =

0. Using that α cos(θ)+β sin(θ) =
√

α2 +β 2 sin(θ +

δ ) where δ = arcsin( β√
α2+β 2

), we get that: θ =

arcsin
(

−γ√
α2+β 2

)
− δ . Because of this, it is easy to

check whether lines will ever intersect: if | −γ√
α2+β 2

|> 1

then θ will have an imaginary component and the seg-
ments will never intersect.

Unfortunately, in all other cases the resulting form is
quite complex and has no readily-apparent closed-form
solution. In these cases we must perform gradient de-
scent on |r(θ)|. Proper seeds are sufficient to find the
minima of the function. There is no faster test at present
to determine if the segments intersect than to check if any
of the minima are 0.

Additional results. We show more examples gener-
ated by the proposed method.

12



(a) M-sum (b) C-obst

(c) M-sum (d) C-obst

Figure 6: (a) and (b) are generated from bar and grate 3 in Fig. 3. (c) and (d) are generated from star and hand in
Fig. 3.
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