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Abstract

Developing robot behaviors is a tedious task requiring
multiple coding, trial, and debugging cycles. This makes
attractive the notion of learning from demonstration,
whereby a robot learns behaviors in real time from the
examples of a demonstrator. Learning from demonstra-
tion can be problematic, however, because of the number
of trials necessary to gather sufficient samples to learn
correctly. The problem is compounded in a multi-robot
setting due to the potentially much larger design space
arising from the number of and interactions between
the robots. In this paper, we propose a learning from
demonstration system capable of rapidly training mul-
tiple robots to perform a collaborative task. Our super-
vised learning method applies user domain knowledge
to decompose complex behaviors into a hierarchy of sim-
pler behaviors, which are easier to train and learn, and
require many fewer samples to do so. The system further
reduces the state space by only considering environmen-
tal features and actions pertinent to each decomposed
simple behavior. Decomposition occurs not only within
individual robot behaviors but also at the hierarchical
group behavior level. Experiments using Pioneer robots
in a patrol scenario illustrate our system.

1 Introduction

Learning from demonstration offers an attractive alterna-
tive to the express programming of robot behaviors: let
the robots learn behaviors based on real-time examples
provided by a demonstrator. Such behavioral learning
is not just restricted to robotics. Developing game agent
behaviors, simulated virtual agents, and character ani-
mation can benefit from nearly identical techniques as
those found for robot training. To this end we have de-
veloped a novel learning from demonstration system
which is capable of training various real robots and vir-
tual agents in real time.

One fundamental challenge which learning from
demonstration faces is that of gathering sufficient sam-
ples. Machine learning, particularly in high-dimensional
or complex spaces, requires large numbers of samples
to counter its so-called curse of dimensionality. But in
robotics, a sample is expensive: it is often a data point
from an experiment conducted in real time. This com-
plexity is only increased when we consider the case of
training multiple agents or robots to perform joint tasks.

Our goal is to perform rapid single- and multi-agent
learning from demonstration, of potentially complex
tasks, with a minimum of training samples. To this end
we use domain knowledge to apply task decomposition,
parameterized tasks, and per-task feature and behav-
ioral selection to the problem, which has the effect of
projecting the joint problem into much smaller and sim-
pler subproblems, each of which can be easily learned
with a very small number of samples. In short, the exper-
imenter first decomposes the desired top-level behavior
into a hierarchy of simpler behaviors, specifies the nec-
essary states to learn and features to use for each of the
simpler behaviors, then trains the robot bottom-up on
each of these behaviors, using real-time experiments,
until the top-level behavior is achieved.

Thus we position our work as straddling the middle-
ground between providing examples (learning) and out-
right declaration (essentially programming). This is what
we mean by our notion of “training”: following an ex-
plicit pedagogy to train agents to perform sophisticated
behaviors, starting at square one. In some sense one may
view this middle-ground training as a kind of assisted
behavior programming by example.

Our agents and robots learn behaviors in the form
of hierarchical finite-state automata (HFAs): the states
in the automata are themselves behaviors (either them-
selves learned HFAs, or pre-coded basic behaviors), and
each transition function is learned using a classification
algorithm on features gleaned from robot sensors, in-
ternal state and flag information, etc. Once learned, a
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behavior joins the behavior library and can itself be used
as a state in a higher-level learned HFA. This approach
has a number of important advantages. First, it is super-
vised, and features may take any form allowed by the
classifier (for example, continuous, toroidal, or categori-
cal). Second, it allows agents to learn not just stateless
policies but behaviors involving internal state. Third, the
behavior hierarchy can potentially scale to very complex
behaviors. Fourth, the learned HFAs can take the form
of plan-like sequences or behaviors with rich transitions
and recurrence. Fifth, the approach is formal and consis-
tent: the same learning method is used at every level of
the hierarchy.

We have developed a software toolkit which uses this
approach, and with it we have trained many kinds of
behaviors for simulated agents, everything from wall-
following to scavenging for food to lining up in a trian-
gle. We have also trained (not in simulation) a humanoid
robot to find and acquire a ball, have tested the degree
to which novice users can train the robot in this task,
and have examined whether hierarchical servo behav-
iors are easier or more difficult to train than all-in-one
behaviors. In this paper we begin with previous work
and a description of the system, and then detail these
experiments.

Following this, however, we discuss a new approach
to training not a single robot but teams of homogeneous
robots or agents, both independently and collectively
under the direction of one or more coordinator agents,
organized as a hierarchy, and which themselves may be
trained with an HFA. We give a concrete demonstration
example of a nontrivial HFA involving four robots and
a coordinator agent in a patrolling exercise. Ultimately
we are moving towards training behaviors not just for
single agents but for entire teams or swarms of agents
organized in hierarchies. With enough communication
capacity, the approach is scalable to agent hierarchies of
any size.

2 Related Work

Agent Hierarchies Hierarchies have long been em-
ployed to control a robot programmatically, from the
traditional multi-tier planner/executive/control hierar-
chical frameworks, to behavior hierarchies establishing
precedence among competing robot behaviors, of which
an early example is the Subsumption architecture [5].
A significant body of literature has constructed groups
of agents, with each agent employing its own internal
hierarchical behavior mechanism [18, 8, 24]. Hierarchies
among agents are less common, for example [9]. Some re-
cent literature has focused on hierarchies of control among
heterogeneous agents [10]. Hierarchies may also be con-
structed dynamically as a mechanism for task allocation
[14].

Learning Policies and Plans The lion’s share of learn-
ing from demonstration literature comes not from virtual
or game agents but from autonomous robotics (for a sur-
vey, see [2]). Much of the learning from demonstration
literature may be divided into systems which learn plans
[1, 16, 19, 23] and those which learn (usually stateless)
policies [3, 7, 12, 15] (for a stateful example, see [13]). In
learning from demonstration, the proper action to per-
form in a given situation is usually directly provided
to the agent: thus this is broadly speaking a supervised
learning task. However a significant body of research
in the topic in fact uses reinforcement learning, with the
demonstrator’s actions are converted into a signal from
which the agent is expected to derive a policy [6, 22].

Hierarchical and Layered Learning Hierarchies are a
natural way to achieve layered learning [21] via task de-
composition. This is a common strategy to simplify the
state space: see [11] for an example. Our HFA model
bears some similarity to hierarchical learned behavior
networks such as those for virtual agents [4] or physical
robots [16], in which feed-forward plans are developed,
then incorporated as subunits in larger and more com-
plex plans. In this literature, the actual application of
hierarchy to learning from demonstration has been un-
expectedly limited. Hierarchy (albeit fixed) has been
more extensively applied to multi-agent reinforcement
learning, as in [22].

3 Description of Our System

We train robots from the bottom up by iteratively build-
ing a library of behaviors. The library initially consists
of basic behaviors: hard-coded low-level behaviors such
as “go forward” or “kick the ball”. We then train a finite-
state automaton whose states are associated with behav-
iors chosen from this library. After training, the automa-
ton itself is saved to the library as a behavior. Thus we
are able to first train simple automata, then more ab-
stract automata which include those simple automata
among their states, and so on, until we reach sufficiently
powerful automata to perform the necessary task.

3.1 The Model

The basic model is a hierarchy of finite-state automata
in the form of Moore machines. An automaton is a tuple
〈S, F, T, B, M〉 ∈ H defined as follows:

• S = {S1, ..., Sn} is the set of states in the automaton.
Among other states, there is one special start state
S1, and zero or more flag states. Exactly one state is
active at a time, designated St.

• B = {B1, ..., Bk} is the set of basic behaviors. Each
state is associated with either an basic behavior or
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another automaton fromH, with the stipulation that
recursion is not permitted.

• F = {F1, ..., Fm} is the set of observable features in
the environment. At any given time each feature
has a current value: a single number. The collective
values of F at time t is the environment’s feature
vector ~ft = 〈 f1, ..., fm〉.

• T = F1 × ...× Fm × S → S is the transition function
which maps the current state St and the current
feature vector ~ft to a new state St+1.

• We generalize the model with free variables (param-
eters) G1, . . . , Gn for basic behaviors and features.
We replace each behavior Bi with Bi(G1, . . . , Gn)
and feature Fi with Fi(G1, . . . , Gn). The evaluation
of the transition function and the execution of be-
haviors will both be based on ground instances (tar-
gets) of the free variables.

An automaton starts in its start state S1, whose behav-
ior simply idles. Each timestep, while in state St, the
automaton first queries the transition function to deter-
mine the next state St+1, transitions to this state, and if
St 6= St+1, stops performing St’s behavior and starts per-
forming St+1’s behavior. Finally, the St+1’s associated
behavior is pulsed to progress it by an epsilon. If the
associated behavior is itself an automaton, this pulsing
process recurses into the automaton.

The purpose of a flag state is simply to raise a flag in
the automaton to indicate that the automaton believes
that some condition is now true. Two obvious condi-
tions might be done and failed, but there could be many
more. Flags in an automaton appear as optional features
in its parent automaton. For example, the done flag may
be used by the parent to transition away from the cur-
rent automaton because the automaton believes it has
completed its task.

Features may describe both internal and external
(world) conditions, and may be toroidal (such as “angle
to goal”), continuous (“distance to goal”), or categorical
or boolean (“goal is visible”).

Behaviors and features may be optionally assigned
one or more parameters: rather than have a behavior
called go to the ball, we can create a behavior called
goTo(A), where A is left unspecified. Similarly, a fea-
ture might be defined not as distance to the ball but as
distanceTo(B). If such a behavior or feature is used in an
automaton, either its parameter must be bound to a spe-
cific target (such as “the ball” or “the nearest obstacle”),
or it must be bound to some higher-level parent C of
the automaton itself. Thus finite-state automata may
themselves be parameterized.

3.2 Training with the Model

Our system learns the transition function T of the au-
tomaton. We divide T into disjoint learned functions

(a) Humanoid (b) Three Pioneer ATs and one Pioneer DX

Figure 1: Robots used for the single and multi-robot
experiments.

TS(~ft)→ S′, one for each state S, which map the current
feature vector to a new state S′. Each of these is a classi-
fier. At the end of the learning process we have n such
classifiers, one for each state S1...Sn. At present we are
using decision trees for our classifiers.

The learning process works as follows. When the
robot or agent is in the training mode, it performs the
directives given it by the demonstrator. Each time the
demonstrator directs the robot to perform a new behav-
ior, the robot stores two example tuples: the first tuple
consists of the current state St, the state St+1 associated
with this new behavior, and the current feature vector
~ft; the second tuple, which provides a default example,
consists of St+1, St+1 (again), and ~ft. When enough ex-
amples have been gathered, the demonstrator switches
the robot to the testing mode, building the classifiers from
the examples. For each state Sk, we build a classifier DSk
based on all examples where Sk is the first element, that
is, examples of the form 〈Sk, ~f , Si〉. Here, ~f and Si form a
data sample for the classifier: ~f is the input feature and
Si is the desired output class. If there are no examples
at all (because the user never transitioned from Sk), the
transition function is defined as staying at Sk.

The robot then begins to use the learned behavior. If
the robot performs an incorrect behavior, the demonstra-
tor may immediately return to training mode to correct
the robot, adding further examples. When the demon-
strator is satisfied with the robot’s performance, he may
then save the automaton to the behavior library and
begin work on a new automaton (which can include
the original automaton among its states). Note that the
particular behaviors and features used may vary by au-
tomaton. This allows us to reduce the feature and state
space on a per-automaton basis.

Some simple learned behaviors do not require internal
state and thus the full capacity of a finite-state automa-
ton: and indeed the internal state of the automaton may
simply make the learning space unduly complex. In
these situations we may define each of the TS to use the
same classifier. This reduces the model to a stateless
policy π(~f ).

3



Figure 2: Experimental setup for the humanoid robot
experiments. The orange ball rests on a green pillar on a
green soccer field at eye level with the humanoid robot.
The robot must approach to within a short distance of
the pillar, as denoted by the dotted line.

4 Single Agent Experiments

We have applied our system to a single agent in simu-
lation and on a real robot. In both cases, we were able
to rapidly train the agent to perform complex tasks in
a limited time. We begin by describing early experi-
ment examples with virtual agents in simulation. We
then move on to an experiment performed with a single
humanoid robot. In the section after, we discuss an ex-
tension of the system to the homogeneous multiagent
case.

4.1 Simulation

We have implemented a testbed for training agents us-
ing this approach in a simulator. A simulation agent can
sense a variety of things: the relative locations of obsta-
cles, other agents of different classes, certain predefined
waypoints, food locations, etc. We have successfully
trained many simple behaviors including: tracking and
acquiring a target, wall-following, generic obstacle cir-
cumnavigation, and tracing paths (such as a figure eight
path between two targets).

We have also trained an agent to perform a moder-
ately complex foraging task, which we detail here: to
harvest food from food sources and to bring it back to
deposit at the agent’s central station. Food can be located
anywhere, as can the station. Food at a given location
can be in any concentration, and depletes, eventually to
zero, as it is harvested by the agent. The agent can only
store so much food before it must return to the station
to unload. There are various corner cases: for example,
if the agent depletes food at a harvest location before it
is full, it must continue harvesting at another location
rather than return to the station.

Foraging tasks are of course old hat, and are not par-
ticularly difficult to code by hand. But training such a
behavior is less trivial. We selected this task as an exam-
ple because it illustrates a number of features special to
our approach: our foraging behavior is in fact a three-
layer HFA hierarchy; employs “done” states; involves

real-valued, toroidal, and categorical (boolean) inputs;
and requires one behavior with an unbound parameter
used in two different ways.

The hierarchy relies on seven basic behaviors: start,
done, forward, rotate-left, rotate-right, load-food (decrease
the current location’s food by 1, and add 1 to the agent’s
stored food), and unload-food (remove all the agent’s
stored food). It also requires several features: distance-
to(A), angle-to(A), food-below-me (how much food is lo-
cated here), food-stored-in-me, and done. Finally, it re-
quires two targets to bind to A: the station and nearest-
food.

From this we decomposed the foraging task into a
hierarchy of four HFA behaviors (GoTo(A), Harvest, De-
posit, Forage), and trained each one in turn. All told, we
were able to train all four behaviors, and demonstrate
the agent properly foraging, in a manner of minutes.

4.2 Humanoid Robot

Taking RoboCup as motivation, we have taught one
humanoid robot visual servoing (Figure 1(a)). The goal
was for the robot to search for the ball, orient towards the
ball by turning the “correct” direction, and walk towards
the ball. The robot uses two features from the camera:
the x-coordinate of the ball within the frame, and the
number of pixels in the ball’s bounding box. Finally, the
robot has three basic behaviors available to it: turn left,
turn right, and walk forward. The robot’s head remains
fixed looking forward, and the ball does not move. To
ensure the ball does not drop out of the bottom of the
frame during the experiments, we raised the ball to the
robot’s eye level (see Figure 2).

This behavior is a simple example of a behavior which
may best be learned in a stateful fashion. When the ball
disappears from the robot’s field of view, which direction
should the robot turn? This could be determined from
the x-coordinate of the ball in the immediate previous
frame, which suggests where the ball may have gone.
But if the robot only follows a policy π(~f ), it does not
have this information, but simply knows that the ball
has disappeared. Thus π would typically be reduced to
just going forwards when the robot can see the ball, and
turning (in one unique direction) when it cannot. Half
the time the robot will turn the wrong direction, and as
a result spin all the way around until it reacquires the
ball. This can be quite slow.

Our learning automaton setup had four behaviors to
compensate for this. We had two behaviors, left and right,
which turned left and turned right respectively, but also
had two identical behaviors, notionally called forwardL
and forwardR, which both simply moved forward. A
demonstrator could use these two behaviors as follows:
when the ball is in the left portion of the frame, he in-
structs the robot to go forwardL. When the ball is in the
right portion of the frame, he instructs the robot to go
forwardR. When the ball has disappeared, he instructs
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(a) Starting Position 1 (Ball in Left of Frame) (b) Starting Position 2 (Ball Not Visible) (c) Starting Position 3 (Ball in Right of Frame)

Figure 3: Histograms of times to reach the ball from each starting position of the four successful trials.

the robot to turn appropriately. Ultimately the robot
may learn that if the ball disappeared while it was in the
forwardL behavior, it should then transition to turning
left; and likewise turn right if the ball disappeared while
the robot was in the forwardR behavior.

First, we performed an experiment illustrating how
the learning system can be used by novice users. We
asked five computer science graduate students to train
the robot for five minutes each. The students had mini-
mal exposure to the humanoid robots and no experience
with our training system. After some instruction on
how to control the robot, and some suggestions on using
forwardL and forwardR, they were allowed to move the
robot into any position for data collection. The students
were given sensor data in real-time and were allowed
to visually observe the robot. After the five minutes
elapsed, the robot built a HFA to perform visual servo-
ing. Performance was determined by the time required
to locate the ball and approach it to within 15 cm (de-
termined visually), starting from three different known
positions. Position 1 had the ball on the left of the frame,
Position 2 the ball was not visible, and Position 3 had the
ball on the right of the frame. We performed ten trails
for each HFA at each position.

Four of the five students successfully trained the robot
to approach the ball. The remaining trained behavior
never successfully approached the ball, independent of
the robot’s starting location. Figure 3 shows that in most
cases the robot can quickly servo to the ball (even if the
ball is lost). However, in several cases the robot takes
significantly longer to successfully approach the ball,
usually due to sensor noise and/or poor training.

We also tested the system’s hierarchical ability. In this
experiment, an expert (an author of this paper) trained
the robot to approach the ball as before, but also to stop
when the robot was close to the ball. This was done in
two ways. First, the expert attempted to train the robot to
do all these tasks in the same automaton. Second, the ex-

pert first trained the robot to approach the ball using only
the ball position within the frame, and then using this
saved approach behavior, trained a simple higher-level
automaton in which the robot would approach the ball
until it was large enough, then stop. Anecdotal results
suggest that the hierarchical approach is much easier to
do rapidly than the monolithic approach. Learning the
monolithic behavior requires many more training sam-
ples because the joint training space (in terms of states
and features) is higher.

5 Training Multi-Robot Team Hier-
archies

Our ultimate goal is to apply the training technique not
just to single agents but to supervised training of teams
and swarms of arbitrary size.

We note that supervised cooperative multiagent train-
ing has a surprisingly small literature. From an extensive
survey of cooperative multiagent learning [17], only a
small number of papers dealt with supervised learning,
and most of those were in the area of agent modeling,
whereby agents learn about one another, rather than be-
ing trained by the experimenter. The lion’s share of the
remaining literature tends to fall into feedback-based
methods such as reinforcement learning or stochastic
optimization (genetic algorithms, etc.). For example, in
one of the more celebrated examples of multiagent lay-
ered learning [20] (to which our work owes much), the
supervised task (“pass evaluation”) may be reasonably
described as agent-modeling, while the full multiagent
learning task (“pass selection”) uses reinforcement learn-
ing. This is not unusual.

Why is this so? Supervised training, as opposed to
agent modeling, generally requires that robots be told
which micro-level behaviors to perform in various situa-
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tions; but the experimenter often does not know this. He
may only know the emergent macro-level phenomenon
he wishes to achieve. This inverse problem poses a signif-
icant challenge to the application of supervised methods
to this task. The standard response to inverse problems
is to use a feedback-based technique. But there is an al-
ternative: to decompose the problem into sub-problems,
each of which is simple enough that the gulf between
the micro- and macro-level behaviors is reduced to a
manageable size. This is the technique which we have
pursued.

Our approach is as follows. We organize the team of
agents into an agent hierarchy (not to be confused with
our HFA behavior hierarchies), with robots at leaf nodes
of a tree, and coordinator agents as nonleaf nodes. This
tree-structured organization fits in the middle ground be-
tween largely decentralized (“swarm”-style) multirobot
systems and fully centralized systems. A tree structure
has obvious advantages (and disadvantages) which we
will not discuss here: we use it largely because of its
clean integration with our task-decomposition focus.

Individual robots in the agent hierarchy may be
trained as usual, producing behaviors in the form of
hierarchical finite-state automata, with the caveat that
all robots ultimately share the same behavior library.
First-level coordinators are then trained to develop HFAs
themselves: the “basic behaviors” at the bottom level of
the HFAs are the behaviors from the robots’ behavior
library. Second-level coordinators are then trained to
develop HFAs whose basic behaviors are the behaviors
of their first-level children, and so on.

It is straightforward for coordinators to affect the be-
haviors of subsidiaries: but on what conditions should
we base the transition functions of coordinator HFAs? In-
dividual robots’ transition functions are based on sensor
information and flags: but coordinator agents have no
sensors per se. We have opted to give coordinators “sen-
sors” in the form of statistical information about their
subsidiaries. Examples: whether a subsidiary has seen
a bad guy, or whether all subsidiaries are Done, or the
mean location of the coordinator’s robot team members.

This organization of the team into hierarchies allows
us to reduce the scope of each team learning task by
reducing the number of agents and potential interac-
tions as necessary. And the use of HFAs at the coordina-
tor level allows us to decompose complex team behav-
iors into simpler ones which can be rapidly taught to
agent teams because they have reduced the gulf between
micro- and macro-level phenomena.

We ultimately plan to use this method to develop het-
erogeneous team behaviors: but for now we are con-
centrating on homogeneous behaviors. We note that
this embedding of the HFA training into a robot team
hierarchy suggests at least three different notions of “ho-
mogeneous” behaviors, as shown in Figure 4. First, all
robots may simply perform the exact same HFA, but
independent of one another. But we can go further than

(A)

Patrol Patrol Patrol Patrol

(C)

Attack Attack Disperse Disperse

Collective Patrol Collective Patrol

Save Humanity

(B)

Disperse Disperse Disperse Disperse

Collective Patrol

Figure 4: Three notions of homogeneity. (A) Each agent
has the same top-level behavior, but acts independently.
(B) The top-level behavior all agents is the same, but
may all be switched according to a higher-level behavior
under the control of a coordinator agent. (C) Squads in
the team are directed by different coordinator agents,
whose behaviors are the same but may all be switched
by a higher-level coordinator agent (and so on).

this and still stay within the aegis of homogeneity: we
may add a coordinator agent which controls which HFA
the robots are performing. It does so by running its own
HFA with those subsidiary HFA as basic behaviors. Co-
ordination may continue further up the chain: second-
or higher-level coordinator agents may also dictate their
subsidiaries’ choice of HFAs.

5.1 Demonstration

We have performed a demonstration which illustrates
this approach of training team hierarchies of hierarchical
automata. We trained a group of four Pioneer robots
to perform a pursuit task while also deferring to and
avoiding a “boss”. Each robot had a color camera and
sonar, and was marked with colored paper (see Figure
1(b)). The boss, intruders to pursue, and a home base
were also marked with paper of different colors.

The task was as follows. Ordinarily all agents would
Disperse in the environment, wandering randomly while
avoiding obstacles (by sonar) and each other (by sonar
or camera). Upon detecting an intruder in the environ-
ment, the robots would all Attack the intruder, servoing
towards it in a stateful fashion, until one of them was
close enough to “capture” the intruder and the intruder
was eliminated. At this point the robots would all go
to a home base (essentially Attack the base) until they
were all within a certain distance of the base. Only then
would they once again Disperse. At any time, if the boss
entered the environment, each agent was to RunAway
from the boss: turn to him, then back away from him
slowly, stopping if it encountered an obstacle behind.

This task was designed to test and demonstrate ev-
ery aspect of the hierarchical learning framework: it re-
quired the learning of hierarchies of individual agent be-
haviors, stateful automata, behaviors and features with
targets, both continuous and categorical features, mul-
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descriptions here are categorical sounding, most are in fact derived from continuous values: for example, the
condition Left(Color) is trained based on various X coordinates of the color blob in the field of view.

tiple agents, and learned hierarchical behaviors for a
coordinator agent.

Each agent was provided the following simple basic
behaviors: to continuously go Forwards or Backwards,
to continuously turn Left or Right, to Stop, and to Stop
and raise the Done flag. Transitions in HFAs within
individual agents were solely based on the following
simple features: whether the current behavior had raised
the Done flag; the minimum value of the Front Left, Front
Right, or Rear sonars; and the X Coordinate or the Size of
a blob of color in the environment (we provided four
colors as targets to these two features, corresponding to
Teammates, Intruders, the Boss, and the Home Base). Each
robot was dressed in the Teammate color.

We began by training agents to learn various small
parameterized HFAs, as detailed in Figure 5, Subfigures
1 through 7. Note that the Servo and Scatter HFAs are
stateful: as was the case for the humanoid robot exper-
iment, when the target disappeared, the robot had to
discern which direction it had gone and turn appropri-
ately. Since our system has only one behavior per state,
we enabled multiple states with the same behavior by
training the trivial HFA in subfigures 3A through 3D,
just as in the humanoid experiment.

We then experimented with the “basic” homogeneous
behavior approach as detailed in Figure 4(A): each agent
simply performing the same top-level behavior but with-
out any coordinator agent controlling them. This top-
level behavior was Patrol (Figure 5, Subfigure 8), and
iterated through the three previously described states:
dispersing through the environment, attacking intrud-
ers, and returning to the home base. We did not bother
to add deferral to the “boss” at this point.

Coordinated Homogeneity Simple homogeneous co-
ordination like this was insufficient. In this simple con-
figuration, when an agent found an intruder, it would
attack the intruder until it had “captured” it, then go
to the home base, then resume dispersing. But other
agents would not join in unless they too had discovered
the intruder (and typically they had not). Furthermore,
if an agent captured an intruder and removed it from
the environment, other agents presently attacking the
intruder would not realize it had been captured, and
would continue searching for the now missing intruder
indefinitely!

These difficulties highlighted the value of one or more
coordinator agents, and so we have also experimented
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Figure 6: Learned multi-robot behavior in action.
Demonstrator is holding a green target, signifying an
intruder.

with placing all four robots under the control of a single
coordinator that would choose the top-level behavior
each robot would perform at a given time. The coordi-
nator was trained to follow the CollectivePatrol behavior
shown in Figure 5, Subfigure 9. This HFA was similar
to the Patrol behavior, except that robots would attack
when any robot saw an intruder, would all go to the
Home Base when any robot had captured the intruder,
and would all resume dispersing when all of the robots
had reached the Home Base. This effectively solved the
difficulties described earlier.

Note that in order to determine transitions for this
HFA, the coordinator relied on certain features gleaned
from statistical information on its team. We provided
the coordinator with three simple features: whether any
robot had seen the Intruder’s color; whether any robot
was Done, and whether all robots were Done.

Finally, we trained a simple hierarchical behavior on
the coordinator agent as an example, called CollectivePa-
trolAndDefer (Subfigure 10). We first added a new statisti-
cal feature to the coordinator agent: whether anyone had
seen the Boss color within the last N − 10 seconds. The
coordinator agent would perform CollectivePatrol until
someone had seen the Boss within the last 10 seconds,
at which point the coordinator agent would switch to
the RunAway behavior, causing all the agents to search
for the Boss and back away from him. When no agent
had seen the Boss for 10 seconds, the coordinator would
resume the CollectivePatrol behavior (Figure 6).

Summary This is a reasonably comprehensive team
behavior, with a very large non-decomposed finite-state
automaton, spanning across four different robots acting
in sync. We do not believe that we could train the agents
to perform a behavior of this complexity without de-
composition, and certainly not in real-time. There are
too many states and aliased states, too many features
(at least 12), and too many transition conditions. How-
ever decomposition is straightforward into simple, easily
trained behaviors with small numbers of features and
states, simple (indeed often trivial) and easily trained
transition functions, and features and states which may
vary from behavior to behavior.

Learning in the Small Our system is capable of do-
ing classification over spaces of any level of complexity.
But in order to reduce the necessary sample size and
enable real-time on-the-fly training, our trained transi-
tion functions are usually based on a very small number
of features (typically one or two, rarely three), and the
resulting space is not complicated. In some cases the
learned function requires a large decision tree: but more
often then not, the tree has just a few nodes.

From a machine learning perspective, such learned
behaviors are very simple. But this is exactly the point.
Our goal is to enable rapid, assisted, agent and robot
behavior development. From this perspective, decom-
position to simple models allows even novices to build
complex behaviors rapidly because the number of sam-
ples does not need be large. This puts a technique like
ours at the very edge of what would be reasonably called
machine learning: it is declaration by example.

6 Conclusion

We have presented a hierarchical learning from demon-
stration system capable of training multiple robots with
minimal examples. By organizing a group of robots into
a hierarchy, we provide a logical decomposition into
simpler behaviors which may be trained quickly. The
coordinator approach developed in this paper allows for
arbitrary group decomposition where subsidiary groups
are under different coordinator agents.

In the future, we would like to apply our system to het-
erogeneous behaviors where subgroups (of possibly one
robot) are controlled via different HFAs. In fact, these
different HFAs do not need to share a basic behavior
library, which may be the case if the robots have differ-
ent capabilities. In addition, we plan to explore more
explicit coordination between robots and the challenges
associated with training such coordination.
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