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Abstract

Given a motion planning problem in a dynamic but fully
known environment, we propose the first roadmapbased
method, called critical roadmap, that has the ability to identify
and exploit the critical topological changes of the free config-
uration space. Comparing to the existing methods that either
ignore temporal coherence or only repair their roadmaps at
fixed times, our method provides not only a more complete
representation of the free (configuration-time) space but also
provides significant efficiency improvement. Our experimen-
tal results show that the critical roadmap method has a higher
chance of finding solutions, and it is at least one order of
magnitude faster than some well-known planners.

1 Introduction

In this paper, we consider the problem of navigating an ob-
ject from an initial configuration to a goal configuration in
the workspace consisting of both static and dynamic obsta-
cles. We assume that each dynamic obstacle moves along
some known trajectory with bounded velocities. Although
this assumption was considered impractical in the past, there
are recent evidences showing that considering the motion of
the dynamic objects can increase long-term optimality, such
as energy efficiency and safety [1]. Recent advances in mo-
tion and behavior prediction [2] also provide opportunities for
longer planning horizon. In addition, there are more and more
examples of mobile factory floor robots, such as KIVA [3],
whose motions are fully known. Virtual prototyping, such as
assembly/disassembly and part removal, is another important
domain that usually considers the motion of the moving parts
to be known or predictable [4].

Since the 1980s, there have been extensive work on planning
motion in the environment whose state is fully known at any
given time. A classical approach is to formulate the problem in
configuration-time space (CT-space) by incorporating the time
dimension T to the configuration space C (C-space), denoted
as X = C × T . Earlier planners that work in X usually do
not consider temporal coherence. For example, Erdmann and

Lozano-Perez [5] proposed to slice X into a series of config-
uration spaces and connect these slices via visibility graphs.
Probabilistic methods such as Probabilistic Roadmap Methods
(PRM) [6] and Exploring Random Tree (RRT) [7] greatly en-
hance the ability of the planners to tackle problems with high
degrees of freedom. However, the idea of temporal coherence
is still largely missing from the direct application of the proba-
bilistic methods by sampling and connecting configurations in
X .

There do exist several probabilistic planners that consider
temporal coherence, e.g., [8, 9, 10, 11]. The main idea of
these planners is to repair the invalid portion of the (tree-based
or graph-based) roadmaps due to the motion of the obstacles.
Since the changes in the configuration space is usually small
from frame to frame, these repairs can usually be done locally
and efficiently. However, as far as we known, all these methods
repair periodically at fixed time interval. That is, even if there
are no changes in the configuration space, the planner will
still check every node and edge in the roadmap. The situation
is even worse when the repair is not done frequently enough.
Edges and nodes that are believed to be valid may be unsafe
to traverse. Ideally, the repair interval should be determined
adaptively based on the motion of the obstacles.

Motivated by this observation, we propose a new approach,
called critical roadmap method, that detects all the “critical
moments” when the topology of free configuration space C f ree
changes. At every such a moment, our method updates the
roadmap in an efficient way to reflect the current topology of
C f ree. More specifically, our roadmap in C is composed of
several small roadmaps (called local roadmaps) with each con-
structed for one obstacle [12]. A local roadmap can be reused
after it is transformed based on the obstacle’s motion. Then,
the critical moments of C f ree are approximated by determining
the status changes of the nodes in local roadmaps.

The new approach has the following nice properties. First,
the proposed method provides better efficiency. Compared to
PRM and RRT, it takes advantage of temporal coherence and
reuses the valid edges and nodes. Compared to the methods
which update roadmaps at fixed times, our method performs
updating only at critical moments and therefore avoids redun-
dant computation. As shown in the experimental results, the
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new method is at least one order of magnitude faster than
PRM, RRT and a fixed time interval method. Second, our
method provide better completeness because it focuses on cap-
turing the changes of the topology of C f ree. Finally, like most
probabilistic methods, our method can handle problems with
high dimensional C.

2 Related Work

Motion planning problems involving changing environments
can be roughly classified into three categories: (1) The trajec-
tory of every moving obstacle is fully known in advance, (2)
the future trajectory for a moving obstacle can only be esti-
mated based on the acquired sensor data, e.g., [13], and (3) the
trajectory of a moving obstacle is completely unpredictable
[14, 15]. Because our method falls into the first category, we
will focus on reviewing recent works considering fully known
environments. More detailed surveys can be found from the
references therein.

A common approach to handle moving obstacle with known
trajectory is to plan in the configuration-time (CT) space X
[5]. The CT-space X is usually approximated by a sequence
of configuration spaces at fixed times. In [16], visibility-graph
algorithm is applied to generate all path segments between
adjacent slices and join adjacent solutions. Multi-robot motion
planning is an important field in this category. Erdmann and
Lozano-Perez introduce prioritized path planning for multiple
robots in an environment with static obstacles [5]. It assigns
priorities to all the robots and motion planning is performed
for one robot at a time in order of decreasing priority. For
each robot, its path should be collision-free with respect to the
obstacles as well as previously solved robots.

To handle problems in higher dimensional space and kinody-
namic constraints, probabilistic methods are usually applied
to generate a graph or tree structure to approximate the CT-
space. For example, Hsu and Kindel [17] produce a tree-based
roadmap in configuration-time space. The tree is rooted at the
initial configuration-time point and grows along the time-axis.
It terminates when it falls into a region from which it is known
how to get to the goal. Because the state of X usually does
not change much during a short period of time, one of the
main drawbacks of these planners is that the computation is
not reused between slices.

More recent approaches consider temporal coherence or com-
putation reuse by updating the roadmap. Many methods em-
ploy two-phase approaches: they first compute a roadmap with
respect only to the static obstacles; when given a query during
run time, edges are checked based on the location of the dy-
namic obstacles at given time [8, 18, 9]. For example, Leven
and Hutchinson [19] construct a regular grid in workspace that
maps each of its cell to the roadmap nodes and edges. Once
obstacles move, [19] quickly checks occupied cells and invali-
dates the associated nodes and edges. Vannoy and Xiao [20]
keep a set of paths and update the fitness values of the paths

when obstacles move. Jaillet and Simeon [8] fixe the invalid
portion of the roadmap by applying RRT to quickly check the
possible reconnections along the invalid edge. If reconnection
fails, new nodes and edges are added. Kallmann and Mataric
[9] propose a method very similar to [8]. During run time, it
locates invalid nodes and edges affected by moving obstacles
using the grid-based cell decomposition of workspace as [19].
van den Berg and Overmars [18] proposed a two-level search
strategy. At the local level, they find a feasible local path
along a single edge of the roadmap. At the global level, they
apply an A∗-like search to coordinate the local paths. Li and
Shie [10] propose to reuse RRT via a new data structure called
Reconfigurable Random Forest (RRF) which combines all the
RRTs from previous queries. When the environment changes,
the nodes falling inside the bounding box of a dynamic ob-
stacle’s new configuration are checked and the invalid nodes
are discarded. Ferguson et al. propose the idea of Dynamic
RRT [11] that keeps a single RRT and detects the parts of the
tree invalidated by configuration space changes. Then these
invalid parts are removed and the modified RRT is regrown
until the goal is reached again. Our method is closer to the
Elastic roadmap proposed by Yang and Brock [21], where the
configurations are sampled around obstacles and are moved
along with the obstacles.

These methods, either explicitly or implicitly, depend on the
idea that the moving obstacles do not significantly affect the
roadmap connectivity (at least for a short period of time),
thus the planner should be able to quickly repair and replan.
However, unlike the proposed method, these methods are not
capable of determining the next critical changes in C-space
even though the trajectories of the obstacles are fully known,
thus can only update the roadmap at fixed times.

3 Preliminaries

In this section, we define important notations used throughout
the paper. In our problem, we are given a set of moving obsta-
cles O and a single robot R with bounded velocity. The tra-
jectory of each obstacle Oi ∈ O is known. The motions of Oi
are piecewise linear. During a given time interval, it maintains
a constant linear velocity ~v and a constant angular velocity ~ω.
In some applications such as prioritized path-planning for mul-
tiple robots, Oi can be the robots with priorities higher thanR.
Our goal is to find a sequence of collision-free configurations
so thatR can reach its destination before a user-defined time
t f . We useRc to denote the robot configured at configuration
c.

Our strategy to solve this problem is to represent the free CT-
space X f ree by identifying the topological changes in the free
C-space C f ree. Because constructing a complete representation
of C f ree and X f ree is intractable, the data structure that we
will be using is a roadmapM. The roadmapM in X f ree is
composed a sequences of critical roadmaps Gt constructed at
critical times t. Each critical roadmap is then composed of a
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set of local roadmaps Mi that are constructed at t = 0, one for
each obstacle Oi, and are transformed along with the motion
of Oi at t > 0. An example of the local roadmap is shown in
Fig. 3.

We say that a time t is a critical moment if the topology of C f ree
changes at t. The central idea in our strategy is to determine
the critical moments E through the given time interval [0, t f ].
These critical moments E include (1) the time of collision
(toc) and (2) the time of separation (tos). The critical times
toc and tos are when a node of the local roadmaps becomes in-
collision and collision free, respectively. An iterative method
to predict toc and tos will be discussed in Section 5.

(a) (b)

(c)

Figure 1: (a). The convex hull hierarchy of a simple polygon.
The original and its components are lightly shaded while the
convex hulls are represented by dashed lines. (b). The convex
hull hierarchy of an approximate L-shape. The original and
its components are drawn with black solid lines while the
convex hulls are represented by dashed lines. (c). A Convex
hull traversal tree. The magnitude of an arrow shows the
penetration depth of two convex pieces. Its direction is the
corresponding penetration direction.

To estimate toc and tos, our method performs continuous
collision detection [22] and penetration depth estimation [23].
Therefore, our geometric model is represented by a convex hull
hierarchy [24] (see Fig. 1) in which the root is the convex hull
of an entire model and the leaves are its all convex components.
Each inner node is the convex hull of its children nodes. We
denote the convex hull hierarchy ofR be CHR and the convex

hull hierarchy of Oi be CHi.

4 An Overview of Our Method

This section provides an overview of the proposed framework.
Algorithm 1 sketches our ideas.

Algorithm 1 CRITICALROADMAP(O,R)
1: for all Oi ∈ O do
2: Mi ← COMPUTELOCALROADMAP(Oi)
3: Ei ← IDENTIFYCRITICALMOMENTS(Mi)
4: E← E

⋃
Ei

5: Gt = CONNECT(Mi)
6: while E 6= ∅ do
7: e← E.pop()
8: Gt′ ← UPDATE(Gt, e)
9: CONNECT(Gt,Gt′ )

10: Gt = Gt′
11: return

There are two main stages in Algorithm 1. In the first stage,
critical moments are identified using local roadmap Mi for
each obstacle Oi ∈ O. The second stage creates the critical
roadmap Gt at the critical moment t and connects the crit-
ical roadmaps to approximate X f ree. The subroutines that
update and connect the critical roadmaps will be discussed in
Section 6 and Section 7, respectively.

RcOi

Oi

Rc

(a)

µi

Oi
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Rc

Rc

90

90
90
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V (t)

V (t)
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Rc

Rc

!r

!r

(c)

Figure 2: Rc and Oi are colored in shadow after transforma-
tions. (a). Rc moves along with Oi when Oi has translational
velocity. (b). Since c ∈ Mi, Rc can be treated as a feature
on Oi. While Oi is rotating around µi, Rc is also rotating
around µi and its orientation is changing. If Oi has angular
velocity ~ω,Rc’s angular velocity for rotation around µi is ~ω
too. (c). Rc has the translational velocity V(t) introduced by
rotating around µi. The instant direction of V(t) is always
perpendicular to~r.
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Local roadmaps. The local roadmap Mi is constructed via
the obstacle-based roadmap methods around the obstacle Oi
[25, 26], and Mi always moves along with Oi. Since Mi
moves along with its associated obstacle Oi, any c ∈ Mi also
moves along with Oi. That means c can be treated as a point
on Oi. In general,Rc undergoes two types of transformations:
translation with Oi, and rotation around µi where µi is Oi’s
center of mass. As illustrated in Fig. 2(b),Rc’s angular veloc-
ities for self-rotation and rotation around µi are both ~ω. Its
translational velocity consists of two parts: ~v (see Fig. 2(a))
and V(t). V(t) is introduced by Rc rotating around µi and
its magnitude is constant but the direction keeps changing
all the time: the direction of V(t) is always perpendicular to
~r = c− µi (see Fig. 2(c)).

Two local roadmaps Mi and Mj are connected via their bound-
ary nodes Bi,j [12]. For a configuration c ∈ Mi, we say that c
is in Bi,j if and only ifRc does not collide with Oj but at least
one of c’s neighbors in Mi does.

Critical moments. A necessary condition for the critical time
t is when at least one of the following two events, i.e., toc and
tos, happens at t.

1. ∃c ∈ Mi ∧ ∃Oj 6=i ∈ O,Rc and Oj begin to contact.

2. ∃c ∈ Mi ∧ ∃Oj 6=i ∈ O,Rc and Oj begin to separate.

Based on the collision states of the local roadmaps, we classify
the position relationships of any two C-obstacles into three
categories, as shown in Fig. 3. Finally, we know that C f ree
changes when there are at least one pair of C-obstacles having
their position relationship changed. In Section 5, we will
discuss how to identify toc and tos in details.

(a) (b)

(c)

Figure 3: The position relationships of two obstacles. (a). Mi
does not overlap Oj and MOj does not overlap Oi. (b). Mi
overlaps Oj and Mj overlaps Oi. (c). Mi overlaps Oj or Mj
overlaps Oi.
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Figure 4: This figure illustrates the translational velocities of
p and q which are caused by rotation. For p, its translational
velocity introduced by self-rotation of Rc and rotation of Oi
is ~ω×~r + ~ω× ~r1. For q, its translational velocity caused by
rotation of Oj is ~ω′ × ~r2.

5 Identify Critical Moments

5.1 Time of Contact (toc)

Given a configuration c ∈ Mi and an obstacle Oj 6=i, when
Rc and Oj do not intersect, we want to compute the time of
contact toc within a time interval [t1, t2].

We extend the iterative method [22] to estimate toc by gen-
eralizing the idea of conservative advancement [27]. In each
iteration, we estimate the advancing time δtoc during which
Rc will be safely moved toward Oj without causing any colli-
sion. The estimated advancing time δtoc is calculated based on
a tight lower bound of the closest distance betweenRc and Oj
and an upper bound of the motions ofRc and Oj. The process
repeats until the distance between Rc and Oj is under some
user-defined threshold ε or t2 is reached.

5.1.1 Estimation of Advancing Time

The result from [22] is only applicable to constant velocities.
To estimate δtoc, we extend [22] to consider models that do not
have constant velocities. Let d be the shortest distance between
Rc and Oj with direction~n (~n is normalized). Note that d is
actually the distance between the closest pair of features ofRc
and Oj. Without loss of generality, assume the closest features
are two points: p onRc and q on Oj (see Fig. 4). Let ρ be an
upper bound of motions of Rc and Oj. Then calculation of
ρ is answered by computing the distance traveled by p and q
along~n in unit time.

Let Tp be p’s trajectory and Tq be q’s trajectory. Let Rc
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and Oj’s translational velocity be ~v and ~v′ and their angular
velocity be ~ω and ~ω′, respectively. Recall that while Rc is
rotating around µi, its orientation is also changing. As a result,
each of its surface point has an additional transformation:
rotation around µRc with angular velocity ~ω where µRc is
Rc’s center of mass. Therefore p’s velocity Ṫp(t) is ~v +

V(t)+ ~ω× ~r1. The projection of p’s velocity onto~n is Ṫp(t) ·
~n. q’s velocity Ṫq(t) is ~v′ + ~ω′ × ~r2 and q’s velocity along~n
is Ṫp(t) ·~n. Finally, the upper bound of the distance traveled
by p and q is given by the following lemma.

Lemma 5.1 The upper bound ρ of the distance traveled by p
and q along~n in unit time is
|~n× ~ω||~r|+ (~v− ~v′) ·~n + (|~n× ~ω||~r1|+ |~n× ~ω′||~r2|)
where• |~n× ~ω||~r| is the upper bound of V(t),

• (~v− ~v′) ·~n is the distance Rc travels towards Oj,

• ~r = −−→posp − µi, where −−→posp stands for the position of the
point p,

• ~r1 = −−→posp − µRc is self-rotation radius, and

• ~r2 = −−→posq − µj, where −−→posq stands for the position of
point q.

These notations are illustrated in Fig. 4. Note that the magni-
tudes of~r, ~r1, ~r2 are constant but their directions change over
time.

Proof Let t be the current time and assume at time T, p is
advanced d towards q at direction~n. Then we have

d =
∫ T

t
(Ṫp(t)− Ṫq(t)) ·~ndt

=
∫ T

t
[(~v + V(t) + ~ω× ~r1)− (~v′ + ~ω′ × ~r2)] ·~ndt

=
∫ T

t
V(t) ·~ndt +

∫ T

t
(~v− ~v′) ·~ndt

+
∫ T

t
(~ω× ~r1 − ~ω′ × ~r2) ·~ndt

(1)

The advancing time δtoc should be (T − t). Since ~v, ~v′ and~n
are constant vectors, we have

d =
∫ T

t
V(t) ·~ndt+(~v−~v′) ·~nδtoc +

∫ T

t
(~ω×~r1− ~ω′×~r2) ·~ndt

Because

1. (~ω×~r) ·~n = (~n× ~ω) ·~r.

2. ~ω and ~ω′ are constants during the time interval [t1, t2].

3. The magnitudes of ~r1 and ~r2 are constants.

we have

d ≤
∫ T

t
V(t) ·~ndt+(~v−~v′) ·~nδtoc +(|~n× ~ω||~r1|+ |~n× ~ω′||~r2|)δtoc

~v

δt1 δt2

Figure 5: Assume the square is fixed while the tube is moving
with velocity ~v. The magnitude of an arrow shows the pene-
tration depth and its direction is the corresponding penetration
direction. δt1 and δt2 are the estimations of tos at the first and
second iteration, respectively.

As shown in Fig. 4, V(t) = ~ω×~r, so∫ T

t
V(t) ·~ndt ≤

∫ T

t
(~ω×~r) ·~ndt

=
∫ T

t
(~n× ~ω) ·~rdt

≤ |~n× ~ω||~r|δtoc

Therefore,

d ≤ δtoc{|~n× ~ω||~r|+(~v−~v′) ·~n+(|~n× ~ω||~r1|+ |~n× ~ω′||~r2|)}

The upper bound of motions is
ρ = |~n × ~ω||~r| + (~v − ~v′) · ~n + (|~n × ~ω||~r1| + |~n ×
~ω′||~r2|).

So the lower bound of δtoc is d
ρ .

5.2 Time of Separation (tos)

When Rc and Oj intersect, we apply the similar idea to esti-
mate tos. At each iteration, we first compute the penetration
depth pd between Rc and Oj. Then advancing time δtos is
estimated based on pd and motions of Rc and Oj. Let ~n be
the direction that realizes this pd and ρ be the upper bound of
the velocity along ~n. Since we know that pd is the shortest
distance to separateRc and Oj, there is a simple relationship
between δtos and pd:

ρ× δtos ≤ pd .

Therefore, we can ensure that Rc and Oj will remain in col-
lision after advancing them by the estimated time δtos. This
continues until they are still intersecting but the penetration
depth is under some very small user-defined tolerance τ or t2
is reached. Fig 5 shows a simple example.

We apply the idea in Section 5.1 to compute the upper bound
ρ and use DEEP [23] to compute penetration depth between
two convex polyhedra. Instead of checking all pairs of convex
pieces from Rc and Oj, one more efficient way is to use a
convex hull traversal tree (CHTT) [28]. CHTT is built while
traversing CHR and CHj. As shown in Fig. 1(c), the traversal
starts with the root nodes of CHR and CHj and it is performed
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recursively on both trees simultaneously. Each node in CHTT
corresponds to an intersection test on a single pair of convex
pieces. The root node of CHTT is the intersection test on
the roots of CHR and CHj and its leaf nodes are either the
intersection test on the leaf nodes of CHR and CHj or a pair
of convex pieces which do not intersect. For the intersection
test between some pair of nodes in CHR and CHj, if they
intersect, the penetration depth is computed. Then collision
detection will be performed on their child nodes. If they do
not overlap, their children are guaranteed to be collision free.

5.3 Implementation Details

For the computation of toc, conservative advancement contin-
ues until the distance d between Rc and Oj is smaller than
a user-defined threshold ε. Because of the underestimation
of advancing time in each iteration, the two models are not
guaranteed to be in contact and there might be always some
very small distance between them. To make the two models
collide at time toc, we increase d by ε (we use ε = 0.001) in
the last iteration and estimate the advancing time with this new
d. Adding a small value to d makes sure that two models are
in contact at toc and the reported toc is still very close to its
true value. Similarly, for time of separation, δtos is estimated
with ρ× δtos ≤ (pd + ε) in the last iteration.

6 Update Roadmap at Each Critical
Moment

A critical moment implies potential changes of the topology of
C f ree. So for any given critical moment t, the critical roadmap
Gt needs to be updated to reflect these changes. As [12], all
local roadmaps are transformed based on obstacles’ motions,
and then the local roadmaps are merged into Gt by adding
connections between the boundary nodes of pairs of local
roadmaps.

More specifically, for each configuration c ∈ Mi and an ob-
stacle Oj 6=i ∈ O, we maintain a list of critical times T{c,Oj}.
To find the boundary nodes Bi,j of Mi, we determine a set
of configurations CDi,j from the local roadmap Mi that will
make R collide with Oj. Because for any time t, if t is be-
tween a toc and a tos in T{c,Oj}, Rc must intersect Oj at t.
Therefore, CDi,j be easily collected for any critical time with-
out additional collision detection tests. If CDi,j and CDj,i
are nonempty, Mi and Mj are merged by adding connections
between their boundary nodes Bi,j and Bj,i.

7 Connect Critical Roadmaps

Given two consecutive critical times, we need to connect their
critical roadmaps. The following observation allows us to
make the connections efficiently.

t2

c′2

c1
c2 c

b

t1 t2t0

t0 t1t

x
y

d

a

c1

c2

c′2

c′1

c′1

Figure 6: Connect two critical roadmaps in a 3D configuration-
time space. t2 is a time of separation because the triangle be-
comes separated from the rectangle’s local roadmap at t2. For
the two valid edges c1c2 and c′1c′2, connections c1c′1, c1c′2, c2c′1
and c2c′2 are valid. Their intersection with the configuration
space at t1 are a, b, c and d which are all collision free.

Observation Consider two consecutive critical times t and t′

with t < t′. For a valid edge c1c2 in critical roadmap Gt, let c′1
be the transformed c1 at t′ and c′2 be the transformed c2 at t′.
All the connections c1c′1, c1c′2, c2c′1 and c2c′2 are guaranteed
to be collision free if c′1c′2 is also valid.

Proof Since t and t′ are two consecutive critical times, there
are no critical moments in between for any configuration in-
cluding c1 and c2. So during the time interval [t, t′], both
configurations keep collision free. Therefore, all the four
trajectories c1 to c′1, c1 to c′2, c2 to c′1 and c2 to c′2 are valid.

An example is illustrated in Fig. 6.

Note that due to the motion of the local roadmap, the connec-
tion between two nodes, e.g., c1 and c′2, might not be a straight
line. Consider a configuration c from Mi at time t. Let c′ be
its new position at t′ after transformation. Recall that as the
obstacle Oi moves, c moves along with Oi. Therefore, the
connection between c and c′ in [t, t′] is exactly the same as
Oi’s trajectory over this time interval.

Let us now consider a more general example. Let ci(t) be a
node of Mi at time t and cj(t′) be a node of Mj at time t′.
The connection (denoted as T ) between ci(t) and cj(t′) over
the time interval [t, t′] is interpolated as follows. First, we
know that T (t) = ci(t) and T (t′) = cj(t′). For any other
time τ, t < τ < t′, we want to compute T (τ). Using linear
interpolation, T (τ) = (1− s)× ci(t) + s× cj(t+ 1), where
s = τ−t

t′−t . A simple example is shown in Fig. 7.

8 Experiments and Results

Experiment Set Up. All the experiments are performed on
an Intel Core i7 M620 CPU at 2.67GHz with 4GB RAM. The
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ci(t)

cj(t)

ci(t
′)

cj(t
′)

t t
′

Figure 7: The obstacles are two moving polygons. The square
is rotating counterclockwise while the triangle is rotating
clockwise. Both of them are translating from left to right.
A point robot travels from the bottom-left corner to top-right
corner.

(a)

(b)

Figure 8: Hole environment. (a) A collision-free path connects
start and goal in an environment consisting of several boards
with holes. (b) The swept volumes of the obstacles. The
two obstacles which are initially perpendicular to z-axis are
dynamic. Each moves along z-axis while rotating around z.

implementation is coded in C++. Our new method is tested
on three environments: Hole (Fig. 8), Ball (Fig. 9) and Table
(Fig. 10). They share the same robot which is a long and thin
rod. The maximum time limits t f are 5.0, 10.0 and 2.0 time
units, respectively. Each environment is assigned 30 queries.
Although these queries are generated with some randomness,
we try to make each as hard as possible. Take Hole as an
example. For each query, the rod robot has to pass through at
least one hole to reach its destination.

Table I shows the running times of our method in different
phases. All running times are measured in seconds. The num-
bers of critical times for the Hole, Ball and Table environments
are 63, 16, and 7, respectively.

(a) (b)

Figure 9: Ball environment. (a) A collision-free path in an
environment consisting of several balls. (b) Every ball moves
along an ellipse-shape curve while rotating.

(a)

(b)

Figure 10: Table environment. (a) A collision-free path in an
environment consisting of two moving tables and a static ball.
(b) Each table moves towards the other while rotating around
y-axis.
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Hole Ball Table

"CriticalRoadmap"
"RRT"

"Uniform"
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"FIXED"

Figure 11: Experimental results for the environments in Figs. 8,
9 and 10. The y-axis is in logarithmic scale.

Comparison to Previous Work. The expected running times
for each method are shown in Fig. 11. The expected running
time is the averaged running time of all successful queries
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Table 1: Running times (sec) for every phase of our method
Hole Ball Table

Create Local Roadmaps 3.182 2.574 2.449
Detecting Critical Moments 4.399 0.375 4.758
Update Global Roadmaps 6.022 0.484 0.031
30 Queries 40.185 7.129 1.669
Total 53.835 10.592 8.939

weighted by the reciprocal of the successful rate. The success-
ful rate is the number of successful queries divided by the total
number of queries (which is 30 × 10 in our experiments). The
proposed method can find a valid path for every query, i.e.,
100% successful rate.

The proposed method is first compared to several classic plan-
ners: Uniform [6], Gaussian [25] and RRT [7]. Like in C, those
planners samples a number of 〈configuration,time〉 pairs, keep
the valid ones and connect them into aM in X . As shown in
Fig. 11, our method has significant efficiency improvements:
2-3 orders of magnitude faster over Uniform and Gaussian
and noticeably faster than RRT. Note that RRT is a single-shot
planner and it generates a new tree for each query, so we ex-
pect its performance to degrade when more queries are given.
All the others are multi-query planners.

As for the method which updates a critical roadmap at fixed
time intervals, we set the intervals to 0.02, 0.1 and 0.00001 for
the Hole, Ball and Table environments, respectively. The run-
ning times for these intervals are plotted in Fig. 11. Although
each time interval is very small, it cannot guarantee to find a
valid path for each query. For Hole, 5 out of 30 queries can-
not be solved and for Table, there is a chance of 18/30 that a
query could not be solved. This is because it misses some crit-
ical moments when the topology of free configuration space
changes. Some connections between two consecutive critical
roadmaps are detected invalid at the query stage. Moreover, it
may update a roadmap at a moment which does not involve
the changes of C f ree. Our method can avoid these unnecessary
update and is at least one order of magnitude faster.

9 Conclusion and Future Work

In this paper, we presented a method called “critical roadmap
method” for planning motion in dynamic but fully known en-
vironments. Our method can detect all the critical times when
the free configuration space changes. The critical times are
estimated via the time of separation and the time of contact.
Our method provides a more complete representation of free
configuration-time space compared to the existing methods
that only use fixed time resolution. We also propose an effi-
cient way to assemble the roadmap at each critical time by
reusing the most of the existing roadmap and repair only the
invalid part caused by obstacles’ motions. Compared to the
previous methods, our strategy is more complete and provides
significant efficiency improvements.

Limitations and Future Works. While using local roadmaps
provides a more efficient way of updating roadmaps for each
critical time, it requires the robot to be free flying. Therefore,
the new method does not work for a robot with a fixed base.
Moreover, our current penetration depth computation relies on
decomposing each object into a convex hull hierarchy. This
approach does not provide a tight lower bound of the penetra-
tion depth between two non-convex shapes therefore increases
the number of iterations for conservative advancement. In the
future, we will look for a direct way to compute penetration
depth between two non-convex objects.
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