
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

An Analysis of System Management Mode (SMM)-based Integrity
Checking Systems and Evasion Attacks

Jiang Wang
jwanga@gmu.edu

Kun Sun
ksun3@gmu.edu

Angelos Stavrou
astavrou@gmu.edu

Technical Report GMU-CS-TR-2011-8

Abstract

System Management Mode (SMM) is an x86 processor fea-
ture designed to assist debugging for hardware manufacturers.
Recent research has shown that SMM can also be used to pro-
tect the run-time integrity of software by invoking SMM to
periodically check current system state and compare it with
known pristine or trusted software states. Researchers and
practitioners have claimed that any unauthorized state modifi-
cation can be detected with an SMM-based system integrity-
checking mechanism.

In this paper, we demonstrate that all hardware-based, pe-
riodic integrity mechanisms can be defeated by a new class
of attacks, which we refer to as “evasion attacks.” Such
attacks use a compromised software stack to remove any
attack traces before the integrity checks begin and to con-
tinue the execution of the malicious code after the integrity
checks are completed. We detail two categories of evasion
attacks: directly-intercepting System Management Interrupt
(SMI) and indirectly-deriving SMI invocations. Finally, we
measure the performance impact of our proof-of-concept pro-
totypes for all of the attacks and present countermeasures for
these attacks.

1 Introduction

System Management Mode (SMM) is an x86 CPU mode
present on all modern processors that creates an isolated
and trusted environment where the developer can safely exe-
cute pre-stored BIOS code. System Management RAM (SM-
RAM), the memory used by SMM, can be locked so that even
the privileged software in the protected mode of the CPU can-
not access it. SMM is entered through a special interrupt
called System Management Interrupt (SMI). SMI can be trig-
gered by the SMI interrupt pin on the processor or through
Advanced Programmable Interrupt Controller (APIC) [10].

SMI is the highest hardware interrupt on an x86 system,
higher than both normal interrupt and non-maskable inter-
rupt (NMI). Therefore, SMM code holds a unique position

to monitor the software running on top of it, whether it is an
operating system or a hypervisor1. Recently, many efforts, in-
cluding HyperGuard [18], HyperCheck [24], and HyperSen-
try [1], utilize the SMM to monitor the integrity of the hyper-
visors. All of these SMM-based systems protect hypervisor
integrity by periodically checking static control structures and
the states of the hypervisor, then comparing them to pristine,
known, and trusted states. Illegal modification to the hypervi-
sor code or important structures can be detected.

In this paper, we demonstrate that the SMI triggering and
memory validation mechanisms can be defeated by what we
call “evasion attacks.” Indeed, if a compromised hypervi-
sor can predict, detect, or subvert the invocation of an SMI,
it can also clean up the attack trace each time before the
integrity measurement starts. Furthermore, it can reload it-
self to the system after the integrity measurement ends or
at a later point in time. This class of attacks is feasible be-
cause, when in SMM, the CPU halts the execution of regu-
lar programs. Therefore, the protection mechanisms must be
carefully crafted to consume little cycles, thus avoiding pro-
hibitive execution costs. We take advantage of this limitation
to craft attacks that exploit the small duration, frequency, and
sometimes periodicity of SMI invocations.

Our analysis is two-pronged and aims to answer the follow-
ing questions: (1) What are the potential ways an attacker can
evade an SMI-based integrity checking system? (2) Can we
prevent these evasion attacks?

We show that an adversary can detect SMM occurrence ei-
ther by directly intercepting SMI or by indirectly inferring it
using time characteristics. In the first case, the attacker can
modify the flow of SMI invocation by placing his/her code as
a preamble to the hardware SMI. This can be accomplished
by modifying APIC tables used to trigger SMI and triggering
a general interrupt controlled by the attacker instead. This di-
rect attack requires that the adversary have access to the same
SMI event trigger that the SMM-based integrity check relies
on. However, the invocation of SMM can also be detected
indirectly by measuring the time spent outside of the hyper-

1Also called Virtual Machine Monitors (VMMs)

1

visor (or general operating system kernel). To achieve this,
the adversary can rely on hardware timers that remain active
while in SMM. For example, the SMI detector [11] can mea-
sure the time elapsed outside of the hypervisor or the general
kernel, and infer the presence of SMM. We show how an at-
tacker can exploit this information to successfully launch an
evasion attack.

Naturally, the next step is to determine how evasion attacks
can be prevented. To this end, we evaluate several defense
mechanisms that can prevent both types of evasion attacks.
One is to hide the time spent in SMM (i.e., make the timer in-
accessible or compensate for the time spent in SMM). A sec-
ond potential solution is to minimize and, at the same time,
randomize the scan interval. Third, the SMM code may at-
tempt to detect the evasion attacks by scanning specific regis-
ters. We compare all of these defense strategies and evaluate
their effectiveness in mitigating evasion attacks. Furthermore,
we study the performance overhead of attacks and counter-
measures through implementation of proof-of-concept pro-
totypes, which we run on unmodified commodity x86 hard-
ware.

In summary, we make the following contributions:
1. Provide a systematic analysis of different classes of eva-

sion attacks.
2. Implement prototypes that demonstrate various evasion

attacks and show the effectiveness of these attacks.
3. Develop defense mechanisms to curtail evasion attacks.
4. Measure the overhead and detection rate of different eva-

sion attacks on commodity hardware.

2 Background
System Management Mode (SMM) was first introduced in
the Intel386 SL and Intel486 SL processors. It became a stan-
dard IA-32 feature in the Pentium processor [10]. SMM is
a separate x86 processor mode from protected mode or real-
address mode. The original purpose of SMM was to provide
a transparent mechanism for implementing platform-specific
functions, such as power management and system security.
The processor enters SMM when the external SMM interrupt
pin (SMI#) is activated, or when an SMI is received from the
APIC.

In SMM, the processor switches to a separate address
space, referred to as System Management RAM (SMRAM).
All hardware context of the current processor running code
is saved in SMRAM. The CPU, being in SMM, then trans-
parently executes code that is usually a part of BIOS and re-
sides in SMRAM. The SMRAM can be rendered inaccessible
within other CPU operating modes. Therefore, it can act as
trusted storage that cannot be accessed by any device, or even
by the CPU when it is not in SMM mode.

SMM cannot be accessed or modified by hypervisors or by
operating systems that run in protected mode; SMM is cur-
rently used for hypervisor integrity checking, which can ver-
ify that the code of the hypervisor or of the operating system
software has not been compromised by malicious code [24, 1].
Figure 1 presents a typical model for SMM-based integrity

Integrity CheckSMI SMM EntrySMM Exit System Management ModeProtected Mode RSM......Execution path
Figure 1: SMM-based System Integrity Checking: the Sys-
tem State is Inspected Only While in SMM.

checking. When the processor receives a System Manage-
ment Interrupt (SMI) event, it will switch from Protected
Mode to System Management Mode (SMM). The integrity
checking code is then run to verify that the hypervisor or oper-
ating system has not been compromised. When rsm instruc-
tion is executed, the processor switches from SMM to Pro-
tected Mode, where the processor will resume its execution
path.

Although each CPU chip has only one SMI pin, many
hardware events can trigger an SMI. The concrete reason for
entering SMM is normally defined by I/O Controller Hub
(ICH) for Intel chipsets and reported by hardware. For ex-
ample, in ICH4, there are 39 events that can trigger SMI [9].
These include power management events, USB events, Total
Cost of Ownership (TCO) events, writing to 0xB2 port, peri-
odic timer expiration, and SMBus-related events. Newer ICH
chips, such as ICH5, ICH9, and ICH10, have similar func-
tions. To enable an SMI event, both a global bit and an indi-
vidual control bit on registers of ICH4 need to be set. Most
of the SMI events have an individual enable bit. However, for
ICH4, nine SMI events cannot be individually disabled. Writ-
ing to an 0xB2 port is one such event. Moreover, there are
registers on ICH to record the reason for entering SMI.

All of the SMM-based systems must follow three steps.
First, they must use some kind of SMI event to trigger SMI.
Second, they must run some code while in SMM. Third, since
the operating system is suspended during SMM, they must
run in a short time, and then exit from SMM.
HyperSimple is a sample SMM-based integrity checking sys-
tem. A kernel module installed in the operating system writes
randomly to the 0xB2 port to trigger an SMI. Then, in SMM,
the code checks the integrity of the operating system kernel
code and static data. HyperGuard [18] is the first SMM-
based integrity checking system. It uses a hardware timer to
periodically trigger SMI. Then, in SMM, the code checks the
hash of most privileged software code running in protected-
mode, whether it is an operating system or a hypervisor. Hy-
perCheck [24] uses a PCI network card to periodically trig-
ger SMI. This ensures that the same SMI cannot be triggered
by the adversary. In SMM, the code scans the static part of the
kernel and sends the data out to a remote server. HyperSen-
try [1] is the most recent SMM-based integrity checking sys-
tem. It uses the Intelligent Platform Management Interface

2

(IPMI) and baseboard management controller (BMC) pre-
sented on the server computers to periodically trigger SMI.

3 Threat Model
In a nutshell, an evasion attack attempts to take over a hyper-
visor or an operating system. Unlike regular attack methods,
however, the malware is equipped with functionality to evade
detection by carefully removing “all” attack traces before the
SMM-based integrity checking defenses examine the system.
After the SMM, the malicious code reloads itself to the sys-
tem and continues its execution. An adversary can launch
evasion attacks to maintain persistent control of the compro-
mised system, even if the system is protected by a certain
SMM-based integrity checking mechanism.

We assume the process of initial compromise is not de-
tected by the integrity monitor running in the SMM. This is
highly possible considering that the current SMM integrity
monitor runs only once for several seconds, and that com-
promising the hypervisor may take just a few instructions.
Evasion attack can be accomplished using the following two
mechanisms: either directly intercepting SMI or indirectly de-
riving SMI. Directly intercepting SMI means that the adver-
sary can intercept or disable and then reissue the SMI to hide
the malicious activities from being detected in SMM. Hyper-
Simple and HyperCheck are vulnerable to these attacks. In-
directly deriving SMI means that the adversary cannot per-
form a direct interception and, as an alternative, tries to use
system resources (e.g., timers) to derive the time properties
of SMI and hide the malicious activities. HyperGuard and
HyperSentry are vulnerable to these attacks. Moreover, we
discuss how to launch evasion attacks to randomized SMM-
checking mechanisms.

3.1 Type I: Directly Intercepting SMI
Figure 2 illustrates how an adversary directly intercepts SMI
and launches evasion attacks. We assume that (1) either the
hypervisor or the operating system has been compromised,
and (2) the adversary has root-level privileges. To intercept
SMI and launch an evasion attack, the adversary needs to lo-
cate the invocation of SMI and modify that part to add some
code before and after SMI.

In Step 1, the code before SMI recovers the system to the
‘clean’ state, except for the malware reloading part, and then
triggers SMI. One round of SMM-based integrity checking is
then executed from Step 2 to Step 5. The attacker need not
change anything between Step 2 and Step 5. In Step 6, the
code after SMI will reload the malicious code to compromise
the system again, and the original execution path then contin-
ues in the protected mode.

3.1.1 Attack Scenarios

We assume that an attacker can identify the SMI-triggering
event by investigating the details of the SMM-based integrity-
checking mechanisms or the simple enumeration of the po-

Integrity CheckSystem Management Interrupt (SMI) SMM Entry 3 4SMM Exit5 System Management ModeProtected Mode
Clean up attack tracesbefore SMI 2Reload malicious code after SMI
16 RSM

Figure 2: Directly Intercepting SMI. The attacker inserts a
code preamble before the SMM-based integrity checks can
occur.

tential SMI-triggering events. Most SMI-triggering events
can either be intercepted (e.g., written to an 0xB2 port) or
rerouted (e.g., a PCI device-triggered SMI). This section fo-
cuses on the SMI events that can be intercepted or rerouted
by the attacker; for those events that cannot be intercepted or
rerouted, the attacker can launch the indirectly-deriving SMI
evasion attacks, as detailed in Section 3.2. This section also
considers two attacking scenarios that focus on whether or
not the attacker has the capability to reissue the same SMI
event as the intercepted SMI event.

Scenario 1: An attacker cannot reissue the same SMI trig-
gering event as the intercepted one.
In HyperCheck [24], the SMI-based integrity checking is trig-
gered by a PCI network card, which makes it difficult for
an attacker to retrigger the same SMI. To do so, the attacker
would need to find the MAC address of the network card used
by HyperCheck and then use another computer to send an au-
thenticated packet to that network card. However, the attacker
can reroute the PCI interrupt to a normal interrupt and then in-
voke SMI by writing to the 0xB2 port.

Interrupt rerouting is possible in this example because PCI
interrupt is configurable through a register. A compromised
hypervisor can write to the register and change the original
SMI interrupt to some normal interrupt controlled by the at-
tacker, then trigger SMI by other means, such as writing to
port 0xB2. The details are discussed in Section 5.2.1. Since
PCI SMI and port-writing SMI trigger different SMI events,
this attack can be easily detected if the SMM code checks the
reason for triggering SMI, which has been implemented in
HyperSentry [1].

Scenario 2: An attacker can reissue the same SMI trigger-
ing event as the intercepted one.
If SMM code checks the reason for triggering SMI, then the
attacker must trigger the same SMI event again after disabling
the SMI or rerouting the SMI to a normal interrupt. Other-
wise, the integrity mechanism will notice the loss of reports
from SMI and launch further investigation. If the attacker can
trigger the same SMI event, it is difficult to find out whether
the SMI is triggered normally or has been intercepted and

3

Integrity Checkmov $0xff, %alout %al, %0xb2 SMM Entry1 SMM ExitSystem Management ModeProtected Mode
RSM

......Execution path
Clean up attack tracesReload malicious code24 3Last Instruction Jmp last instructionnext Instruction Jmp next instruction

Figure 3: Intercept SMI triggering through write to port 0xB2. This attack requires the scanning of memory to identify the call
location for 0xB2

then retriggered. For HyperSimple, the SMI is triggered by
writing to the port 0xB2; an adversary can easily reissue this
event, as shown in Figure 3. To locate the invocation of the
SMI, the attacker can search the following signature of the
code that writes to the port 0xB2.

b0 ff mov $0xff, %al
e6 b2 out %al, %0xb2

The machine code for the instructions given above is 0xb0,
0xff, 0xe6, 0xb2. Therefore, the attacker can search the
memory for this machine code. The attacker replaces the last
instruction before the SMI triggering address with one that
jumps to the code that recovers the system to its clean state,
then appends the “last instruction” to the code before it jumps
back to writing to the port 0xB2. Similarly, the attacker re-
places the instruction following the SMI-triggering address
with another jump instruction. Replacing one or two instruc-
tions with a jump is a “standard” hacking technique, the de-
tails of which can be found in [8].

3.2 Type II: Indirectly Deriving Periodic SMI
If the SMI-triggering events cannot be intercepted, rerouted,
or reissued, then the attacker cannot successfully launch
direct-interception SMI attacks. However, an attacker can
still indirectly derive the SMI time information using other
sources, such as hardware timers. If an attacker knows the ini-
tial SMI time, SMM duration, and SMI interval, then he/she
can launch evasion attacks in a time period between two
SMIs, as shown in Figure 4. After one SMI ends, the at-
tacker reloads the malicious code to compromise the system.
At some time before the next SMI, the attacker cleans up the
attack traces.

An attacker follows three steps to derive SMI time infor-
mation. First, the attacker checks whether or not the system
integrity is protected by SMM. Second, the attacker finds out
the SMI duration and whether it is triggered periodically or
randomly. Third, the attacker learns the start and end times
of SMIs. With this knowledge, an attacker can clean up and
reload the malicious code directly before and after the SMI

Integrity CheckSystem Management Interrupt (SMI) SMM EntrySMM Exit
System Management ModeProtected Mode

Clean up attack tracesReload malicious code Integrity CheckSystem Management Interrupt (SMI) SMM EntrySMM Exit
RSM
RSM

Figure 4: Launch of attacks between two SMIs.

event. We refer to the component that derives SMI time infor-
mation as the SMI detector.

3.2.1 Presence of SMI Events

All x86 microprocessors include a CLK input pin, which re-
ceives the clock signal of an external oscillator. Starting with
the Pentium, many recent x86 microprocessors include a 64-
bit Time Stamp Counter (TSC) register that can be read by
means of the rdtsc assembly language instruction. This reg-
ister is a counter that is incremented at each clock signal. For
example, if the clock ticks at 400 MHz, then the Time Stamp
Counter is incremented once every 2.5 nanoseconds.

The basic idea of an SMI detector is to occupy the CPU for
configurable amounts of time, poll the Time Stamp Counter
(TSC) register for some period, then look for gaps in the TSC
data. Because SMI has the highest priority, the SMI detector
(which runs in protected mode) is frozen in SMM. As the
TSC timer continues to run, any gap indicates a time when
the polling was interrupted. The only reason for this would
be an SMI. This idea was first mentioned by [11].

An SMI detector may detect the existence of SMI in many
ways. Figure 5 illustrates one example. In the time period
TD, the SMI detector checks the Time Stamp Counter ev-
ery Td + TDI , where Td is the duration time for one counter

4

SMM
Td TDI DelayTD SMM

Figure 5: Detecting the invocation of SMI: TD denotes the de-
tection duration while we check the Time Stamp Counter every
Td + TDI , where Td is the duration time for one counter checking
process and TDI is the time interval between two counter checking
processes.

checking process and TDI is the time interval between two
counter checking processes. During TD, if SMI occurs, then
Td or TDI will be dramatically increased by the delay. Thus,
the SMI detector becomes aware of the presence of SMI.

SMI may be triggered by other non-integrity checking
events, such as power management events; however, such
events seldom occur. During a set time period, if the SMI
detector observes that the system enters SMM mode multiple
times, then it knows that the system is protected by SMM.

3.2.2 Detect SMM Duration and Interval

To launch an indirect evasion attack, an attacker must know
the SMM duration and interval, as well as whether the SMI is
triggered periodically.

An attacker can either run the SMI detector continuously
for a time period long enough to capture several sequential
SMIs, or else run the SMI detector for a short time and wait
for a constant (or random) amount of time before running
the SMI detector again until a number of SMIs are captured.
Both methods can derive the time duration and interval for
a periodic, SMM-based checking mechanism. The continu-
ous SMI detector can determine SMM duration and interval
in less time than the random SMI detector. However, since it
disables all other interrupts during its detection period, it has
a higher system overhead and increases the chances of being
detected by defenders.TSMM TSI

ta tb tcTd+TDI
Figure 6: Measuring the SMM duration(TSMM): TSI is the time
interval between two SMIs. Td + TDI is the time delay between two
counter polling processes when the system is not in SMM mode. ta
is the last polling time before the system enters SMM, and tb is the
first polling time after the system exits SMM.

Method 1: Continuous SMI Detector

Figure 6 shows how continuous SMI detectors are used to
determine the interval and duration of SMMs. TSMM is the
time duration of SMM, and TSI is the time interval between
two SMIs. Td + TDI is the time delay between two counter
polling processes when the system is not in SMM mode. ta
is the last polling time before the system enters SMM, and tb
is the first polling time after the system exits SMM. tb − ta is
the time delay between the two continuous polling processes
when the system runs in SMM. In SMM, the TSC counter
continues to increase, and the SMM detector cannot read the
counter value until the system exits SMM. Therefore, tb − ta
is much larger than Td + TDI , allowing us to derive the SMI
duration TSMM = tb − ta − Td − TDI . Supposing that tc is
the time when the system exits the next round of SMM, we
can obtain the SMI interval TSI = tc − tb − TSMM. SMM
interval time TSI is typically much larger than the SMM du-
ration TSMM due to the high overhead in SMM. Moreover,
we know the SMI will be triggered at times ta + n ∗ (TSI +
TSMM), where n is the round number of SMM.

Method 2: Random SMI Detector

The mechanism shown in Figure 6 is accurate but intro-
duces high overhead because the SMI detector occupies all
of the CPU in order to keep Td small. In a worst-case sce-
nario, this may cause the operating system to hang. Another
method that detects SMI interval with low CPU overhead is
to check SMI for a short time and then sleep for a random
period, as shown in Figure 5. This method will miss some
SMIs; however, if the SMI detector can run for a long time
then the attacker can determine that the SMI interval is equal
to the minimum SMI interval being detected. For example, if
an SMI detector checks for a period of time and finds 4 SMIs,
and the interval between the first and second SMIs is 10s, the
interval between the second and the third SMIs is 5s, and the
interval between the third and the fourth SMIs is 15s, then the
SMI detector can determine that the SMI interval should be 5
seconds, given that it has run for a while.

After deriving the periodical SMI time information, the
SMI detector finishes its job and quits. This means that the
SMI detector is used only once and is difficult to be detected
by defenders.

3.3 Type III: Avoiding Random SMI
For periodical integrity checking, an attacker can detect the
SMI time information, clean up the attack space before the
system enters SMM, and reload the malicious code after the
system exits SMM. However, since the attacker cannot derive
the next initial time of SMI, this does not work for random
SMI integrity checking.

To attack randomized SMI, an attacker can try to detect
when the system will exit SMM mode then immediately
reload the malicious code, perform a short task (e.g., send out
one packet), and clean up the attack traces. The rationale is
that the attacker does not know when the next SMI will occur;
he/she, however, knows when the SMI will not occur. That is

5

to say that a short time interval must exist between two SMIs.
To be more specific, the following requirements must be

satisfied for this attack to be successful. First, the attacker
should be aware of when the system will exit SMM. This in-
formation can be discovered if the SMI detector is running
and reading the TSC counter at all times. An attacker can
also capture some of the events that signal when the system
exits SMM.

Second, the attacker should verify that the system will not
enter SMM twice in a very short time. This is true because
(1) frequent SMIs will increase the system overhead dramat-
ically and block all other operations, and (2) regardless of
which pseudo-random number generator is used to generate
the next time interval, there is a lower threshold involved,
and the probability for generating a small time interval is low.
Moreover, an attacker could disable or reroute the SMI before
the attack ends.

Third, the attacker’s action should be quick in order to fin-
ish the current attack before the next SMI. The time involved
varies for different attack scenarios. For example, an attacker
may divide a large task into many small tasks that can be
finished within a short time. This may limit the number of
attacks that can be launched.

Fourth, the attacker must be able to avoid the detection of
evasion attacks, which we will discuss in section 4.2.

In addition, one limitation of this attack is that it may still
be captured by the defender. Since the attacker does not know
the minimum interval between two SMIs, he/she can only
guess and try to perform the attack as quickly as possible. If
the minimum interval occurs and is smaller than his/her guess,
then the attack will be detected.

4 Defense Strategies

We propose two defensive strategies: (1) preventing evasion
attacks from occurring, and (2) detecting evasion attacks that
exist within the system. If the defender can break the assump-
tions of evasion attacks, such as by hiding the SMI triggering
events or by triggering SMI randomly, he/she can prevent or
mitigate some of the evasion attacks. This strategy is effec-
tive towards preventing Type I (Directly Intercepting SMI)
and Type II (Indirectly Deriving Periodic SMI) attacks, but
not Type III (Avoiding Random SMI) attacks. On the other
hand, if the defender can generate the signature of the SMI
detector or discover the extra overhead of the SMI detector,
he/she can detect the evasion attacks, including Type III.

4.1 Preventing Evasion Attacks

Type I evasion attacks can be prevented if attackers cannot
detect, intercept, and reroute the SMI triggering events for
SMI-based integrity mechanisms. Type II evasion attacks can
be prevented by compensating time counters in SMM or by
randomizing the time intervals between SMIs.

4.1.1 Obfuscating SMI Triggering Code

In Scenario 2 of a Type I attack, an attacker can use the code
signature 0xb0, 0xff, 0xe6, 0xb2 to locate the code that
triggers SMI by writing to port 0xB2.

A defender may try to obfuscate this code. For example,
the integrity monitor can add random numbers of nop (or
other similar) operations before writing the port number us-
ing out instruction, or he/she can add some fake out instruc-
tions. In addition, the defender could use some algorithms to
generate the port writing code dynamically. However, these
techniques only slightly increase the workload of the attacker.
Since the attacker may already compromise the OS, he/she
could find out all of the out instructions, identify those that
are actually code (not data), and then hook them. A better
method for the defender is to use hardware to trigger the SMI,
such as the PCI network card used by HyperCheck or the
IPMI used by HyperSentry.

4.1.2 Compensating Time Counter in SMM

Now consider the attacks using TSC timers to detect SMI.
Since the TSC timers will not stop when the processor en-
ters SMM, the SMI detector in Type II and III evasion attacks
can detect SMI and derive SMI timing information from the
TSC data. One solution is to compensate for the time discrep-
ancy when the processor runs in SMM and protected mode.
SMM could modify the TSC so that the timer counter delay
caused by SMM is removed. To do so, the defender can use
rdmsr and wrmsr instructions to read and write TSC. When
the system first switches into SMM, the SMM code records
the current TSC (we call it “starting TSC”). Then, before ex-
iting SMM, the code can modify the TSC (we call it “end-
ing TSC”) to be the same as or marginally smaller than the
starting TSC. In this way, the SMI detector cannot detect the
SMM by reading the TSC. However, this must be done care-
fully. For example, if the ending TSC is modified to be the
same as the starting TSC, then there is still a delay for switch-
ing from the protected mode to SMM, which is not compen-
sated for. The SMI detector may detect this delay and then
detect the SMI.

Evasion attacks could be prevented if the defender can
modify all potential hardware resources and make them trans-
parent to the hypervisor or operating system when the pro-
cessor enters SMM. However, current x86 hardware does not
meet this requirement, and it is difficult to achieve coopera-
tion from all impacted hardware manufacturers. In addition,
it is difficult to enumerate all of the hardware components that
may be used to indirectly derive SMI information. For exam-
ple, there are many hardware timers on the system, such as
Real Time Clock (RTC), Programmable Interval Timer (PIT),
High Precision Event Timer (HPET), and ACPI Power Man-
agement Timer. Some of them cannot be changed, even in
the SMM code, so their timers may be used by the attacker to
detect the presence of SMI.

6

4.1.3 Randomizing SMI Time Intervals

The most simple and effective mechanism for defeating Type
II evasion attacks is to randomize the time intervals between
SMIs. An attacker will then be unable to predict the next oc-
currence of the SMI and will fail to accurately launch evasion
attacks. Since attackers may disable or reroute SMI, the de-
fender should be alerted when some SMI events are missed.

When the defender carefully chooses the pseudo-random
number generator (PRNG) functions and parameters for the
minimum and maximum time intervals, he/she can help to
alleviate Type III evasion attacks. The smaller the minimum
interval is, the more difficult it becomes for the attacker to
launch Type III attacks.

4.2 Detecting Evasion Attacks
The defender can detect evasion attacks by searching their
attack traces. For the attacks in Scenario 1 of Type I, the
SMM-based integrity mechanism could check the SMI trig-
gering events and ensure that they can only be triggered by
the originally-designed events. If the SMI triggering reasons
are different, then an evasion attack can be detected.

Evasion attacks may be detected by searching the signa-
tures of evasion attack code in the memory. Type II and Type
III attacks require the help of SMI detectors, which reside in
the memory at the beginning of Type II attacks and through-
out Type III attacks. The code for reloading malicious code
will reside in the memory at all times; otherwise, after all
of the attacking trace is cleaned up, the attack cannot be re-
sumed.

4.2.1 Checking SMI Events

HyperCheck [24] only checks the memory integrity of the
kernel and the CPU registers; it does not check the reason
for SMI being triggered. Therefore, an attacker can disable
or reroute the SMI triggered by a PCI network card and later
trigger the SMI by writing to port 0xB2, as described in Sce-
nario 1 of the Type I attacks.

To prevent such an attack, the SMM code should check the
SMI triggering events to ensure that it can only be triggered
by a specific SMI event. HyperSentry [1] implemented this
defense mechanism. An attacker can still disable or reroute
the SMI, but it can be easily detected due to the lack of report-
ing response from the integrity-checking mechanism. How-
ever, if an attacker can discover how to replicate the same
SMI event after rerouting the original SMI event (e.g., writing
to port 0xB2), then he/she can defeat this defense mechanism.

4.2.2 Checking Kernel Module Integrity

Type I attacks can be detected by checking the integrity of
the code-triggering SMI. For example, suppose that SMIs are
triggered by writing to port 0xB2 and that the triggering code
exists in a kernel module. To defeat SMI-intercepting attacks,
the SMM code should store a hash of the pristine kernel mod-
ules and check their integrity during SMM. This mechanism

can force the attacker to remove the jump instruction before
the SMI is invoked to avoid being detected by the SMM. Thus,
the attacker cannot simply modify the kernel module and add
two jumps before and after SMI triggering code.

4.2.3 Detecting SMI Detector and Reloading Code

If a defender can grasp the SMI detector or reloading codes,
he/she may generate a signature and use it to detect whether
there is any malicious code in the memory to help launch eva-
sion attacks. This defense mechanism has two limitations.
First, the attacker may obfuscate the SMI detector code in or-
der to hide the SMI detector. The attacker can use similar
obfuscation techniques as those used by defenders to obfus-
cate the SMI-triggering code. It is difficult for defenders to
generate a complete set of signatures. Second, it is difficult to
detect an SMI detector implemented as a loadable kernel mod-
ule for a third-party device driver whose signature is unknown
or unavailable. Moreover, it is still a challenge to check the
integrity of the dynamic parts (e.g., stack and heap) of the
kernel.

5 Implementation

Initially, we implemented an SMM-based integrity checking
mechanism that could be triggered by writing to port 0xB2 or
by a PCI network card. We further coded the proof of concept
prototypes for the evasion attacks described in Section 3.

5.1 SMM-Based Integrity

An SMM-based integrity-checking mechanism usually con-
sists of two modules: (1) the computer status-acquiring
module and (2) the analysis module. The computer status-
acquiring module is responsible for collecting computer con-
tent and status information, such as the physical memory and
CPU registers of the protected machine, and for sending the
collected information to the analysis module, which reviews
it and validates the computer’s integrity.

We implemented a prototype of an SMM-based integrity
checking mechanism where the SMM code employs the PCI
network card to scan the physical memory of the hypervisor
or the operating system kernel, and then to send it to a remote
server. Furthermore, the SMM code reads the CPU registers
in the protected mode and verifies their integrity. The analysis
module is implemented on a remote machine. Two machines
are directly connected through a network cable. To verify the
validity of the various types of evasion attacks, our SMM-
based integrity checking mechanism could be triggered by
two different SMI events. The first event uses port 0xB2 and
a kernel module. The second SMI event is hardware-based
and can be produced by the PCI network card after receiving
a packet over the network. In both cases, the time intervals
for triggering the SMI events can be configured in our experi-
ments.

7

5.2 Evasion Attacks Implementation
Here, we provide a detailed implementation of the critical
components of evasion attacks, including mechanisms to dis-
able or reroute the SMI, SMI detector, and malicious code
reloader.

5.2.1 Disable or Reroute SMI

An attacker can use the stop machine run() function pro-
vided by Linux to disable all interrupts and kernel preemp-
tions. Other operating systems offer similar functionality.
When the stop machine run() is running, the attacker can
take full control of the CPU, and no other user-level programs
or kernel modules can run during this period.

Now let us consider the SMI activated by writing to port
0xB2. Since the code writing to the port 0xB2 is either im-
plemented as a user-level program or a kernel module, it will
also be stopped. Therefore, the SMM-based integrity check-
ing mechanism won’t be triggered during this time period,
and the attacker can safely run the malicious code. This at-
tack method works well for software-triggered SMI only; the
stop machine run() functionality cannot disable the SMI
triggered by hardware such as a PCI network card.

To extend the attack to include hardware-instigated SMIs,
rather than attempting to disable the SMI triggered by PCI
network card, an adversary can reroute the SMI to a normal
interrupt that is already under his/her control. This will allow
the insertion of a preamble to the start of the SMI routine that
can be used to remove traces of the attack. But how difficult
is such an attack? It appears that someone has only to rewrite
one register to configure the interrupt type. This register is
Message Data Register [10], used by Message Signaled Inter-
rupts, and it is supported by PCI 3.1 and above and by PCI
Express. Bits 8, 9, and 10 of the register define the delivery
mode of the interrupt. 000 indicates fixed mode, and 010 in-
dicates SMI mode. The attacker can modify this register to
generate a normal interrupt then register the Interrupt Service
Routine (ISR) for this interrupt. After cleaning up any traces,
the attacker can reissue SMI by writing to port 0xB2.

5.2.2 SMI Detector

We implement an SMI detector prototype to detect the peri-
odical SMIs triggered by a PCI network card. The basic idea
is shown in the following code segment. The SMI detector
measures the time interval diff between two time readings
from the TSC counter in a busy loop, t1 and last, when
all other interrupt and kernel preemption are disabled. When
there is no SMI, the time intervals are between 10 µs and 18
µs, so we set the threshold as 20 µs.

Since only the SMM can stop the busy loop and, in essence,
“steal” time from it, one SMI is detected when diff is larger
than the threshold. The current time is then recorded in
to the spike variable, and we can calculate the duration
and interval of SMM. Supposing that the maximum diff
is di f fmax and the normal diff is di f fn, then the SMM du-
ration is TSMM = di f fmax − di f fn. The SMM interval is

TSI = spike − spikelast, where spikelast is the time when the
last SMI was detected. The attacker can calculate an accu-
rate SMM interval only when it can identify two continuous
SMIs.
s t a t i c i n t s m i g e t s a m p l e (void ∗ d a t a)
{

. . .

s t a r t = k t i m e g e t () ; /∗ s t a r t t i m e s t a m p ∗ /
l a s t = s t a r t ;
do {

i ++;
t 1 = k t i m e g e t () ;
d i f f = k t i m e t o u s (k t i m e s u b (t1 , l a s t)) ;

i f (d i f f > s m i d a t a−>t h r e s h o l d)
s p i k e = t 1 ;

t o t a l = k t i m e t o u s (k t i m e s u b (t1 , s t a r t)) ;
l a s t = t 1 ;

} whi le (t o t a l <= 1000∗ smi sample ms) ;
. . .

}

Although we could potentially keep the loop busy running
for a long time, the SMI detector relies on disabling all inter-
rupts except for SMI. This can cause the system to hang if
it remains running for too long. (We will later quantify the
time-frame of “long” for commodity x86 systems). There-
fore, the SMI detector cannot run continuously; instead, it
creates sampling time periods while “sleeping” in between.
We define the total time for a busy loop run, our sample du-
ration, as ms per sample. The time between two samples is
denoted with ms between samples. As indicated by the name,
this unit is in milliseconds. We show how these two param-
eters can be adjusted to evaluate the detection performance
and overhead of the SMI detector. Due to real-time schedul-
ing and permission requirements, we implemented the SMI
detector as a kernel module. Although running it as a user-
level process is possible, it may not yield the same detection
results due to potential scheduling time delays and the lack of
privileges. Moreover, some hardware timers (e.g., Real Time
Stamp Counter) may be inaccessible to user-level processes.

Furthermore, the stop machine run() function in the SMI
detector disables all software and hardware interrupts aside
from hardware SMIs. Therefore, the SMI detector cannot be
used to detect SMIs triggered by software, such as writing to
port 0xB2. Instead, for a port 0xB2 writing triggered SMI,
the attacker can search the code signature in the memory. In
our experiment, we searched the code signature 0xb0, 0xff,
0xe6, 0xb2 in the kernel memory of CentOS 5.5. We identi-
fied only one instance of the code signature, which is the one
that triggers the SMI.

5.2.3 Reload of the Malicious Code

It is challenging for an attacker to regain control of the system
after the SMI checking is complete. The system has to be
considered “untampered with,” or else the integrity checker
would have raised an alarm. How can the attacker reinsert
himself into the normal execution? The answer to this ques-
tion lies in the limitations of the SMM in monitoring all con-
trol flow decisions inside the hypervisor or the underlying
software in general. A sophisticated attacker can carefully

8

place the attack code by altering the control flow decision of
regular programs. Such small changes are difficult to detect.
For example, return to libc or return-oriented rootkits [21, 4]
can be used to keep the reloader stealthy. An attacker can
compromise the stack of one running process and use return-
oriented attacks to ensure that the process compromises the
system again the next time it runs. As explained in [21, 4],
return-oriented attacks are Turing-complete and can perform
any functionality, including modifying the system call tables
or the Interrupt Descriptor Tables.

We tested the loading and unloading times of a famous user
space, Linux keylogger LKL [23]. After running 100 times,
the average loading time was 1.232 µs, and the average un-
loading time was 1.637 µs. In total, it was almost 3 µs. The
actual running time depends on the attacking code.

6 Evaluation

Our experimental results show that the evasion attacks are ef-
fective at evading the existing SMM-based integrity check-
ing solutions, such as HyperCheck [24] and HyperSentry [1].
In addition, their stealthiness depends on the amount of re-
sources available. Finally, we show that the introduced at-
tacks can be detected or prevented by applying the proposed
defense mechanisms that are explained in detail in Section 4.

In all of our experiments, we used a testbed consisting of a
Dell Optiplex GX 260 with one 2.0 GHz Intel Pentium 4 CPU
and 512MB memory. Xen [6] 3.1 and Linux 2.6.18 were in-
stalled on the physical machine, and the Domain 0 is CentOS
5.4.

6.1 Performance Analysis

6.1.1 System Overhead of SMI Detector

The source code (in C) of our SMI detector is 7660 bytes. Af-
ter compiling, the size of the kernel module is 103462 bytes,
but the .text section is only 1376 bytes. Most of the remaining
parts are the kernel library called by the SMI detector. We
also studied the system overhead of the SMI detector using
a Java Micro-benchmark CaffeineMark 3.0 [15], which con-
tains a series of tests that measure the speed of Java programs
running in various hardware and software configurations. The
score for each test is proportional to the number of times the
test was executed, divided by the amount of time taken to ex-
ecute the test. Because CaffeineMark uses an internal scoring
metric, it is useful only for relative comparisons.

Figure 7 shows the execution time results. The Sieve test
is the classic sieve of Eratosthenes that finds prime numbers.
The Loop test uses sorting and sequence generation to mea-
sure the compiler optimization of loops. Logic tests the speed
of executing decision-making instructions. String tests string
concatenation and search. The Method test executes recursive
function calls. The Float test simulates a 3D rotation of ob-
jects around a point. The Overall Score combines the scores
of all of the tests.

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

Sieve Loop Logic String Float Method Overall

 C
af

fe
in

eM
ar

k
 3

.0
 S

co
re

 CaffeineMark 3.0 Benchmark

Performance Comparison of Sampling Schemes

NoSMI
200:2
20:2
20:20(R)
20:20
20:200(R)

Figure 7: CaffeineMark 3.0 Micro-benchmarks of System Perfor-
mance. The legend notation is “sample duration:check interval” in
milliseconds.

In our experiments, the PCI network card triggered the
SMI every 10 seconds. We adjusted two parameters: the
SMI sampling duration (ms per sample) and the check inter-
val between SMI samplings (ms between samples). Figure 7
shows results for the different settings where ms per sample
was set to 20 or 200 ms and ms between samples were set to
2, 20, or 200. For example, 20:200(R) means that the SMI
sampling duration was 20 ms, and the 200(R) means that the
SMI sampling time interval was set to a random value be-
tween 0 and 200 ms. (R) stands for random.

For each setting, we ran the test 10 times, and the error
bars in Figure 7 indicate 95% confidence intervals. System
performance is at its best when no SMI detector is running;
it goes down with each increase of the SMI sampling dura-
tion, and it goes up with each increase of the SMI sampling
time interval. These results are consistent with implementa-
tion expectations since the SMI detector disables all normal
interrupts and kernel preemption.

We also used a macro-benchmark to test the system over-
head using the “tar” command to compress a large file. Fig-
ure 8 shows the average time needed to finish the command
when the SMI detector runs using different settings. We ran
the SMI detector 20 times for each setting, excluding the first
two runs to remove unrelated initialization costs.

The system overhead decreases when the SMI sampling in-
tervals increase. When ms per sample is set to 200 ms and
ms between samples is set to 2 ms, the file compression can
be finished in 31.825 seconds, and we can see the dramatic
slowdown of the system. We also tested “2,000:2” in our ex-
periments, but the system halted.

Table 1: System Overhead of SMI Detector
Sampling 2:2 2:20 2:20(R) 2:200(R) 2:2,000(R) No SMI
Overhead(s) 2.379 2.389 2.343 2.381 2.347 2.332

Table 1 shows the results when we set the SMI sampling
time to 2 ms and the SMI sampling interval to 2, 20, 200,
and 2, 000 ms. The overhead was not significantly affected

9

 25

 35

200:2 20:2 20:20

 20

20:20(R) 20:200(R) 20:2000(R)

 C
om

pl
et

io
n

O
ve

rh
ea

d
(i

n
se

co
nd

s)

 Sample Duration: Check Interval

Performance Overhead Comparison of Sampling Schemes

 0

 5

 10

 15

 30

Figure 8: System Overhead of SMI Detector

as we decreased the checking intervals between SMI sam-
ples. This means that if an attacker reduces the SMI sam-
pling time to a small number, this won’t have an impact on
system performance. However, increasing the checking inter-
val will dramatically decrease the detection probability of the
SMI events.

6.1.2 Detection Probability of SMI Detector

Figure 9 depicts the SMI detection probability of an SMI de-
tector, which is the percentage of detected SMIs among all
SMIs that were triggered within the duration of the experi-
ment. In the case of a 200:2 scenario, which means a 200ms
running time with a 2ms inactivity time, almost all of the SMI
events can be identified. As expected, the detection proba-
bility decreases when the sample duration decreases and the
check interval increases. This is because, during the interval,
the SMI detector is not active and can miss the SMIs. When
the duration and interval ratio was 20:20, the randomized in-
terval setting detected more SMIs than the fixed interval set-
ting. Note that an attacker can still evade detection but at a
loss of running time; each time that his/her code runs, the
probability of being detected increases, leading to eventual
detection. In all of these experiments, the total number of
SMIs is 50 in order to maintain statistical significance and
reduce experimental noise.

 50

 70

 80

 90

 100

200:2 20:2

 40

20:20 20:20(R) 20:200(R) 20:2000(R)

 D
et

ec
tio

n
R

at
e

(%
)

 Sample Duration: Check Interval

Detection Performance Comparison of Sampling Schemes

 0

 10

 20

 30

 60

Figure 9: SMI Detector’s Detection Probability.

6.2 Detecting attacks
After evaluating the effectiveness of the attacks, we then eval-
uated the effectiveness of the defense. Since Type I and Type
II evasion attacks can be easily prevented by guarding the
SMI triggering events, checking SMI reasons, and using ran-
dom SMIs, we focused on Type III evasion attacks, which try
to avoid random SMIs.

Type III evasion attacks can be further divided into two
subtypes. The first subtype tries to detect the return from
SMM by using the techniques similar to SMI detector and
then launches the attack. We refer to this one as “targeted
evasion attacks (TEA).” The second subtype does not detect
the return from SMM; it randomly launches an attack and
tries its luck. We refer to this as “non-targeted evasion attacks
(NTEA).”

0 10 20 30 40 50 60 70 80 90
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Detection Probability of TEA, Unified Distribution

Attack Duration (ms)

De
te

ct
io

n
Pr

ob
ab

ilit
y

Check interval 1−5000 ms
Check interval 1−10000 ms

Figure 10: Detection Probability of TEA, uniform distribu-
tion.

0 10 20 30 40 50 60 70 80 90
10

−8

10
−6

10
−4

10
−2

10
0

Detection Probability of TEA, normal distribution

Attack Duration (ms)

De
te

ct
io

n
Pr

ob
ab

ilit
y

Check interval (2500,500) ms
Check interval (1000,500) ms

Figure 11: Detection Probability of TEA, normal distribution

We simulated these two attack types by using two programs
written in Matlab. The results for TEA are shown in Figure 10
and Figure 11. Both figures indicate that the detection prob-
ability (Y axis) of the TEA increases when the duration of
the attack (X axis) increases. The total number of tests was
4,000,000 for both tests. The SMM duration was set to 40ms.
For Figure 10, the line with the plus sign indicates that the
SMM checking interval is a uniform distribution between 1
to 5,000 ms; the line with the circle sign indicates that the

10

SMM interval is uniformly distributed between 1 and 10,000
ms. For Figure 11, the line with the plus sign indicates that
the SMM-checking interval is a normal distribution with a
mean of 1000 (ms) and a standard deviation 500 (ms); the
line with the circle sign indicates that the SMM interval is a
normal distribution with a mean of 2500 (ms) and a standard
deviation of 500 (ms). Both figures confirm that the detection
probability will increase when the attack duration increases
and the SMM interval decreases.

The results for NTEA are shown in Table 2 and Table 3.
From Table 2, we can see that the detection probability is
mostly determined by the SMM checking intervals. The
attack intervals do not affect the detection probability too
much. From Table 3, we can see that detection probability
dropped linearly when the SMM checking interval increased
linearly. This differs from TEA, where the SMM is normally
distributed. In that case, the detection probability drops at a
logarithmic scale. In these tests, the SMM checking duration
is 40ms, and the attack duration is 30ms. The total number of
SMM checks was 100,000.

Table 2: Detection probability of NTEA: intervals are uni-
formly distributed.

SMM interval(ms) 1,000

Attack interval(ms) 500 1,000 2,000 3,000

Detection probability 5.40% 6.00% 5.80% 6.20%

Table 3: Detection probability of NTEA: intervals are nor-
mally distributed.

SMM(ms) 1,000 2,500 5,000 10,000

Detection
probability

2.40% 1.40% 0.80% 0.25%

7 Related Work
A plethora of existing research proposes various methods of
isolating and protecting the integrity of software, including
the operating system kernels or hypervisors. Some earlier ap-
proaches, including Copilot [16] and Gibraltar [2], employed
PCI devices to directly examine the physical memory. How-
ever, the PCI device-based method is no more reliable than
the SMM-based method since the PCI devices can be ma-
nipulated to obtain a different view. They are also vulner-
able to evasion attacks. Another approach is to introduce
in-hypervisor hooks [5, 25] and enforce security policies be-
tween virtual machines [19], which are hypervisor-specific
and run at the same level as the hypervisor.

Furthermore, there have been many attempts to protect
against attacks by minimizing the code footprint and relying
on the Trusted Computing Base (TCB) for current commer-
cial hypervisors [13, 12, 7, 14, 20, 22]. These approaches aim

to provide a minimal layer, thus limiting the code exposure
and subsequent attack surface for the hypervisor code. How-
ever, due to third-party driver code, they cannot offer strong
guarantees regarding the code integrity of all hypervisor com-
ponents.

In addition to the software-based mechanisms, researchers
have proposed employing commodity and specialized hard-
ware components to assist in the protection of software in-
tegrity [26, 3, 18, 24, 1]. Among the hardware-based solu-
tions, many (e.g., HyperGuard [18], HyperCheck1.0 [24] and
HyperSentry [1]) depend on the System Management Mode
(SMM) that exists on the current x86 CPU to provide an iso-
lated and trusted environment. SMM is a separated CPU
mode whose memory (called SMRAM) can be locked so that
even the privileged software in the protected or real-address
mode cannot access it.

More specifically, HyperGuard [18] has suggested using
the SMM of the x86 CPU to monitor the integrity of the hyper-
visors. It used a hardware timer to periodically trigger SMI
and checked the reason for SMI [17]. On the other hand, Hy-
perCheck [24] used SMM and a network card to detect attacks
against the hypervisor kernel. SMM was used to obtain the
CPU register context and transmit it to a network-located con-
sole for further validation. However, HyperCheck does not
examine the cause of an SMI. Therefore, it is vulnerable to
direct SMI interception attacks and indirect evasion attacks.
In HyperSentry [1], the authors coined the term “scrubbing
attack,” which attempts to masquerade a valid SMI by trigger-
ing a software SMI. Such attacks are easy to prevent through
the use of IPMI and BMC to trigger SMI and make it difficult
for the attacker to trigger the same SMI. Unfortunately, as our
analysis in section 3 shows, HyperSentry is still vulnerable to
indirect evasion attacks.

8 Conclusions
We presented a systematic analysis of evasion attacks for
SMM-based integrity monitors. In such attacks, the adver-
sary can circumvent the defense mechanisms by interposing
before and after the SMI invocation mechanism. We point
out that evasion attacks can be accomplished either directly
(by intercepting SMI) or indirectly (by measuring the behav-
ior hardware timers). Furthermore, we implemented these at-
tacks on unmodified commodity x86 software and hardware
components. Our study shows that evasion attacks are both
realistic and easy to mount. Moreover, through experimenta-
tion on our prototype implementation, we quantified the per-
formance overhead and detection capabilities of evasion at-
tacks. Finally, we discussed potential countermeasures to mit-
igate the introduced threats, highlighting the advantages and
caveats that would influence the future design of hardware-
assisted monitors.

References
[1] AZAB, A., NING, P., WANG, Z., JIANG, X., AND

11

ZHANG, X. HyperSentry: Enabling Stealthy In-context
Measurement of Hypervisor Integrity. In Proceedings
of the 17th ACM Conference on Computer and Commu-
nications Security (CCS 2010) (2010).

[2] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Auto-
matic inference and enforcement of kernel data struc-
ture invariants. In ACSAC ’08: Proceedings of the
2008 Annual Computer Security Applications Confer-
ence (Washington, DC, USA, 2008), IEEE Computer
Society, pp. 77–86.

[3] BULYGIN, Y., AND SAMYDE, D. Chipset based ap-
proach to detect virtualization malware a.k.a. Deep-
Watch. Blackhat USA (2008).

[4] CHECKOWAY, S., DAVI, L., DMITRIENKO, A.,
SADEGHI, A., SHACHAM, H., AND WINANDY, M.
Return-oriented programming without returns. In Pro-
ceedings of the 17th ACM conference on Computer and
communications security (2010), ACM, p. 561.

[5] COKER, G. Xen security modules (xsm). Xen Summit
(2006).

[6] DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., PRATT, I., WARFIELD, A., BARHAM, P., AND
NEUGEBAUER, R. Xen and the art of virtualization. In
In Proceedings of the ACM Symposium on Operating
Systems Principles (2003).

[7] HEISER, G., AND LESLIE, B. The OKL4 Microvisor:
Convergence point of microkernels and hypervisors. In
Proceedings of the first ACM asia-pacific workshop on
Workshop on systems (2010), ACM, pp. 19–24.

[8] HUNT, G., AND BRUBACHER, D. Detours: Binary in-
terception of Win32 functions. In Proceedings of the
3rd conference on USENIX Windows NT Symposium-
Volume 3 (1999), USENIX Association, p. 14.

[9] INTEL CORP. Intel R⃝ 82801DB I/O Controller Hub 4
(ICH4) Datasheet, May 2002.

[10] INTEL CORP. Intel R⃝ 64 and IA-32 Architectures Soft-
ware Developer’s Manual, June 2010.

[11] MASTERS, J. Simple smi detector,
http://lwn.net/articles/316622/, January 2009.

[12] MCCUNE, J., PARNO, B., PERRIG, A., REITER, M.,
AND ISOZAKI, H. Flicker: An execution infrastruc-
ture for TCB minimization. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008 (2008), ACM, pp. 315–328.

[13] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA,
A., GLIGOR, V., AND PERRIG, A. TrustVisor: Ef-
ficient TCB reduction and attestation. In Proceedings
of the IEEE Symposium on Security and Privacy (May
2010).

[14] MURRAY, D., MILOS, G., AND HAND, S. Improving
Xen security through disaggregation. In Proceedings of
the fourth ACM SIGPLAN/SIGOPS international con-
ference on Virtual execution environments (2008), ACM,
pp. 151–160.

[15] PENDRAGON. CaffeineMark 3.0,
http://www.benchmarkhq.ru/cm30/.

[16] PETRONI, JR., N. L., FRASER, T., MOLINA, J., AND
ARBAUGH, W. A. Copilot - a coprocessor-based ker-
nel runtime integrity monitor. In SSYM’04: Proceed-
ings of the 13th conference on USENIX Security Sympo-
sium (Berkeley, CA, USA, 2004), USENIX Association,
pp. 13–13.

[17] PHOENIX. Hypervisor security using smm,
http://www.faqs.org/patents/app/20100057982.

[18] RUTKOWSKA, J., AND WOJTCZUK, R. Preventing and
detecting Xen hypervisor subversions. Blackhat Brief-
ings USA (2008).

[19] SAILER, R., VALDEZ, E., JAEGER, T., PEREZ, R.,
VAN DOORN, L., GRIFFIN, J., AND BERGER, S.
sHype: Secure hypervisor approach to trusted virtual-
ized systems. IBM Research Report RC23511 (2005).

[20] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A.
SecVisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. In Proceedings
of twenty-first ACM SIGOPS Symposium on Operating
Systems Principles (2007), ACM, p. 350.

[21] SHACHAM, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and communications security (2007), ACM,
p. 561.

[22] SHINAGAWA, T., EIRAKU, H., TANIMOTO, K.,
OMOTE, K., HASEGAWA, S., HORIE, T., HIRANO,
M., KOURAI, K., OYAMA, Y., KAWAI, E., ET AL.
BitVisor: a thin hypervisor for enforcing i/o device
security. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual ex-
ecution environments (2009), ACM, pp. 121–130.

[23] V14D. LKL Linux KeyLogger,
http://sourceforge.net/projects/lkl/.

[24] WANG, J., STAVROU, A., AND GHOSH, A. K. Hyper-
Check: A Hardware-Assisted Integrity Monitor. In Pro-
ceedings of the 13th International Symposium on Recent
Advances in Intrusion Detection (RAID 2010) (2010).

[25] WANG, Z., AND JIANG, X. HyperSafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. In Proceedings of the IEEE Symposium on
Security and Privacy (2010).

12

[26] WOJTCZUK, R. Subverting the Xen hypervisor. Black-
Hat USA (2008).

13

