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Abstract

Since the introduction of the concept of “Digital Earth”,
almost every major international city has been re-
constructed in the virtual world. A large volume of
geometric models describing urban objects has become
freely available in the public domain via software like
ArcGlobe and Google Earth. Although mostly created
for visualization, these urban models can benefit many
applications beyond visualization including city scale
evacuation planning and earth phenomenon simula-
tions. However, these models are mostly loosely struc-
tured and implicitly defined and require tedious manual
preparation that usually takes weeks if not months be-
fore they can be used. Designing algorithms that can
robustly and efficiently handle unstructured urban mod-
els at the city scale becomes a main technical challenge.
In this paper, we present a framework that generates
seamless 3D architectural models from 2D ground plans
with elevation and height information. These overlap-
ping ground plans are commonly used in the current GIS
software such as ESRI ArcGIS and urban model synthe-
sis methods to depict various components of buildings.
Due to measurement and manual errors, these ground
plans usually contain small, sharp, and various (nearly)
degenerate artifacts. In this paper, we show both theoret-
ically and empirically that our framework is efficient and
numerically stable. Based on our review of the related
work, we believe this is the first work that attempts to
automatically create 3D architectural meshes for simula-
tion at the city level. With the goal of providing greater
benefit beyond visualization from this large volume of
urban models, our initial results are encouraging.

Figure 1: A cloud is depicted at 3 different time instances
in the integrated Oklahoma City model. The cloud is
transported and diffused by the effects of the wind and
turbulence. Clouds at 100 (top), 250 (mid) and 500 sec-
onds (bottom) from the beginning of the release.

1 Introduction

Since the September 11 attacks in NYC in 2001; a toxic
sludge disaster in Hungary in 2010; and the recent nu-
clear crisis in Fukushima, Japan, the ability to simulate
large scale phenomena in urban environments (see Fig. 1)
has become increasingly important to support scien-
tific inquires and decision making. While numerical-
computational models have advanced to the stage of
accurately simulating various types of dynamic phe-
nomena and replicating the reality, detailed geometric
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(a) Input: 2D view, P (b) Input: 3D view, e(P)

(c) Output: Seamless mesh, B (d) Remeshed for CFD

Figure 2: An example input and output of our work.

models representing the computation domain are still
largely lacking [27, 16].

Because of the collaborative efforts in the recent years,
almost every building in the major US and international
cities has been re-constructed in the virtual world. Al-
though mostly created for visualization, these geometric
models describing urban objects can potentially bene-
fit many applications beyond visualization including
video games, city scale evacuation planning, traffic sim-
ulation and natural or man-made phenomenon simula-
tions. However, these urban models are mostly loosely
structured and implicitly defined. These models require
tedious manual preparation that usually takes weeks if
not months before they can be used for simulation [16].
Therefore designing algorithms that can robustly and
efficiently handle unstructured urban models at the city
scale becomes a main technical challenge.

1.1 Problem Statement

In this paper, we present a framework that generates
seamless 3D architectural models from 2D ground plans
with elevation and height information. These overlap-
ping ground plans are commonly used in the current GIS
software such as ESRI ArcGIS and urban model synthe-
sis methods to depict various components of buildings.
Specifically, our input is a set of 2D polygons P with ele-
vation and height information. Each polygon P ∈ P can
be elevated and extruded to form a 3D component e(P)

of a building. Here, we use the function e(·) to denote
the transformation. Then, the set e(P) is a collection
of components that implicitly represent the 3D shape of
buildings. For visualization applications, it is usually
enough to keep the representation implicitly. However,
to create simulation-ready representations our goal is to
produce seamless polyhedral meshes from P . Let us de-
note these building meshes as B. An example in Figs. 2
(a-c) illustrates the problem that we will attempt to solve
in this work.

1.2 Main Challenges

Creating seamless models for simulation is an exten-
sively studied topic in the CAD community. Although,
to our knowledge, creating seamless urban models at
the city scale for simulation has not been done, it is no
doubt that these two problems share many similarities.
One example is performing robust boundary evalua-
tion. Because the urban models are either generated
(semi-)automatically from LiDAR and satellite images or
created manually by non-experts, a quick analysis of the
problem and its input data will reveal many degenerate
cases and numerical stability issues in the boundary eval-
uation. Although the polygons P usually have simple
shapes, the arrangement of the polygons and that of their
3D transformation e(P) usually contain non-manifold
geometries, sliver polygons, coplanar or nearly copla-
nar faces, small features, and sharp and very narrow
gaps (see Fig. 3) because of the reconstruction and man-
made errors. Unlike CAD, urban models also implicitly
represent plazas, roads, streets, or alleys as the void re-
gions between buildings. In many cases, these voids are
created intentionally, thus should not be removed. How-
ever, some alleys or gaps between the buildings are too
narrow. This produces degenerate cases and unwanted
geometries, e.g., Fig. 3(a). These (nearly) degenerate
cases not only hinder the boundary evaluation process,
but also the efficiency of the simulation using the ex-
tracted mesh. Therefore, it is usually not enough to just
consider each building individually. The relationship
between the buildings should also be taken into account.
In addition, it is usually not enough to design algorithms
to cope with these degeneracies. It is more desirable to
remove these degeneracies to prevent creating an ex-
cessive number of small geometries that usually do not
provide any significance to result of the simulation but
greatly reduce the simulation efficiency.

Another main technical challenge is to design algo-
rithms that can both robustly and efficiently handle un-
structured urban models at this scale. The boundary
evaluation process in the boolean operations is known
to be numerically unstable, and a robust implementation
is usually slow. In particular, due to the scale of the prob-
lem, we have to perform the operation on thousands of
meshes representing the buildings. For example, naı̈vely
computing the union and intersection between pairs of
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(a) narrow gap

a

b

(b) almost coplanar faces a, b

(c) nonmanifold (d) sharp feature

Figure 3: Examples of degenerate inputs.

models can be inefficient.

1.3 Main Contributions

In this paper, we show both theoretically and empiri-
cally that our framework for creating seamless 3D urban
models is efficient and numerically stable. In a nutshell,
the proposed framework achieves this goal by changing
the representation from the input P to layers of disjoint
polygons (see Fig. 4). The core of framework is com-
posed of two methods: (1) k-way boolean operations
with adaptively adjusted numerical precision (Section 4)
and (2) the Minkowski sum operation using the reduced
convolution (Section 5). The k-way boolean operations
merge polygon layers into a seamless model, and the
Minkowski sum operation provides the foundation for
model repair. Our experimental results on two datasets,
New York City (5,397 buildings, Fig. 11) and Oklahoma
City (358 buildings, Figs. 1 and 13), show that the pro-
posed framework is fast, robust, and generates high
quality results. Based on our review of the related work,
we believe that this is the first work that attempts to
create 3D architectural meshes at the city level automati-
cally for simulation purposes. With the goal of providing
greater benefit beyond visualization from this large vol-
ume of urban models, our initial results are encouraging.

2 Related Work

To the best of our knowledge, no previous work has
focused on automatically processing urban models for
simulation. Existing research often resorts to laborious
manual manipulations of geometric data representing
topography and buildings. Without a method for auto-
matic pre-processing, this is generally necessary to pro-
duce a coherent and consistent geometric representation

of the surface, including the landscape and buildings
[16]. Although there exist many methods to construct,
simplify and aggregate the models depicting the urban
environments, almost all of these methods focus on the
issues from the rendering aspect [24, 6, 17]. For example,
ideas, such as levels of detail or texture mapping, based
on the location of the view are useful for rendering but
these tricks are no longer applicable to simulation.

An important step in the proposed work is to compute
the union or intersection of many models. The problem
of geometric boolean operations has been studied more
than three decades and the main focus of the research
has been on the robustness of the computation, because
many numerical errors and degenerate cases can result
in incorrect output. In addition to the robustness issues,
one of the main challenges that we face in this work is the
scalability of the boolean operation for city-scale urban
models. A brief review of the techniques are discussed
below.

2.1 Urban Models Synthesis and Process-
ing

Almost all methods for urban model synthesis and pro-
cessing focus on visualization. Most of these methods
come the from Computer Graphics and GIS communi-
ties. For example, several methods based on procedural
modeling focus on creating large-scale urban models
[32, 29, 28] or individual buildings [42, 33, 13]. Notice-
ably, Parish and Müller [32] design two L-systems to
procedurally construct streets and the buildings. The
L-system for creating the streets is subject to various
global goals and local constraints specified by the user
via image maps. Like many manually generated models,
the models generated procedurally are usually not suit-
able for simulation. There are also methods developed
to recover the 3D shape of roof surfaces, e.g., [13], and
recover building ground plans from aerial data [7], the
digitization and vectorization of cadastral maps or from
surveying measurements. Recently, methods have also
been proposed to extract ground plans from LiDAR data
[30, 15].

Because urban models tend to contain a large number
of simple shapes, Chang et al. [6] propose a simplifi-
cation method using the ideas from urban legibility in
order to enhance and maintain the distinct features of
a city, i.e., path, edges, district, etc. Since their focus is
on visualization, the geometric errors generated due to
simplification can be hidden from the viewers using var-
ious rendering techniques, e.g., texture mapping. Also
focused on urban visualization, Cignoni [8] presents the
BlockMaps strategy, which stores distant geometric and
textural information in a bitmap for efficient rendering.

Other works on processing urban models can be found
in GIS community. However, most of these methods fo-
cus on single buildings [25, 37, 39, 22] and rarely focus on
the city-level ground plans. For example, recently, Kada
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and Luo [22] simplify a building ground plan using the
ideas of reducing the number of lines in the arrangement.
See a survey in [24] for more related work.

Little work focused on aggregating and simplifying
large scale models and this class of work tend to focus
on ground plans only. Wang and Doihara [40] cluster the
buildings using strategy similar to minimum spanning
tree. Clustered buildings are aggregated and simplified.
Rainsford and Mackaness [34] propose a template-based
approach that matches the rural buildings to a set of 9
templates. The matched template is then deformed to fit
the floor plan. This method is limited by the number of
templates used.

2.2 Geometric Boolean Operations

The problem of geometric boolean operations is exten-
sively studied because of their wide range of appli-
cations, including linear programming, robotics, solid
modeling, molecular modeling, and geographic infor-
mation systems. The study of the boolean operations of
planar objects goes back to at least the early 1980s, when
researchers were interested in the union of rectangles
or disks, motivated by VLSI design, biochemistry, and
other applications [1]. Starting in the mid 1990s, research
on the complexity of the booleans of geometric objects
has shifted to the study of instances in three and higher
dimensions. The robustness issue has since been studied
in great depth [19, 36, 35, 23].

There exist several tools to compute the booleans of
two polyhedra, such as CGAL [10] and Autodesk Maya.
These tools are designed to handle the operation of a
small number of geometries. However, the number of
the building models that we will consider in this project
can be much larger. CGAL’s implementation is based
on the Nef polyhedra [14]. Nef polyhedra is built on
two critical data structures: a sphere map for each ver-
tex v capturing v’s local neighborhood and the Selective
Nef Complex (SNC) storing connections between local
sphere maps. Recently, Berstein and Fussell [3] construct
robust and fast Boolean operations using a plane-based
and binary space partitioning (BSP) representation. Ex-
perimental results show that it is 50 times faster than the
robust CGAL implementation and is only twice slower
than the fragile Maya method.

It is clear that the existing tools all suffer from various
computational issues, such as robustness and efficiency.
From our experience with the union operation of the
ground plans, a large number of intermediate geome-
tries are generated during the computation but are later
deleted during or after the union process. These inter-
mediate geometries are removed because they are inside
the boundary of the final united geometry. This issue has
long been ignored in the literature as most implementa-
tions consider the union operation as binary, which only
takes two objects at a time. In addition, while the com-
plexity of the union is Θ(n2), the union of the buildings

will be of much lower complexity because only a small
subset of the buildings will intersect each other. From
this simple observation, we can cull a lot of unnecessary
computation by using some bounding volume hierarchy
[18] or spatial hash table [38].

2.3 Model Repair

Mesh repair is an important step in the automatic con-
struction of city-scale urban models, due to the frequent
inaccuracies and defects of the input data. Several meth-
ods have been developed, that are capable of correcting
gaps, holes, and inconsistent orientations without any
user intervention. These method can be classified into
surface-based [26], volumetric-based [20, 5] and hybrid
approaches [4]. Surface-based approaches, such as hole
filling, are generally the most efficient but do not pro-
vide output-guarantees and have numeric instability.
Volumetric-based methods use an intermediate volumet-
ric representation, such as octree, and usually provide
better quality. However, these methods can be very inef-
ficient and generate large outputs, and the input’s struc-
ture and details may also be lost. Hybrid algorithms
attempt to maintain the quality and speed of surface
reconstruction, while providing the strong guarantees of
volumetric reconstruction. A more detailed summary of
mesh repair techniques can be found in a recent survey
[21].

3 Overview of Our Method

The main idea of our method is to exploit the fact that
all components in our buildings are extruded from 2D
polygons. This allows us to develop a strategy similar
to space sweep, in which critical events representing the
changes in building’s shape are identified and handled
either iteratively or in parallel. More specifically, if we
can imagine a plane that sweeps from the bottom to the
top of a given building, the intersection between the
building and the plane only changes at certain critical
moments. We define the critical events and the sweeping
planes formally below.

Definition 3.1. Critical events {Ei} is an ordered list of z
coordinates representing the start (i.e., elevation) and the end
(i.e., elevation+height) of the polygons in P .

Definition 3.2. Sweeping plane The sweeping plane S is
an xy-plane moving from −z to +z along the z-axis. We
denote S(z) as placing S at z.

Our approach essentially converts the input polygons
P whose areas, elevations and heights may overlap into
another set of polygons I with disjoint interior. Al-
though both P and I represent the same building B,
as we will see later, using I allows us to construct seam-
less polyhedra and remove the artifacts of the building B
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(a) e(P) (b) I (c) T (d) B

Figure 4: (a) Input, e(P). (b) Invariant polygons, I . (c)
Transition polygons T . (d) Output, seamless building
mesh B.

much more easily than using P . In fact, we can even re-
move some polygons from I while still maintaining the
structure of the building. In Section 5, our model repair
strategy is essentially based on repairing the polygons
of I . In the rest of this paper, we will name I Invariant
polygons.

Definition 3.3. Invariant polygons I . The i-th invariant
polygon Ii ∈ I is the intersection of e(P) and the sweeping
plane S at z, where Ei < z ≤ Ei+1. More specifically, Ii =⋃

P∈P e(P) ∩ S(Ei+1).
Note that Ii is usually not simple and can contain

multiple connected components. Moreover, since e(P) ∩
S(Ei) is either ∅ or P, Ii is simply the union of some
subset of P . In order to construct a seamless model
from I , we must also construct transition polygons that
“connect” consecutive invariant polygons.

Definition 3.4. Transition polygons T . The i-th transi-
tion polygon Ti ∈ T is the intersection of Ii and the comple-
ment of Ii+1, i.e., Ti = Ii ∩ Ii+1.

Note that the complement of a polygon can be easily
accomplished by reversing its vertex ordering. These
definitions are illustrated in Fig. 4.

Algorithm 1 Build Seamless Building Mesh
1: procedure SEAMLESSBUILDING(P , τ)
2: {Ei} ← EVENTS(P , τ)
3: for all Ei do . Compute invariant polygons
4: Ii−1 =

⋃
P∈P e(P) ∩ S(Ei) . see Section 4

5: Ii−1 ← REPAIR(Ii−1, τ) . see Section 5
6: Wi ← SWEEP(Ii−1, Ei−1, Ei) . walls polygons
7: for all Ii do
8: Ti = Ii ∩ Ii+1 . see Section 4
9: return {Ti} ∪ I0 ∪ In−1 ∪ {Wi}

Our method for constructing the seamless building
models is sketched in Algorithm 1. In addition to the in-
put polygons P , Algorithm 1 also takes a user-specified
tolerance τ that will be used as the threshold to deter-
mine artifacts in P . The value τ is also used in subrou-
tine EVENTS to ensure that two consecutive layers are at
least τ units away. When there are n critical events, the
seamless polyhedron B of the building simply is com-
posed of the polygons T , the floor I0, the ceiling In−1
and the wall polygons swept by the boundary of Ii be-
tween Ei and Ei+1. Note that the building polyhedron B
remains seamless even when the polygons of I are only
an approximation of those in Def. 3.3 or when some I are
removed. The only step that requires more robust com-
putation to ensure seamless output is in step 8. Other
steps can tolerate lower precisions. We will discuss a
new approach to provide this guarantee in Section 4.

4 2D K-way Boolean Operations

Computing the invariant polygons requires the union
of a subset of P , and computing the transition polygons
requires the intersection of the components of two con-
secutive invariant polygons. Traditionally, the union
and intersection operations take only two input poly-
gons, and the boundary is determined by computing
the arrangement of the edges, which is a subdivision
of the space into vertices, edges and faces (cells) from a
set of line segments (i.e., edges). One way to extract the
boundaries from such an arrangement is by finding all
the faces that have positive winding numbers [11, 41].
When there are k inputs, the result is computed by it-
eratively applying the operations. The main drawback
of this approach is that many intermediate geometries
are generated and then thrown away during the process
[36]. In this section, we will discuss a more efficient way
to compute the k-way union (Section 4.1) and intersec-
tion (Section 4.2) of k polygons in a single step from the
implicitly represented line-segment arrangement of the in-
put polygons. To ensure the correctness of the output, in
Section 4.3, we develope a robust and efficient method to
compute the nearest segment intersection by adaptively
adjusting the numerical precision.

4.1 K-way Polygon Union

To simplify our notation, let {Pi} be a set of polygons
and Q = ∂(

⋃
i Pi). Our goal is to compute Q. For each

polygon P, we denote the vertices of P as {pi} and the
edge that starts at vertex pi as ei = pi pi+1. The edge ei
has two associated vectors, the vector from pi to pi+1,
i.e., ~vi =

−−−−→pi pi+1 , and the outward normal ~ni. The main
idea of our approach is to incrementally extract the ori-
entable loops of the arrangement induced from the edges
of the input polygons. During the extraction process, we
repetitively extend the extracted loop by maintaining its
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desired topological properties.

4.1.1 Orientable Loop

We say that a loop is orientable if all the normal direc-
tions of the edges in the loop are all either pointing in-
ward or outward. Note that the segments we considered
are edges from {Pi}, therefore, they are directional (as
vertices in {Pi} are ordered) and include normal direc-
tions pointing outward.

Observation 4.1. We observe that the boundary of the union
must be an orientable loop (if it encloses an area, either positive
or negative).

Therefore, given two adjacent segments s = {u, v}
and s′ = {v, u′} sharing an end point v, we can check
whether s and s′ belong to an orientable loop if

(−→u v × ~ns) · (
−→
v u′ × ~ns′) > 0 , (1)

where ~nx is the normal vector of segment x, and × is the
cross product. If s and s′ satisfy Eq. 1, we say they are
compatible segments.

4.1.2 Boundary Orientable Loop Extraction

There can be many orientable loops in the arrangement.
We are only interested in finding those that can be a mem-
ber of Q, i.e., a boundary. We call these loops boundary
orientable loop.

To extract all boundary orientable loops, we start from
an arbitrary edge e that has not been considered. Our
method then proceeds by incrementally discovering the
compatible edges of a loop L from e. To abuse the nota-
tion a little bit, we let e be the latest edge of L discovered,
and let v be starting end point of e. In every incremental
step, our method will need to identify (1) the portion
of e and (2) the next compatible edge so that L remains
on the boundary of the union until all edges of L are
discovered.

v

e

x0

x1

x2 x3a
b

c d
θ

Figure 5: Given the last vertex v and a potential edge
e discovered in the extraction process, the segment vx0
must be an edge of L and the next v is x0 and the next e
is the edge containing x0c.

To identify the portion of e that contributes to L, let xj
be a sorted list of intersections between e and other line
segments ej 6= e in {Pi}. The intersections xj are sorted in
non-decreasing order using the distance to r. Therefore
x0 is the intersection closest to v. See Fig. 5. Now we
claim that if we expand the loop by appending ve0 to L

and replacing e by the edge that makes the largest right
turn from the current edge e at e0, then L will remain on
the boundary of the union Q if there exist an edge of L
is in Q. This observation is proved by Lemma 4.2.

Lemma 4.2. The orientable loop L extracted must be a bound-
ary orientable loop if an edge of L is on Q.Proof. If L ever reaches Q, then we assume v is the first
vertex of L on Q. See Fig. 5. Assume that x0 is not on Q.
Then x0 must be interior to Q. Since we know that v is a
vertex of Q, when we move from v to x0, there must be a
point x′ ∈ Q before we reach the interior of Q. If we wish
to remain on the boundary of Q, we must move another
edge of Q at x′. Therefore, x′ must be an intersection of
e and another segment from {Pi}. However, we know
that x0 is the intersection closest v. This means x0 cannot
be interior to Q, and in fact x0 and x′ must be the same
point and the segment vx0 must be on Q. �

Now, with e updated, we repeat the process until a
closed loop is found. Note that since we start from an
arbitrary edge, the loop may not close at the first edge
of L. When this happens we simply prune away edges
of L that are not part of the final loop since these edges
cannot be on the boundary.

4.1.3 Boundary Filtering

The orientable loops identified in the previous section
can only represent potential boundaries of the union
if an edge of the loop is on the boundary. Filters are
needed to determine the final boundaries. Our first filter
is based on the nesting relationships of the loops.

Observation 4.3. The loops must obey the nesting property,
i.e., the loops that are directly enclosed by the external loop
must be holes and will have negative areas, and the loops that
are directly enclosed by the holes must have positive areas.

Because all loops we generated are non-overlapping
(i.e., they don’t intersect or touch), the nesting property
can be determined efficiently using a plane sweep algo-
rithm, e.g., [2], in O(n log n) time for n segments. Finally,
we use the same polygon nesting method to verify the
correctness of the output. For example, a point inside a
hole loop must be outside {Pi}.

4.2 K-way Polygon Intersection

The k-way intersection can be computed in the same way.
Instead of making the largest right turns, we will make
the largest left turns at the nearest segment intersection.

The proposed k-way union and intersection methods
have many advantages over the existing approaches.
First, in contrast to the traditional boolean operation
approach, the proposed method can handle arbitrary
number of elements in {Pi} at once without produce
intermediate geometries. Second, we do not have to
compute the arrangement of the input segments, i.e.,
we avoid computing all the intersections for all the line
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segments in {Pi}. Instead, we compute only the intersec-
tions of all er discovered during the construction of Q.
This is extremely helpful when the size of {Pi} is large
and the boundary of Q has only a few features (edges
and vertices). This observation is usually true when the
size of {Pi} is large and for the architectural models in
which many parts only contribute a small portion to the
external boundary. Because of this feature, our method
is more sensitive to the output complexity than the ex-
isting methods. Third, the proposed method can handle
degenerate cases easily, i.e., two polygons that touch at
a single vertex or a line. The proposed approach can
even handle non-simple polygon, whose edges may self
intersect, and polychains which do not form a loop or
enclose an area.

4.3 Robust and Efficient Nearest Segment
Intersection

As we have seen earlier, the main step that we used to
determine the boundaries of the union and intersection
is to find the closest intersection to the boundary (e.g., an
end point or an edge) of a segment. A straightforward
approach is to compute all the intersections for a given
segment, and then the intersection that are closest to the
given boundary can be determined. However, comput-
ing the intersections is known to be prone to numerical
errors [31] and can be inefficient if exact arithmetic is
used to overcome the numerical problems.

In this section, we will discuss our approach to handle
this problem. We will show that our approach can easily
identify precision inefficiency and dynamically increase
the numerical precision when needed. The proposed
method is similar to algorithms designed for the k-th
order statistic [9]. The main idea of our approach is
to determine the segments that will create the closest
intersection without computing the intersection.

Given a 2-d segment s, one end point p of s and a set
of 2-d segments S intersecting with s, our goal here is to
determine a segment t in S such that the intersection of t
is closer to p than other segments in S . That is, given s,
p and S , we try to solve the following:

arg min
t∈S

d(p, int(s, t)) , (2)

where d(x, y) is the distance between two points x and y,
and int(s, t) is the intersection between two segments s
and t. Note that since S are polygon edges, each segment
is directional and has a normal direction.

Instead solving Eq. 4.3 numerically, we approach the
problem algorithmically. We use the visibility between
a point q ∈ s and t ∈ S to recursively determine the
closest intersection. More specifically, we classify the
visibility between q and s as the value v of −→q r · ~tn, where
r ∈ t is a point on t and ~tn is the normal direction of t. If
v is greater than zero, we say q is visible to t. If v is zero,
then q is invisible to t. Otherwise, we say q is on t.

Now, our goal is to find a point q ∈ s that is invisible
to a segment but is visible to all the rest of the segments
in S . As described above, given any q ∈ s we can classify
the segments in S into three sets of segments: V , I , O,
which are visible, invisible, and on segments. If the set
I contains exactly one segment, then we have found
our solution. If I has more than one segment, then we
let s = pq and S = I and perform the classification
recursively. If I is empty, then we analyze O and then V
in a similar way in this order. The only difference is that
if O has more than one segment then that means that
all segments in O intersect s at q and are equidistant to
p. In this case, we will be looking for the segment that
makes the smallest angle to s. Again we can use the idea
of visibility to find this segment.

The point q ∈ s is determined in a way similar to
binary search. First the mid point of s is used as q. If the
next searching range is in I , then q is the mid point of
p and q. If the next searching range is in V , then q is the
mid point of q and p′ (the other end point of s). Now, for
fixed-precision floating-point computation, it is possible
that there is not enough precision to distinguish between
the segments in S . This happens when the size of S is
greater than one while the length of the search range
collapses to zero. When this happens, we dynamically
increase the precision.

Analysis. The main step in our approach is the visi-
bility test, which involves a dot product (two multiplica-
tions and a summation). The asymptotic time complex-
ity of the proposed approach is O(n) for n segment in S
which the same as that of k-th order selection of n values.
On the contrary, the traditional approach that computes
the (parameterized) intersection between two line seg-
ments will require two divisions, 14 multiplications and
10 summations to compute the parameterizations of the
intersection. As a result much higher precision is needed
for the traditional approach. More importantly, the tradi-
tional approach has no way to tell if the fixed-precision
is enough to handle the given input. Therefore, in order
to provide error-free computation, high-precision float-
ing points are used regardless the input configuration.
Consequently, the traditional approach can be very slow.
On the other hand, the proposed method provides the
same accuracy and robustness but is more efficient.

5 Model Repair

Due to errors in the input polygons and their arrange-
ments in the space, many small features, and narrow
gaps can be generated. Removing these geometries in 3D
can be difficult [21]. Several volumetric-based methods
have been proposed to use mathematical morphology
the repair the models. In this section, we take the same
approach but perform the operations in the continuous
domain to avoid the drawbacks of volumetric-based
methods.
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Since mathematical morphology is closely related to
Minkowski sum (M-sum), we will first discuss an effi-
cient method to compute the Minkowski sum in Sec-
tion 5.1. Then we will extend the Minkowski sum to
compute the “closing” operation in Section 5.2.

5.1 Minkowski Sum using Reduced Convo-
lution

The M-sum of two shapes P and Q is defined as: P⊕
Q = {p + q | p ∈ P, q ∈ Q}. We propose a convolution-
based method to compute the M-sum of non-convex
polygons. Unlike the classic approach, e.g., [41], the
proposed method avoids computing (1) the complete
convolution, (2) the arrangement of the segments of the
convolution, and (3) the winding number for each ar-
rangement cell. Our method first computes a subset of
the segments that is from the convolution of the inputs.
We call this subset a “reduced convolution” as illustrated
in Fig. 6(d).

Definition 5.1. The convolution of two shapes P and Q,
denoted as P⊗ Q, is the M-sum of the boundary, i.e., P⊗
Q = ∂P⊕ ∂Q. If both P and Q are convex, ∂(P⊕ Q) =
P⊗Q. Otherwise, it is necessary to trim the convolution
to obtain the M-sum boundary.

Definition 5.2. A reduced convolution is a set of convo-
lution segments pi pi+1 ⊕ qj and pk ⊕ qlql+1 and qj and pk
must be convex.

Similar to the proposed k-way boolean operations, we
identify boundary orientable loops. These loops form
potential boundaries of the M-sum and are further fil-
tered by analyzing their nesting relationship. Finally,
the remaining boundaries are filtered by checking the
intersections between the input polygons placed at the
configurations along these loops. Each of these steps is
discussed in detail below.

5.1.1 Reduced Convolution

In the first step of the algorithm, we compute a subset of
the segments of the convolution based on the following
observation.

deP

vQ

c

b

a

b + vQ

a + vQ

a + c

b + c

Figure 7: Figures used in the proof of Observation 5.3.
The shaded areas indicate the internal of the polygons.

Observation 5.3. Given a convolution segment s = ei ⊕ q
of an edge ei ∈ P and a vertex q ∈ Q, if q is a reflex vertex,
s must not be a boundary of the M-sum of P and Q. This
observation remains true if s = p ⊕ ej, where p ∈ P is a
reflex vertex and ej ∈ Q is an edge.
Proof. Assume that vQ is convex, and eP and vQ are com-
patible. An example of eP = ab and vQ is shown in
Fig. 7(a). In the figure, vQ is adjacent to two vertices c
and d. Now, let us consider the Minkowski sum locally
involving only eP = ab, cvQ and vQd, which are shown
in Fig. 7(b). First, one should see that the segment s
has end points a + vQ and b + vQ. In this case, the seg-
ment s is locally on the boundary of the Minkowski
sum because all other segments (i.e., (a + vQ)(a + c),
(b + vQ)(b + c), (a + c)(b + c), etc.) are interior to s.
Therefore, the question becomes: if we increase the inter-
nal angle of vQ while maintaining the compatibility of
eP and vQ, when will s become an interior segment?

First, observe that when the internal angle of vQ in-
creases, the segment (a + c)(b + c) and s become closer.
Moreover, when c, vQ, d are collinear, they must be also
parallel to eP (otherwise eP and vQ are not compatible),
thus, (a + c)(b + c) and s overlap. When the internal
angle of vQ increases more, vQ becomes reflex and the
segment s becomes interior to (a + c)(b + c). Therefore,
if vQ is reflex, s must not be on the boundary. �

Because of the definition of a reflex angle, the number
of edges that are compatible with any convex vertex in Q
form a lower bound on the number of edges compatible
with any reflex vertex in Q. Due to this, the number of
segments filtered by Observation 5.3 is significant. An
example of this is demonstrated in Fig. 6. Figs. 5 and 6(b)
show the input polygons and the full convolution of the
inputs, respectively. Fig. 6(c) demonstrates the reduced
convolution of the same imput polygons, in which there
are are significantly fewer convolution edges.

5.1.2 Boundary Orientable Loop Extraction

Now, since the segments that we will be working with
are no longer a complete convolution, we cannot apply
the idea of computing the winding number for each
arrangement cell to extract the M-sum boundary as done
in [41]. Note that the segments we considered are edges
from P and Q, therefore, they are directional (as vertices
in P and Q are ordered) and include normal directions
pointing outward (to P or Q). Therefore, we proceed as
the k-way boolean operations by extracting the boundary
orientable loops discussed in Section 4.1.2.

5.1.3 Boundary Filtering

As discussed in Section 4.1.3, the loops extracted are
potential boundary loops. For example, the polygon in
Fig. 6(d) has an improperly nested loop (positive area
inside positive area) that must be removed; once the
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(a) inputs (b) full convolution (c) reduced convolution (d) orientable loops (e) M-sum

Figure 6: Steps for computing the M-sum of two simple polygons.

loop is removed, we get the correct M-sum as seen in
Fig. 6(e).

So far, we have introduced three quite efficient filters.
Unfortunately, some of the remaining loops may not
be boundaries of the M-sum. An example of the false
loop is the hole boundary shown in Fig. 8(a). These
false hole boundaries are the direct result from the fil-
ters that exploit only local topological properties on the
convolution.

Therefore, we will have to resort to collision detection,
a global operation, to remove all the false loops. Given a
translational robot P and obstacles Q, the contact space
of P and Q can be represented as ∂((−P)⊕Q), where
−P = {−p | p ∈ P}. If a point x is on the boundary of
the M-sum of two polygons P and Q, then the following
condition must be true:

(−P◦ + x) ∩Q◦ = ∅ ,

where Q◦ is the open set of Q and (P + x) denotes trans-
lating P to x. Figs. 8(b) to 8(e) show that the false hole
boundary provides collision-free configurations only to
one foot and the body of the bird but collides the other
foot and the legs with the obstacle.

Although there are many methods to optimize the
computation time for collision detection, collision detec-
tion is more time consuming than the previous filters.
Fortunately, only a single collision detection is needed
to reject or accept a loop based on the following lemma.

Lemma 5.4. All the points on a false hole loop must make P
collide with Q.
Proof. Let A be the arrangement of the segments in the
complete convolution. Let ` be a hole loop extracted
using our method. It is guaranteed that ` must be empty
since we always make the largest right turns when we
trace the hole (note that this may not be true if ` is not a
hole, i.e., when ` encloses a positive area, e.g., Fig. 6(d)).
Since ` is empty, we know that ` ⊂ A. Furthermore,
since we know that all vertices in each cell of A must
to have the same winding number [41]. Therefore, we
know that all points on ` will have the same winding

number. If ` is a false loop, then all points on ` will
have positive winding numbers, thus, are all interior to
the Minkowski sum boundary. This means that all the
points on a false hole loop must make P collide with Q.
�

Note that our method can be used to evaluate the
Minkowski sums of non-simple polygons, such as self-
intersecting polygons, so long as the area enclosed by
the polychains is well-defined.

5.2 Mathematical Morphology

It is a common practice to remove small gaps and sharp
features by performing mathematical morphology op-
erations, such as erosion and dilation. These operations
are usually done in a discretized domain by converting
the polygons or polyhedra into pixels or voxels. This
approach is usually robust, but well-known issues in-
clude the difficulty of choosing a good discretization
resolution, space and time inefficiency and the loss of
data fidelity.

We extend the proposed Minkowski sum method us-
ing reduced convolution to compute the “closing” oper-
ation. The closing operation is the application of dilation
and then erosion to the model. Given two polygons P
and Q, the dilation operation is simply the Minkowski
sum of P and Q. The erosion operation denoted as
P 	 Q can also be computed using Minkowski sum:
P 	 Q = P⊕Q, where X is the complement of a set
X. The complement of a polygon P is simply a polygon
with reverse ordering of P’s vertices. Finally, the closing
operation of P and Q is defined as

P •Q = (P⊕Q)	Q .

The proposed closing method operates directly on the
polygons thus avoiding the aforementioned issues. A
straightforward approach is to compute the Minkowski
sum twice using definition above. Fig. 10 shows three
examples that are commonly seen in our dataset.
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(a) (b) (c) (d) (e)

Figure 8: (a) The hole boundaries are false loops. (b-e) The configurations in the false loop make the bird collide with
the the obstacle. Notice that the collisions only occur around one foot and the leg of the bird. Note also that the left
and right and bottom boundaries of the false loop are formed by contacts with the collision-free foot, while the top
boundary is formed by contact configurations with the body of the bird.

We observe that the second Minkowski sum can be
avoided if Q is a small circle. If Q is a small circle, the
convolution for computing P⊕Q can be easily obtained
by translating each edge e of P by the amount of Q’s
radius along e’s outward normal, and replacing each
convex vertex v of P with an arc of Q connecting v’s inci-
dent edges. Once we have the convolution, the boundary
of P⊕Q can be obtained using the method discussed in
Section 5.1. In order to compute P •Q, we will have to
apply another Minkowski sum operation on the comple-
ment of P⊕ Q. However, we observe that the erosion
operation can simply be done reversing the dilation pro-
cess. That is, for a given loop L of P⊕ Q, we identify
the origin of each edge of L. If the edge is an edge of P,
we translate the edge back. The rest of edges that form
(partial) arcs must be from the vertices of P. We replace
each arc with its original point.

d

b

c

e

q
p
r

a

Figure 9: closing operation

Next the vertices of P •Q can also be determined. Let’s
analyze the vertices of the loop. These vertices can only
come from two sources. The vertices can either be cre-
ated by the sum of a vertex of P and a vertex of Q, or
from the intersection of edges (of the convolution). The
first type of vertex (e.g., a in Fig. 9) is automatically gen-
erated when the edges of P⊕Q are translated back. The
second type of vertex requires more attention. We ob-
serve that the intersection can come from three sources:
(1) the intersection of two edges of P (e.g., d in Fig. 9), (2)
the intersection of an edge of P and a vertex arc (e.g., c

(a) (b) (c)

Figure 10: Before (top row) and after (bottom row) the
application of the closing operation. (a) Narrow gap
between two buildings. (b) Non-manifold vertex. (c)
Narrow gap within the building.

in Fig. 9), and (3) the intersection of two arcs (e.g., b in
Fig. 9). In erosion, when edges are moved back and arcs
are shrunk to points, these intersections may disappear.
In the first case, if the intersection disappears, the edges
of P are then connected via their boundary end points.
In the second case, the vertex is connected to the closest
point on the edge (e.g., r to e in Fig. 9). In the third case,
two vertices of P are simply connected (e.g., p to q in
Fig. 9).

6 Results

Our framework is implemented in C++. The exact num-
ber type uses MPFR [12]. We use two examples, New
York City (NYC, 5,397 buildings) and Downtown Okla-
homa City (OKC, 357 buildings), shown in Figs. 11 and
13, to demonstrate the results of the proposed method.

The total running time for generating the seamless
models for NYC in Fig. 11 is 119 seconds (about 2 min-
utes). The total running time for generating the seamless
models for Downtown OKC in Fig. 11 is 7.2 seconds.
All these experiments are performed on a dual core 2.54
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Figure 11: Seamless NYC. There are 1,161,850 vertices,
2,310,610 triangles, and 5,397 buildings in this example.
The input composed of 45,496 polygons.

(a) Our result (b) Maya (c) Marching Cube

Figure 12: Comparing to results from Maya and March-
ing Cube.

GHz Intel CPU. The reported running times are based
on our initial implementation, whose efficiency can still
be significantly improved, e.g., using parallelization and
ideas from broad-phase collision detection.

To show the significance of our results, we compare
our results to Maya 2010 and a volumetric approach us-
ing Marching Cube. We use a building from NYC com-
posed of 37 components. The results are shown in Fig. 12.
Our method produces the result shown in Fig. 12(a) in
105 milliseconds. Fig. 12(b) shows the best result using
Maya as Maya produces completely incorrect output
when more components are added to Fig. 12(b). Finally,
we compare to the result generated using distance field
and a Marching Cube method (from VCG library) shown
in Fig. 12(c). Although the quality of the mesh can be
improved using better Marching Cube variants, this vol-
umetric approach takes several minutes and produces
an excessive number of polygons (138,288 triangles for
a 150×150×150 grid). Thus, the volumetric approach
is clearly not scalable to the city-scale problem consid-
ered in this work. No results are shown for CGAL be-
cause CGAL Nef polyhedra cannot handle our extruded
meshes.

We also compare the proposed method to CGAL’s

(a) Oklahoma City (b) (c)

Figure 13: In total 358 ground plans are represented in
this image. The ground plans are created from 1454
footprints. Two interesting regions are highlighted.

robust 2D boolean operations package. We setup the
experiment by generating the lowest invariant polygons
(i.e., ground plans) of the entire OKC by computing
the union of 1,454 footprints. The results are shown in
Fig. 13. Since CGAL’s union operation takes only two
polygons, we compute the ground plans by incremen-
tally adding each of the footprints to its current union.
Both approaches generate the same result. Our approach
takes 124 milliseconds to generate all ground plans, and
the incremental approach using CGAL takes 55,516 mil-
liseconds.

To further verify our method, we show that the seam-
less meshes can be readily remeshed for CFD simula-
tions. Fig. 14 shows our results zoomed into the area
near the financial district in NYC dataset, and Fig. 15
shows the entire OKC dataset. We used the identified
ground plans (Fig. 13) to merge the seamless surface of
the buildings and the surface terrain from DEM and ob-
tain a computational domain suitable as input for CFD
models. We simulate a hypothetical transport and dis-
persion event using FEFLO-Urban [27]. A simulation of
the flow, and the transport and dispersion of a gas was
performed using the volume mesh produced with the
proposed data processing methodology. Figs. 1 and 15
show snapshots of air pollutant dispersion simulation in
the integrated OKC model.

7 Conclusion

We developed the first known framework to construct
seamless 3D building models from 2.5D ground plans.
Our main idea to provide both efficiency and robust-
ness is to generate polygon layers, repair the layers and
then stitch the layers into seamless models. The core
methods for stitching and repairing are a k-way boolean
operation and a Minkowski sum operation, respectively.
Finally, we show both theoretically and empirically that
our framework is efficient and numerically stable.

Limitations and Future Work. A main limitation of
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the proposed method is that, despite the effort to remove
small and sharp features, sliver triangles can still be
found in our output mesh. Another limitation is that
our method can only handle extruded polygons. We are
currently extending the proposed work to handle more
general 3D urban models, such as those from Google
Earth.
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(a) Input

(b) Seamless meshes

(c) Remeshed for CFD

Figure 14: An area of Fig. 11 near the financial district in
NYC.

Figure 15: Using the OKC dataset for pollutant disper-
sion simulation. (top) Input meshes. (mid) CFD meshes
integrated with DEM terrain data. (bottom) A simula-
tion snapshot.
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