
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

NetGator: Malware Detection Through Program Interactive Proofs

Brian Schulte
bschulte@gmu.edu

Rhandi Martin
rmartinl@gmu.edu

Haris Andrianakis
candrian@gmu.edu

Angelos Stavrou
astavrou@gmu.edu

Technical Report GMU-CS-TR-2011-6

Abstract
Exfiltration of data using internet-borne attacks has become a
credible threat for organization and enterprises. History has
shown that crafted targeted attacks and zero-day malware are
capable of penetrating even the most sophisticated defenses.
To make matters worse, intrusion detection systems that per-
form analysis of network traffic are dependent on the timely
information provided by blacklisting, signature schemes, or
anomaly patterns. This is especially true for heavily used
communication protocols where blocking decisions affect the
everyday operations of the organization. Even when the intru-
sion is detected in a timely manner, valuable data might have
already been stolen.

In this paper, we propose a new approach to distinguish
legitimate browser software from malware that generates iden-
tical network traffic signatures. Our system consists of two
parts: a signature-based passive detection module, and a mod-
ule that issues Program Interactive Challenges (PICs) to client
applications. Initially, we perform passive detection utilizing
content inspection techniques that analyze network header ele-
ment order. Of course this is not enough: we demonstrate that
passive detection can be easily subverted. To amend that, we
introduce an interactive detection module in the form of inline
network proxy that challenges the detected browser forcing it
to exercise known specific internal functionality. For browsers,
we can leverage HTML, Flash, Javascript and other common
browser components to form challenges that malware will not
be able to respond to due to lack of functionality. Contrary to
interractive challenges, our challenges are transparent to the
user allowing for a seamless browsing experience. We demon-
strate the effectiveness of active challenges on thousands of
real world malware samples. Our results show that, depend-
ing on the deployment scenario, PICs incure no or minimal
(average of 0.35 seconds) latency per inspected objected.

1 Introduction
Sophisticated malware currently operates unhindered in the en-
terprise. The Anti-Phishing Working Group (APWG) reported
in 2010 that more 48% of all computers are infected with

some form of malware. Furthermore, sophisticated malware
utilize obfuscation and polymorphic techniques that easily
evade anti-virus and intrusion detection systems. The result is
that security teams are forced to a losing position, as they are
not able to gain a complete and timely picture of the malware
operating within their enterprise.

Once inside the host, malware establishes command and
control channels with external botmasters and drop points to
exfiltrate data. To avoid detection, malware utilizes legitimate
and usually unfiltered ports and protocols, such as HTTP(S),
to establish these communications. By utilizing well-known
ports and protocols, malware comms blend into the sea of
legitimate application traffic traversing the network boundary.
Due to the volume of network traffic, enterprises are unable to
effectively monitor outbound HTTP traffic let alone encrypted
HTTPs traffic and discern malware from legitimate clients.
Current botnet detection systems focus on identifying the bot-
net lifecycle by looking for specific observables associated
with either known botnets or typical botnet behaviors. These
approaches suffer from the fact that malware continues to
evolve in sophistication improving their ability to blend into
common network behaviors.

Additionally, current systems are unable to inspect en-
crypted communications such as HTTPS leaving a major hole
that malware will increasingly capitalize on. Note that the
use of encrypted traffic has been growing as web applications
begin utilizing HTTPS for its privacy benefits. For example,
Facebook recently announced HTTPS as an optional protocol
for accessing its site. While an improvement for privacy, the
use of HTTPS poses major technical hurdles for current net-
work monitoring and malware detection. NetGator is short for
Network Interrogator and offers an entirely different approach
to network-based malware detection and mitigation. Rather
than attempting to classify network traffic as either good or bad
based on packet, flow, or content inspection, as most current
systems do, NetGator focuses on identifying the application
behind the source of the communication. Indeed, NetGator
can effectively and unobtrusively verify that the initiator is in
fact the application that it is advertising to be and not malware
code that attempts to disguise itself as a benign application.

To that end, NetGator operates as a transparent proxy sit-

1



uated in the middle of all conversation between clients and
servers. NetGator employs protocol analysis to first identify
the advertised client application type based on its network
communication fingerprint. Next, NetGator validates that the
app is in fact who it is advertising to be by issuing a chal-
lenge back to the client that exercises existing functionality
of the legitimate benign application. The challenge is a small,
automatically generated piece of data in the form of an en-
capsulated puzzle that a legit app will be able to process and
automatically respond without any human involvement. For
instance, a JavaScript packed HTTP redirect request required a
JavaScript enabled application to be unpacked and executed. If
the app is unable to solve or respond to the challenge, NetGator
will flag the source as potentially being malware and option-
ally severe the connection and report the offending source.
The proposed approach is an automated twist of the Human
Interactive Proofs mechanism (e.g., CAPTCHAs), but focused
on verifying program internal functionality rather than humans.
As such, Invincea Labs has coined this approach as Program
Interactive Proof or PIP.

The major challenge in developing robust malware detec-
tion solutions is to develop fast, scalable, real-time systems
that can detect misuse, protocol deviation and malicious down-
loads. The contemporary approach to content-based client
identification is easily defeated by falsifying browser configu-
ration items or by setting the User-Agent field of HTTP request
packets. Most active methodologies are in two flavors: offline
systems that analyze traffic and make retroactive decisions,
and online systems that disrupt communication by challenging
the user, or by server side queries of client configuration files
or components.

To address the inadequacies of contemporary detection sys-
tems, we implement a malware detection system using two
major components. For passive detection, we focus on high-
speed packet analysis. For our active module, we focus on
client-side queries that are real-time, transparent, and do not
disrupt communication. To this extent, our work contributes
the following advances:

• We implemented an algorithm that utilizes a two-pronged
approach to identify malicious traffic. We screen traffic
with our passive detection module, as well as challenging
the client with our active module.

• We incorporate passive client identification that analyzes
the order of header elements in packets generated by a
particular client.

• We introduce a novel architecture in which our gateway
device challenges the application to prove itself. By
our design principle, our system does not require user
interaction.

2 Threat Model

2.1 Assumptions

We assume that a client machine is possibly infected with
malware. It is also assumed that malware that infects the
client machine establishes back channel communication with
remote server(s). We consider that malware may not form
connections immediately upon execution, but may wait for
an indeterminate amount of time before initiating connection.
Also, we assert that a certain subset of browser components are
necessary to navigate the Internet and confine our challenges
to these. Lastly, we assume that the sophistication of most
current malware has not yet reached the level of implementing
entire HTML, Javascript, or Flash engines within themselves.

2.2 Limitations

We are aware that we have not tested every browser; it is
highly improbable that we could enumerate them all. Instead,
we choose test clients that are popular and cross-platform
to create a signature set that encompasses the majority of
available clients. In controlled environments, like government
networks, on which every application is known and approved,
this approach is functional and results in low false positives.
On open networks, like University networks, this approach
would result in higher positive rates of unknown application
detection.

3 Motivation

There are numerous anti-virus and firewall solutions available
currently, but the question is how effective are they? Also, it
is important to show that our concentration on HTTP traffic is
well founded. We answer both of these questions by running
a plethora of malware samples from Google and Malware
Domain List. 1170 zero-day samples were obtained and were
run in Windows virtual machines under two basic scenarios: 1)
while host-based Symantec AntiVirus and Windows Firewall
were active to ascertain the effectiveness of AV signatures
and rule-based security; 2) with no host-based security to find
which malware generate HTTP/S connections when executed.
In order to get a broader understanding, we waited over various
time periods to see if malware attempted communications. The
results can been seen in Figure 1.

Out of the sample we used, nearly half of the malware used
HTTP/S for outbound communications. This shows that there
is a great need for a system that can thwart malware’s HTTP/S
connections. Aside from the fact that malware used HTTP/S,
75% of those type of connections were unclassified by Norton
AntiVirus and Windows Firewall which tells us that current
technologies, while not completely ineffective, are not up to
par.

2



Figure 1: Study of Zero-day Malware

4 Background
In order to design an effective system to efficiently detect
and prevent malicious traffic from leaving the confines of the
infected system, we need to understand the various elements of
HTTP transmissions and how they operate. The understanding
of the HTTP protocol allows us to construct an architecture
that can accurately make use of the protocol in order to best
detect and thwart malicious agents’ attempts at calling out.

4.1 HTTP Headers
HTTP request and response packets begin with various header
elements contains pertinent information about the transmis-
sion. Requests are prefaced by various headers notifying the
server of what the client expects to receive. Before the headers
begin, the very beginning of the packet contains the request
method such as GET or POST. Responses are accompanied
by headers as well informing the client of what is being trans-
mitted. Similar to request packets, the response code precedes
the response packet’s headers. This response code broadcasts
the result of the request made by the client. Common codes
include ”200 OK” meaning the file requested was returned
properly and ”404 Not Found” indicating the file could not be
found.

4.2 MIME Types
Multipurpose Internet Mail Extension(MIME) types describe
the content type of the message being transmitted. This is
especially important to us due to the fact that we want to
confine our different challenges to particular messages based
on their MIME types. There is a plethora of specific MIME
types, but there is only a minimal amount of general types. For
instance, the MIME type application/x-compressed represents
a .tgz file but the application type is the general type which
represents a large set of files. The main general MIME types
are application, audio, image, text, and video. The main
distinction we have to make in our system is between data
which is labeled text/html and which is not. Text/html is the
MIME type of most webpages and therefore allows us to better
target our challenges to the appropriate HTTP transmissions.

5 Related Work
There exists a body of work in application fingerprinting and
malware detection, primarily, for the purpose of distinguish-
ing legitimate traffic from malware communication, and for
policing file downloads. The most popular form of real-time
browser challenges is to utilize server-side techniques that
read browser configuration files[12][15] (Javascript, ASP, etc.),
cookie information[11], or search for platform specific compo-
nents like flash blockers or Silverlight[3]. Another approach is
to search traffic flows for known, specific identifiers like con-
nections to Firefox update servers[19]. Conversely, techniques
like the well-known CAPTCHA puzzles prove the existence
of a human user. However, such methods are disruptive and
overt which is contrary to our design principle.

For our implementation, we prefer a combination of these
approaches, a real-time traffic analysis of message requests.
Our passive detection system is similar to both methods in
that it is non-invasive and does not disrupt communication.
Unlike previous systems, ours moves the detection mechanism
closer to the source. We also add the focus of preventing data
exfiltration. However, analyzing the existence and order of
header elements is not a new concept.

Our work was partly inspired by various automatic protocol
analysis systems[10][18]. While not similar to our work in
desired outcome, the overall architecture of various automatic
protocol analysis systems are very similar to ours. These
systems utilize injection of messages to various applications
in order to automatically determine how a particular protocol
is organized. We are not injecting messages to test a protocol,
but rather to examine a particular application if order to prove
identity.

For malware detection, a great body of research is concerned
with policing file downloads. Congruent with this reasearch
is to identify what services or applications are active on a net-
work, in order to distinguish malware from legitimate use. One
approach is to search traffic flows for known, specific identi-
fiers like connections to Firefox update servers[19]. Another
is to analyze the existence and order of header elements.

While these passive and active detection mechanisms may
be sufficient for the current state of malware, we contend that
they raise the bar to a degree that is technically trivial to over-
come. As such, our active modules challenge the necessary,
and some optional, components and functions of browsers,
in order to verify the legitimacy of requesting applications.
In addition, we have the added benefit of disrupting botnet
Command-and-Control(C&C) channels, and preventing spam
and data exfiltration. We have not encountered any work that
mirrors ours in concept, implementation or completeness.

5.1 Botnets

Traditionally, botnet detection and mitigation systems like
BotSniffer[6] have focused on zombies that contact In-
ternet Relay Chat(IRC) C&C servers or utilize IRC-style
communication[1]. Unfortunately, botnets have grown in
sophistication to use Peer-to-Peer (P2P) and unstructured

3



communication[2, 8]. In addition to the traditional techniques
such as blacklisting, both signature and anomaly based detec-
tion, and DNS traffic analysis, BotHunter[5] proposes using
infection models to find bots, while BotMiner[4] analyzes
aggregated network traffic. However, these approaches are
inadequate for disrupting non-IRC botnets and C&C channels.
When data is contained completely within the header elements
of a packet, the greater the amount of data that is embed-
ded, the more likely a malformed packet is created[17]. C&C
control messages can be very small, and easily embedded in
a request packet, therefore, the best method for disrupting
C&C messages is to prevent malicious requests packets from
arriving at the destination.

5.2 Data Exfiltration
In addition to HTTP request packets, data streams are more
often used to convey data. For analyzing packets that con-
tain payload, deep packet inspection techniques are favored.
To these packets, signature- or anomaly- based detection is
applied[2]. To foil this mechanism, malware may use the same
secure protocols that users employ to protect themselves from
malicious agents[13, 7]. Our approach does not analyze the
data, but questions the client that is sending or requesting data.
Due to this difference, we are able to thwart zero-day malware
as well as not requires any machine learning. Furthermore, we
implement systems that allow us to analyze even the secure
communications. We consider that both methods may be used
in an overarching system. We envision that our PIC module
would pre-screen traffic for the deep inspection module.

5.3 SPAM
Spam is widely regarded as the most notorious Internet nui-
sance. The favored approaches for combating spam are
through IP and behavioral blacklisting known-bad hosts, and
through data stream analysis[14, 16, 9]. We handle spam in
the same manner as we do for information leakage; we prevent
the initial communication from completing by challenging the
client.

6 Architecture
Our design principle is to keep our system online and transpar-
ent to the user. It does not require a human to prove themselves,
but shifts the onus of proof to the requesting application. Since
the User-Agent field in browser requests is easily altered, we
cannot trust that a request is not generated by malware mas-
querading as a particular client. We also cannot depend on
blacklists to provide timely information in zero-day attack
situations. Therefore, our modules utilize network-level trans-
parent proxies and non-disruptive queries to analyze network
traffic and probe applications. While the bar is raised with
our inspection of packet header ordering, it is a trivial task for
an attacker to craft a perfectly formed GET or POST request.
Therefore, the rest of the paper is concentrated on the active
testing, rather than the passive.

Figure 3: Flowchart of a Client’s Request Through Our System

The infrastructure that we have architected consists of a
single system acting as a transparent proxy which resides
on the network. All traffic from machines on the network
that are to be inspected is routed to this proxy. The proxy in
turn performs any processing necessary and then, if the client
has passed the challenge, forwards the traffic to the original
default gateway of the network. The flow of packets through
our architecture is depicted in the flowchart in Figure 3.

A transparent proxy and Internet content adaptation protocol
(ICAP) server make up the software duo that resides on the
proxy. The proxy software passes all port 80 and port 443
destined traffic to the ICAP server which then handles the
processing of our active challenge. If the client needs to be
challenged, the ICAP server handles inserting the proper code
into the original response, either rewriting it completely, or
simply inserting it into the existing code. This decision is
based on the Multipurpose Internet Mail Extensions(MIME)
type of the requested data; if the response is any type of non
text/html data, the request is blocked and a completely new
response containing only our challenge is sent back to the
client. For text/html types, the challenge code is inserted
inside of the orignal response.

7 Implementation
In our active module implementation, we wish to inject chal-
lenge code into a response the client receives that invokes a
function or component of the client. The challenge is triggered
by finding GET or POST in the message header, however,
packets encrypted by unknown keys cannot be decoded and
parsed. In order to receive cleartext headers for all web traffic,
our analysis module consists of a proxy that can terminate
HTTPS communications. In summary, our browser challenge
system consists of:

4



Figure 2: Proxy-ICAP Server relationship

1. Squid 3.1.8 - an open-source proxy for HTTP, HTTPS
and FTP traffic

2. Greasyspoon - an open source, Java-based ICAP server
with an API for running scripts on requests and responses

All traffic that has a destination of port 80 (HTTP) or port
443 (HTTPS) that is received by the proxy machine is rerouted
to the appropriate ports for the Squid proxy. Once Squid
receives the traffic, it is then passed to the ICAP server for pro-
cessing. The overall architecture of this system is illustrated
in Figure 3. In order to handle HTTPS traffic, it is encrypted
with the proxy’s key. Once the traffic reaches the proxy, it
is decrypted for any processing necessary (ICAP scripts) and
then is re-encrypted on it’s way out to the intended target.

Depending on what type of data is being requested, the
client is challenged either at the request or the response. For
any HTTP response in which the data is not text/html, the
client is challenged at the request, which blocks it until the
challenge is completed. If the data requested is text/html, the
challenge is inserted inside the response allowing it to pass
through. In order to keep track of the various connections
Greasyspoon’s cache, which contains a hashmap, is levereged.
This hashmap contain entries for each IP address + user agent
pair that is seen with information about it such as whether it
passed the challenge or not. It also stores how many times
the particular client has been challenged as well as how many
times it passed the challenge. With this mechanism in place,
even if the malware correctly forms a user-agent string that
is operational on the infected machine, the hashmap will still
reflect that an entity on the system did not pass the challenge.
The hashmap is periodically written to a log file available for
inspection.

In order to avoid challenging the same client an unnecce-
sary amount of times, a record of which top level domains a
particular proven client has visited is kept. This way, when
the proxy sees a request, it first checks if the client has already
passed the challenge. If it has, it then lets the request pass if
the top level domain has already been visited by the client. In

other words, if a client tries to access www.foo.com/bar and
has already proven itself while requesting www.foo.com, the
proxy will let it pass automatically. This enables us to lessen
any further burden from websites that trigger many GET re-
quests for items such as images or flash objects. This way, we
can have an even lower overall overhead for users.

7.1 Request Testing
When the proxy sees a request for non-text/html data, it issues
a completely new response to the client in order to challenge
it. The challenge can take various forms based on what the
network administrator deems appropriate. Whichever test is
administered, the driving element behind each of them is a
redirect to the original requested URL with a hash appended to
it. The only challenge that needs to contain more than a simple
redirect command is the Flash challenge. This is due to the
fact that the challenge is a Flash object, not actual lines of code.
In order to correctly pass the requested URL and hash to the
Flash object, Javascript functions are returned in the HTML
code to interact with the object and provide it with the redirect
information needed. If the client is able to correctly execute
the challenge, Greasyspoon will then see a new request for
the originally requested URL with the hash appended as a
parameter. If the hash is correct, the request is allowed to pass
while sending back an error message to the client if the hash
is incorrect. The implementation for the request challenging
can be seen in Figure 4. Once the request has been seen with
the correct hash, Greasyspoon updates the hashmap to reflect
that that particular IP and user agent combination has passed
the challenge.

7.1.1 Request Script

The responsibility of Greasyspoon is to intercept the connec-
tion when it observes a request and send back a custom crafted
response to the client in order to initiate the challenge. In
order to correctly form the response to be returned, the ICAP
server executes a Javascript program. The two undertakings

5



(a) Request Challenge Flow

(b) Response Challenge Flow

Figure 4: Request and response challenge architectures

of the script are to generate the hash and then craft the new
HTML code the client will see. First, to generate the hash, a
combination of four factors is used: a static, secret key known
only to the proxy, the requesting client’s IP address, the URL
being requested, and the current time’s seconds value. The
combination of these elements is then hashed using SHA1 and
then consequently inserted into the HTML code to be sent
back to the client.

The second task for the request script to perform is to re-
place the header and the body of the request in order to form
the custom response that is to be sent back to the client. The
header must be replaced with a properly formed HTTP re-
sponse header to signal to the ICAP server that a response is
required to be sent back to the client directly from the proxy.
For our implementation we use a standard HTTP/1.1 200 OK
response. The HTML code that is inserted is simply a frag-
ment of Javascript code executing a redirect. Once the custom
crafted HTML code is sent back, the hashmap entry is updated
to reflect that a challenge has been sent to the current request-
ing client. The various versions of code that is returned from
the proxy is shown in Figure 5.

(a) Javascript Challenge Code

(b) HTML Challenge Code

(c) Flash Challenge Code

Figure 5: HTML returned by proxy for the various challenges

The code for the Flash and HTML challenges are essentially
identical, each containing a redirect function to the originally
requested URL with a hash concatenated to it. If the client is
able to correctly execute the challenge code, the proxy will
see a separate request with a hash appended to it. If the hash
is correct, the new request is allowed to pass through and the
hashmap of Greasyspoon is updated to reflect that the client
passed the challenge. The size of the request scripts each
average around 280 lines of code.

7.2 Response Testing

The reason for response testing is two-fold: it allows us to
diminish the overhead that might be introduced from enacting
the request challenge on each HTTP request and also for the
case where a malicious agent attempts to download an exe-
cutable that is disguised as a .html file. If we were to block
at every data request, that would impact scalability and also
the user’s experience. It is conceivable that on a smaller, more
confined network the system could be setup to challenge every
request, but on a larger infrastructure this would most likely be
impractical. If the data requested is of the type text/html, the
proxy lets the request pass through. When the response comes
back for that connection the challenge code is then placed in
the response. For this type of testing, an image that resides
on the proxy is embedded in Javascript code. The proxy then
looks for requested for this specific image and once it sees
one, it then knows that the challenge has been completed. This
implementation can be seen in Figure 4.

6



Figure 6: Example entry from the logfile

7.2.1 Response Script

The response script is actually two part: a script that processes
on the request and a script that is called when the response is
seen with them combining to be about 300 lines of code. The
initial step in the process is to determine if the client is expect-
ing a text/html response or if the request is for our specific
challenge image. If it is not, the response challenge is not acti-
vated. If the request is for our challenge image, Greasyspoon
searches for an already established entry in the hashmap and
updates it reflecting that the client has passed a challenge. If
the client is simply expecting a text/html response, an entry of
the user-agent string and client IP is written into the hashmap
showing that it is in the state of a request being seen. The
original request then goes out to the intended server. Once
a response for the connection is seen, the response script is
called. This script probes for an already present entry in the
hashmap for the client the response is to be sent to. If an entry
is located, it is revised to show that a challenge has been sent
to the client. It then injects the HTML code inside the original
response from the queried server to imbed our challenge im-
age and sends the response back to the client. The response
infrastructure is also responsible for the transformation of the
hashmap into a logfile format. An example entry from the
logfile is shown in Figure 6. The operating system, application
name, and application version are all extracted from the user-
agent string. This is done to enhance the engineer’s ability to
analyze the logs and diagnose a problem should one arise.

8 Experimental results
The hardware we used to perform the tests consisted of a
laptop for the client and a Dell server for the proxy. The laptop
was a Dell Latitude E6410 with an Intel Core i7 M620 CPU
at 2.67 GHz, 8GB of RAM and a gigabit network interface.
Firefox 3.6.17 was used as the client’s browser throughout
testing. The server was a Dell PowerEdge 1950 with two Xeon
processors, 16GB or RAM and a gigabit network interface. In
order to assess the impact of a user on a network employing
our system, we measured the overhead that each of our tests
introduced to HTTP connections. We also desired to establish
how efficiently the server can process the scripts that are being
executed on the client’s request. In order to accomplish that
a script was designed to loop through 10000 iterations of the
request script with the iterations per second being returned.
An average of this script being run 30 times was taken to

Figure 7: Overhead from response challenge

determine the capability of our server in processing scripts.
For all testing, Squid’s caching mechanism was disabled as
well as all of Firefox’s caching.

8.1 Response testings results

In order to test the overhead of our response challenges, we
performed tests loading various Computer Science Department
websites throughout the country. Baselines were established
for each website by performing a simple loading of each of
them without the proxy involved. Once these baselines were
established, the gateway of the client laptop was changed to
be our proxy. The websites were once again loaded which
introduced our response test to the interaction. Each website
was loaded thirty times both with and without the response
testing. In order to establish time, the difference in between
the time-stamp of the first and last packet in the stream was
taken. The results of these tests are shown in Figure 7.

8.2 Request testings results

To evaluate our request testing architecture, we tested the
various types of challenges we use in download scenarios
utilizing PlanetLab. Various PlanetLab nodes were used from
throughout the world using all virtualized hardware. Nodes
residing in Virginia, Kansas, Hungary, and South Korea were
utilized to perform the benchmarking. Executable files of
various sizes (10KB, 100KB, and 1000KB) were hosted on
each node on an Apache web server. The client then performed
the downloading of each file thirty times from each of the
nodes, both with and without the proxy. The values of time
were determined by the difference in the time-stamp of the
packet that started the initial request before the challenge and

7



(a) Javascript challenge

(b) Flash challenge

(c) HTML challenge

Figure 8: Request Challenge Overhead

the last packet that closed the connection after downloading the
file. We performed experiments to determine the overhead of
the Flash, Javascript, and HTML challenges shown in Figure
8.

8.3 Analysis

Our testing shows that the overhead introduced by any of our
challenges is completely negligent to the user. For the more
basic Javascript request test, the average overhead was only
0.274 seconds while the more challenging Flash request test
had an average overhead of 0.580 seconds. The most basic
test of an HTML redirect introduced only 0.206 seconds of
overhead. The request challenge results show that the overhead
remains the same across various file sizes; this means that in
terms of percentage the overhead gets progressively smaller as
the files downloaded become larger. The response challenge
results are even smaller with an average overhead of only
.024 seconds. With the minimal amount of overhead that our
system introduces, it is unperceivable to the user. Also, we
saw that our proxy was exceedingly efficient in processing the
scripts, being able to handle on average around 1200 request
scripts per second.

It is of worth to note that our infrastructure can actually have
a positive impact on performance on the network of which it is
deployed. This is due to Squid’s caching mechanism. For our
testing, we were forced to disable the caching of Squid to get a
true measurement of the overhead introduced from the scripts
being processed. If utilized on a powerful server of which
Squid’s caching can take full advantage the network could
see performance increases for commonly visited websites or
downloaded files.

During out testing to establish what percentage of malware
calls out utilizing HTTP/S, we found that none of the mal-
ware which used either protocol could overcome our challenge
architecture. That sample size equates to 574 malware sam-
ples challenged. The typical behavior of the infected systems
would simply try to re-request the file it had originally sought
after only to repeatedly be returned our challenge. The only
false positive we observed in our testing was the use of Wget.
However, our testing atmosphere was limited and comprised
of a select group of user agents and did not mimic an enterprise
system. It is possible that on an implementation of that scale
that increased false positives may be observed due to various
agents without full browsing capabilities requesting files via
HTTP/S .

9 Conclusions
In this paper, we introduced a system for identifying malware
downloads and malicious transmissions. We divide this sys-
tem into two subsystems that are real-time and transparent to
the user. Our first phase is a passive detection module that an-
alyzes request packets, and relies on the consistency in header
element order to apply our signatures. We analyze HTTP and
HTTPS transmissions using regular expression pattern match-

8



ing to determine the legitimacy of a client. Our passive system
does not rely simply on the content of the User-Agent field,
nor does it query any components of the browser. It is the
job of our active challenge subsytem, PIC, to query a client
on particular attempts to download or send information. It
requires the application to call functions that should exist for
legitimate conversation. Failing this, the communication is
broken.

First, for all our test clients, we derived signatures that were
unique where possible. Next, we demonstrated the worth of
our approach by quantifying the effectiveness of other anti-
malware mechanisms on zero-day malware. Then, we showed
how feasible our active approach was for HTTP/S communi-
cations. Specifically, we broke the connections of any applica-
tion that could not prove its identity. Our results confirm that
PIC is a low-latency, lightweight solution. In our worst-case
simple communication tests, PIC introduced approximately
1s overhead for our flash variant of the challenge while main-
taining an average of 0.353s across all of the request tests and
.024s on the response testing.

References

[1] B. AsSadhan, J. Moura, D. Lapsley, C. Jones, and
W. Strayer. Detecting Botnets Using Command and
Control Traffic. In Proceedings of the 2009 Eighth IEEE
International Symposium on Network Computing and
Applications-Volume 00, pages 156–162. IEEE Com-
puter Society, 2009.

[2] M. Bailey, E. Cooke, F. Jahanian, Y. Xu, and M. Karir.
A survey of botnet technology and defenses. In Pro-
ceedings of the 2009 Cybersecurity Applications & Tech-
nology Conference for Homeland Security-Volume 00,
pages 299–304. IEEE Computer Society, 2009.

[3] P. Eckersley. How Unique Is Your Web Browser? In
Privacy Enhancing Technologies, pages 1–18. Springer,
2010.

[4] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering analysis of network traffic for protocol-and
structure-independent botnet detection. In Proceedings
of the 17th conference on Security symposium, pages
139–154. USENIX Association, 2008.

[5] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
Bothunter: detecting malware infection through ids-
driven dialog correlation. In SS’07: Proceedings of 16th
USENIX Security Symposium on USENIX Security Sym-
posium, pages 1–16, Berkeley, CA, USA, 2007. USENIX
Association.

[6] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting bot-
net command and control channels in network traffic. In
Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS08). Citeseer, 2008.

[7] D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, and
K. Nakao. Malware Behavior Analysis in Isolated Minia-
ture Network for Revealing Malware’s Network Activity.
In Communications, 2008. ICC’08. IEEE International
Conference on, pages 1715–1721. IEEE, 2008.

[8] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale
botnet detection and characterization. In Proceedings of
the first conference on First Workshop on Hot Topics in
Understanding Botnets, page 7. USENIX Association,
2007.

[9] T. Kusumoto, E. Chen, and M. Itoh. Using call patterns
to detect unwanted communication callers. In Applica-
tions and the Internet, 2009. SAINT ’09. Ninth Annual
International Symposium on, pages 64 –70, 20-24 2009.

[10] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic
protocol format reverse engineering through conectect-
aware monitored execution. In In 15th Symposium on
Network and Distributed System Security (NDSS), 2008.

[11] K. McKinley. Cleaning Up After Cookies, 2008.

[12] M. D. Network. How to: Detect browser types and
browser capabilities in asp.net web pages, 2010.

[13] R. Perdisci, W. Lee, and N. Feamster. Behavioral clus-
tering of http-based malware and signature generation
using malicious network traces. In Proceedings of the 7th
USENIX conference on Networked systems design and
implementation, page 26. USENIX Association, 2010.

[14] A. Ramachandran, N. Feamster, and S. Vempala. Filter-
ing spam with behavioral blacklisting. In Proceedings of
the 14th ACM conference on computer and communica-
tions security, pages 342–351. ACM, 2007.

[15] W. Schools. Javascript browser detection, 2010.

[16] R. C. University and R. Clayton. Stopping spam by
extrusion detection. In In First Conference on Email and
Anti-Spam (CEAS), Mountain View, CA, 2004.

[17] K. Wang and S. Stolfo. Anomalous payload-based net-
work intrusion detection. In Recent Advances in Intru-
sion Detection, pages 203–222. Springer, 2004.

[18] G. Wondracek, P. M. Comparetti, C. Kruegel, and
E. Kirda. Automatic network protocol analysis. In In
15th Symposium on Network and Distributed System Se-
curity (NDSS), 2008.

[19] T.-F. Yen, X. Huang, F. Monrose, and M. Reiter. Browser
fingerprinting from coarse traffic summaries: Techniques
and implications. In U. Flegel and D. Bruschi, editors,
Detection of Intrusions and Malware, and Vulnerability
Assessment, volume 5587 of Lecture Notes in Computer
Science, pages 157–175. Springer Berlin / Heidelberg,
2009.

9


