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Abstract

Co-clustering is a machine learning task where the goal
is to simultaneously develop clusters of the data and
of their respective features. We address the use of co-
clustering ensembles to establish a consensus co-clustering
over the data. As is obvious from its name, co-clustering
is naturally multiobjective. Previous work tackled the
problem using both rudimentary multiobjective opti-
mization and expectation maximization, then later a
gradient ascent approach which outperformed both of
them. In this paper we develop a new preference-based
multiobjective optimization algorithm to compete with
the gradient ascent approach. Unlike this gradient as-
cent algorithm, our approach once again tackles the co-
clustering problem with multiple heuristics, but also
applies the gradient ascent algorithm’s joint heuristic
as a preference selection procedure. As a result, we
are able to significantly outperform the gradient ascent
algorithm on feature clustering and on problems with
smaller datasets.

1 Introduction

This paper describes a novel application of multiobjec-
tive optimization to the problem of producing optimal
co-clustering ensembles. Co-clustering is an unsupervised
machine learning technique for identifying groups of ob-
jects related by their similar feature values. Co-clustering
is distinguished from ordinary clustering in that it si-
multaneously discovers clusters of similar objects with
regard to the values, as well as clusters of similar features
with regard to the objects related by them. Collectively,
these cluster pairs do a better job of identifying the un-
derlying structure in the data.

An example of co-clustering may be drawn from DNA
microarray analysis. Consider a large 2-dimensional ma-

trix whose rows are patients with various diseases and
other conditions, and whose columns are various genes.
Each cell in the matrix describes the degree to which a
given gene is expressed in a given patient. The objective
is to extract combinations of genes with regard to pa-
tients which suggest possible genetic sources of disease.
Using standard clustering techniques we could attempt
to find the largest clusters of patients which share gene
combinations in common; and (though it is less common)
we could likewise attempt to find clusters of genes with
regard to patients which collectively have them. But
co-clustering would seek to do both in combination: to
find clusters of patients with respect to specific clusters
of genes, where each cluster reinforces the other.

Ensemble learning is an approach to producing higher
quality learned solutions by combining the results of
several different kinds of learning algorithms. Ensemble
learning is particularly helpful in overcoming learning
bias among various co-clustering algorithms. In the
above example, we might apply various algorithms to
the DNA microarray to produce a set of co-clustering
solutions, one per algorithm. These would be fed into
an ensemble learning algorithm to produce a consensus
co-clustering which ideally would be superior to any one
member of the ensemble.

Many ensemble algorithms are essentially optimizers,
hunting for sets of weights which produce a consensus
which is as optimal as possible according to one or more
heuristic criteria. The possibility of multiple heuristics
makes ensemble learning easily amenable to multiobjec-
tive optimization. But in the co-clustering scenario, this
possibility is made explicit, since there are two ensemble
clusterings being performed, each according to a different
set of heuristic criteria.

In prior work [16, 17, 18], a subset of the authors of
this paper applied both a rudimentary multiobjective
optimization, the EM (Expectation Maximization) algo-
rithm, and custom gradient ascent approaches to search
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for optimal consensus co-clusterings. The multiobjec-
tive optimization technique bred candidate consensus
co-clusterings and assessed their fitness according to two
heuristic objective functions: one which examined how
well the co-clustering clustered the features, and another
which examined how well it clustered the objects. The
EM and gradient ascent algorithms instead used a single
combined heuristic function. The early multiobjective al-
gorithm suffered from two problems: first, later versions
of the combined heuristic objective were more discrimi-
nating than either of the individual objectives. Second,
the multiobjective optimization technique produced a
Pareto Front of solutions: but at the end of the day a
co-clustering algorithm must produce a single solution
which is then tested for generalization accuracy. As a
result, the gradient ascent algorithms generally proved
superior.

In this paper we will revisit the multiobjective op-
timization approach with a more advanced technique
based on a customized version of the NSGA-II algo-
rithm. This version uses the two heuristics, originally
used in the earlier multiobjective optimization approach,
to build the Pareto Front (NSGA-II’s “archive”), but then
uses the advanced combined heuristic function to select
parents from the front to breed new children. Addition-
ally, each child is hill-climbed using the combined heuris-
tic function. Finally, and crucially, we provide a single
solution at the end of the run by returning the mem-
ber of the final Pareto Front which maximized the com-
bined heuristic function. This, plus new mutation and
crossover algorithms, enables the procedure to achieve
significantly better performance than the gradient ascent
methods (the current state of the art) in a number of
problems and criteria, though it still falls short in others.

2 Previous Work
Clustering Ensembles Clustering is the key step for
many tasks in machine learning. It is well known that
off-the-shelf clustering methods may discover different
patterns in a given set of data. This is because each
algorithm has its own bias due to the optimization of
different criteria. Furthermore, there is no ground truth
to validate the result.

Recently the use of clustering ensembles has emerged
as a technique for overcoming problems with clustering
algorithms. A clustering ensemble technique is charac-
terized by two components: the mechanism to generate
diverse partitions, and the consensus function to com-
bine the input partitions into a final clustering. Diverse
partitions are obtained from multiple applications of any
single algorithm with different initializations [13, 25, 26],
or on various bootstrap samples of the available data
[12, 27], or from the application of different algorithms
to the same data set [14].

One popular methodology to build a consensus func-
tion utilizes a co-association matrix [27, 36]. Alterna-

tively, voting procedures have been considered to build
consensus functions [11]. A different popular mecha-
nism for constructing a consensus maps the problem
onto a graph-based partitioning setting [34, 9, 32].

Co-Clustering Clustering is seriously hampered by
the so-called curse of dimensionality. Various clustering
algorithms can handle data with low dimensionality,
but as the dimensionality of the data increases, these
algorithms tend to break down. A common scenario
with high-dimensional data is that several clusters may
exist in different subspaces comprised of different com-
binations of features. To capture such local structure
of the data, different co-clustering methods have been
proposed.

Co-clustering methods fall into bottom-up or top-
down approaches. Bottom-up methods find subspaces
recognized as “interesting”, and assign each data to the
most similar subspace [33, 28]. Top-down approaches
find the subspace to be associated to each cluster dur-
ing the clustering stage. Top-down methods belong to
histogram-based [29], density-based [31, 4, 38], hierarchi-
cal [37, 1], and EM-like [3, 2] approaches. These methods
provide clustering solutions which are hard at the data
level and have feature-to-cluster assignments equally
weighted. Recent studies have focused on algorithms
able to produce soft data clusterings (e.g., [28, 5]), and/or
clusterings having feature-to-cluster assignments un-
equally weighted (e.g., [10, 5]).

Multiobjective Optimization and Clustering Viewed
from a Bayesian perspective — as is now common —
unsupervised machine learning is inherently an opti-
mization task: one is trying to fit the best model to a
sample of data. The definition of “best” is absolute: gen-
eralization performance with respect to the full universe
of data points. But machine learning algorithms do not
know this a priori, and instead must rely on heuristic
assessments regarding the quality of their model and
parameters, such as: goodness of fit with regard to the
sample data, model parsimony, and so on.

As such there is various previous literature which has
tackled clustering from an evolutionary computation
perspective, and most commonly, from a multiobjective
one. Kin et al [23] tackled the problem of optimizing the
right model framework to fit to the data using a combi-
nation of multiobjective evolutionary optimization and
local search (K-means, EM). Handl and Knowles [19] ap-
plied multiobjective optimization to examine the trade-
off between number of clusters and cluster solution qual-
ity. Oliveira et al examined cluster ensemble discovery
by using multiple objective optimization to optimize
cluster features [30]. Jin and Sendhoff [21] applied mul-
tiobjective optimization in a wide variety of machine
learning contexts, including unsupervised clustering.
However no prior literature, to our knowledge, has ex-
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amined co-clustering or co-clustering ensembles from an
evolutionary or multiobjective optimization standpoint,
other than the approach described earlier in [16].

3 Building a Co-Clustering
Ensemble

We begin with a formal description of a co-clusterings
and co-clustering ensembles.

Definition 1 (Co-Cluster) Let D be a set of data objects,
where each ~o ∈ D is a vector in a feature space F =
{1, . . . , |F |}. A co-cluster C defined over D is a pair
〈ΓC, ∆C〉:

• ΓC denotes the object-based representation of C. It is a
|D|-dimensional real-valued vector whose components
ΓC,~o ∈ [0, 1], ∀~o ∈ D, represent the object-to-cluster
assignment of~o to C, i.e., the probability Pr(C|~o) that
object~o belongs to C;

• ∆C denotes the feature-based representation of C. It is a
|F |-dimensional real-valued vector whose components
∆C, f ∈ [0, 1], ∀ f ∈ F , represent the feature-to-cluster
assignment of the f -th feature to C, i.e., the probability
Pr( f |C) that the f -th feature belongs to the subspace of
features associated with C.

Definition 2 ( Co-Clustering Solution) A co-clustering
solution C defined over D is a set of co-clusters that satisfy
the following conditions:

∑
C∈C

ΓC,~o = 1, ∀~o ∈ D and ∑
f∈F

∆C, f = 1, ∀C ∈ C

Note that Definition 1 includes both soft and hard data
clusterings, as well as features-to-clusters assignments
which may have either equal or different weights. More
precisely, C = 〈ΓC, ∆C〉 is a hard (soft) co-clustering
solution if ΓC,~o ∈ {0, 1} (ΓC,~o ∈ [0, 1]), ∀~o ∈ D. For the
all-equal-weight case, if a feature f is relevant for C then
∆C, f = 1/R, where R is the total number of relevant
features. Otherwise, ∆C, f = 0.

A Co-clustering Ensemble E is a collection of co-
clustering solutions. Note that E does not carry any
information on the ensemble generation strategy, nor on
the original feature values of the objects in D. Further-
more, each co-clustering solution in E may contain in
general a different number of clusters.

Heuristic Multi-Objective Functions Though ulti-
mately the consensus clustering will be evaluated based
on its generalization performance (Θ f , Θo, and Θo f , as
discussed later), this information is of course not avail-
able to it during the learning task. Thus our multi-
objective optimizer will rely on multiple heuristics which
assess its performance.

The heuristics are derived this way. A consensus co-
clustering C∗ = 〈Γ∗, ∆∗〉 derived from an ensemble E
should meet two different requirements: C∗ should cap-
ture the underlying clustering structure of the data, on
the one hand through the data clusterings of the solu-
tions in E , and on the other through the assignments
of features to clusters in the clusterings of E . To cap-
ture both sides of the components in E , the co-clustering
ensemble problem can be naturally formulated as a two-
objective optimization problem:

C∗ = arg min
C

{
Ψo(C, E), Ψ f (C, E)

}
(1)

where Ψo and Ψ f are two optimization functions that
account for the data clusterings and the feature-to-cluster
assignments of the co-clusterings in E , respectively. Note
that the only constraint in the above formulation is that
C be a well-defined co-clustering solution, as given in
Definition 2.

The issue now is how to define Ψo and Ψ f . We use
a clustering-based approach, which involves a compar-
ison with the co-clustering solutions of the ensemble.
Formally, we have:

Ψo(C, E) = ∑̂
C∈E

ψo(C, Ĉ) Ψ f (C, E) = ∑̂
C∈E

ψ f (C, Ĉ)

(2)
where ψo (ψ f ) is a function that measures the distance
between two co-clustering solutions C ′ and C ′′ in terms
of their corresponding object-based clusterings (feature-
to-cluster assignments):

ψo(C
′, C ′′) =1

2

(
ψo(C ′, C ′′) + ψo(C ′′, C ′)

)
ψ f (C

′, C ′′) =1
2

(
ψ f (C ′, C ′′) + ψ f (C ′′, C ′)

) (3)

where

ψo(C ′, C ′′) =
1
|C ′| ∑

C′∈C ′

(
1− max

C′′∈C ′′
J
(
ΓC′ , ΓC′′

))
ψ f (C ′, C ′′) =

1
|C ′| ∑

C′∈C ′

(
1− max

C′′∈C ′′
J
(
∆C′ , ∆C′′

)) (4)

J
(
~u,~v

)
=
(
~u ~v
)
/
(
‖~u‖2 + ‖~v‖2 − ~u ~v

)
∈ [0, 1] denotes

the extended Jaccard similarity coefficient (also known
as Tanimoto coefficient) between any two real-valued
vectors ~u and ~v [20]. The solution C∗ of Equation 1 max-
imizes the information shared with the components of
the ensemble, both in terms of object clusterings and
feature-to-cluster assignments.

Heuristic Single-Objective Functions While promis-
ing, the two-objective evolutionary co-clustering ensem-
ble formulation has some limitations. First, it is ineffi-
cient, mostly due to the fact that the number of iterations
needed to achieve good solutions is typically large. Sec-
ond, it is not obvious how to set the parameters (number
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of iterations, population size, etc.). Third, the results
are difficult to interpret. Rather than output a single
solution, the algorithm produces a set of consensus co-
clusterings along the Pareto front. Furthermore, and
more importantly, the two-objective approach suffers
from an important conceptual issue: it evaluates the
object-based and feature-based representations of a can-
didate solution independently of one another. However
they are instead strictly coupled. This could result in the
selection of solutions which are not optimal.

In [18] an alternative single-objective function was pro-
posed that captured this interdependence to more effec-
tively evaluate the quality of a candidate consensus co-
clustering. The object-based (ΓC) and the feature-based
(∆C) representations of a co-cluster C were combined to
define the subspace cluster representation matrix XC of C.
XC is a |D| × |F|matrix that stores, for each~o ∈ D and
f ∈ F , the probability of the intersection of the events

“object~o belongs to C” and “feature f belongs to the subspace
associated with C”. Under the assumption of indepen-
dence between the two events, this probability is equal
to the product of Pr(C|~o) = ΓC,~o and Pr( f |C) = ∆C, f .
Hence, given D = {~o1, . . . ,~o|D|} and F = {1, . . . , |F |},
matrix XC can be formally defined as:

XC =

 ΓC,~o1
×∆C,1 . . . ΓC,~o1

×∆C,|F |
...

...
ΓC,~o|D|×∆C,1 . . . ΓC,~o|D|×∆C,|F |

 (5)

The single-objective function that captures the depen-
dence between the object-based and feature-based repre-
sentation of a candidate solution is:

C∗ = arg min
C

Ψo f (C, E) (6)

where Ψo f is a function designed to measure the “dis-
tance” of any well-defined co-clustering solution C from
E in terms of both data clustering and feature-to-cluster
assignments. Ψo f is defined as follows:

Ψo f (C, E) = ∑̂
C∈E

ψo f (C, Ĉ) (7)

where

ψo f (C
′, C ′′) = 1

2

(
ψo f (C ′, C ′′) + ψo f (C ′′, C ′)

)
(8)

and

ψo f (C ′, C ′′) =
1
|C ′| ∑

C′∈C ′

(
1− max

C′′∈C ′′
Ĵ
(
XC′ , XC′′

))
(9)

In (9), the similarity between any pair C′, C′′ of co-
clusters is computed in terms of their corresponding
subspace cluster representation matrices XC′ and XC′′ .

For this purpose, the Tanimoto similarity coefficient was
generalized to operate on real-valued matrices:

Ĵ(X, X̂) =
∑
|rows(X)|
i=1 〈Xi · X̂i〉

(‖X‖2)2 + (‖X̂‖2)2 − ∑
|rows(X)|
i=1 〈Xi · X̂i〉

(10)
where 〈Xi · X̂i〉 denotes the dot product between the i-
th rows of matrices X and X̂, and ‖X‖2 represents the
so-called 2- or Euclidian-norm of X (similarly for X̂).

Gradient Ascent Methods A heuristic approach (CB-
PCE) was introduced in [18] to solve the optimization
problem given in Equation (6). The heuristic computes
meta-clusters (clusters of clusters) from the solutions
of the ensemble, and applies a majority voting rule to
assign objects and features to the meta-clusters. The re-
sulting assignments provide the consensus co-clustering.

Unfortunately, this approach is extremely slow. An
approximation of CB-PCE (FCB-PCE) that speeds up the
computation of Equation (10) was introduced in [18].

4 A Preference-Based MOEA
Approach to the Co-Clustering
Ensemble Problem

Until recently, the concept of Prefrence Based Multiob-
jective Evolutionary Algorithm (MOEA) has gained a
significant interest in the research community [22, 7, 35,
24, 15]. Here, the evolutionary algorithm is required to
converge the solutions to a particular region (or point) of
the Pareto front. In most cases, progress toward this re-
gion is made by accepting preference based information
from the experimenter after every few generations of the
evolutionary algorithm [7].

As discussed in [22, 35], this preference information is
used to model a monotonically ascending or descending
function, which then is used for the subsequent itera-
tions of the MOEA to converge to a particular region
of the objective space. To facilitate this procedure, the
experimenter may provide a priori information, such as:

1. The exact region or point on the Pareto front where
the preferred solution or solutions may exist.

2. A partial view of the Pareto front, if necessary.

3. The specific time when the experimenter will in-
tervene and provide preference information to the
algorithm.

It is usually necessary to know the above information
before the start of the optimization procedure. In some
cases, where such information is not readily available,
the experimenter must supply at least a reference point
in the objective space where the optimizer will try to
converge to [8].
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The problem of finding an optimal co-clustering en-
semble is bounded by similar set of constraints: we are
only equipped with a function (or a set of functions) that
may help us to reach a preferred region on the Pareto
front. In our case there are three such heuristic objective
functions: Ψo(C, E), the heuristic assessment of the data
clustering; Ψ f (C, E), the heuristic assessment of the fea-
ture clustering; and Ψo f (C, E), the blended function of
Ψo(C, E) and Ψ f (C, E) that assesses both criteria. Like
preference-based methods, in the end the population
must be reduced to a single final solution. However
unlike those methods, we do not know beforehand the
exact point on the Pareto front to converge to, and no
experimenter is available to provide preference informa-
tion. As a result, if we optimized using all three objective
functions, we would have a Front and no way to collapse
it to a single result.

To decompose a typical co-clustering ensemble prob-
lem into a preference based multiobjective optimization
problem, we have selected the third objective Ψo f (C, E)
as the preference function (among other things, as dis-
cussed later). We use Ψo(C, E) and Ψ f (C, E) to build the
front. This approach seemed to be reasonable in the PCE
context for the following reasons:

1. As Ψo f (C, E) is a combined criterion for assessing
a consensus clustering solution, an individual with
better Ψo(C, E) and Ψ f (C, E) may help to find a bet-
ter overall solution.

2. This approach will make the “reference points” or
“preference points” in Preference-based MOEA un-
necessary.

3. No intervention is required from the experimenter
during the evolutionary run.

5 Optimization and
Multiobjective Optimization

We tried two evolutionary algorithms for optimization:
a traditional genetic algorithm (GA) with tournament
selection, and the Nondominated Sorting Genetic Al-
gorithm II (NSGA-II) [6]. As the NSGA-II algorithm
universally dominated the GA in performance, we do
not discuss the GA here.

In our situation we have three objective functions,
defined more precisely earlier in the paper:

• Ψo(C, E), a heuristic optimization function over ob-
ject clusters, where lower values are preferred.

• Ψ f (C, E), a heuristic optimization function over fea-
ture clusters, where lower values are preferred.

• Ψo f (C, E), a heuristic optimization function jointly
over both object and feature clusters, where lower
values are preferred.

Algorithm 1 MOEA Based Co-Clustering Ensemble
Require: Randomly generated parent population Pt at genera-

tion t with population size M.
Ensure: After tmax number of iteration, individual I will rep-

resent solution of the problem.
1: Initialize child population, Rt := ∅
2: while t ≤ tmax do
3: Create mixed population, St := Pt ∪ Rt
4: F := Non-dominatedSort(St, Ψ f , Ψo), create φ number

of fronts. i.e. F := {Fφ,Fφ−1 . . .F1}
5: Pt := ∅ and i := 1
6: repeat
7: Assign crowding distance on Fi
8: Pt := Pt ∪ Fi
9: i := i + 1

10: until |Pt|+ |Fi| ≤ M
11: Apply crowding distance sorting on Fi
12: Pt := Choose the first (M− |Pt|) individuals from Fi
13: Rt := ApplyCrossover-with-HillClimb(Pt, Ψo f (C, E)))
14: Rt := ApplyMutation-with-HillClimb(Rt, Ψo f (C, E)))
15: t := t + 1
16: end while
17: I := pick the best individual from Rt w.r.t. Ψo f (C, E)

The NSGA-II algorithm used Ψo(C, E) and Ψ f (C, E)
as its two objective functions for purposes of building
the archive: but used Ψo f (C, E) as the objective func-
tion for assembling the population from the archive via
tournament selection.

Algorithm 1 gives a formal description of our ap-
proach, a variant of the NSGA-II algorithm. We used
the single objective preference based Ψo f (C, E) function
during NSGA-II’s tournament selection (of size 2). Our
algorithm deviated somewhat from NSGA-II as follows.
When breeding individuals, we selected two parents
from the archive, then crossed them over, producing a
single child, which was added to the population. After
the population was full, we then mutated every individ-
ual with a 0.25 probability.

Additionally, every 25 generations we added a bit of
hill-climbing as follows. When breeding individuals,
we again selected two parents from the archive, then
crossed them over, producing a single child, but only
the best of the child and its two parents were added to
the population. After the population was full, we then
mutated every individual with a 0.1 probability, but the
child only replaced the parent if it was superior.

Representation and Breeding Our candidate consen-
sus co-clusterings are soft feature clusterings: thus they
contain weights suggesting the degree to which features
belong to each cluster. For purposes of evolutionary
optimization, the genotype takes the form of two 2-D
arrays of real numbers. The first 2-D array holds the
object clustering: with one row for each cluster and one
column for each object. Each row holds a distribution
of weights for the objects in that cluster. Likewise the
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second 2D array holds the feature clustering: one row for
each cluster and one column for each feature.

Crossover Crossover is performed on two parent but
produces only one child (the other child is discarded).
For each row, we decide, with an independent crossover
probability PC1,1 whether to cross over that row among
the parents. If so, we perform parameterized uni-
form crossover among the elements of the row with a
crossover probability PC2.2 This is followed by renormal-
izing both rows so that each sums to one.

Mutation For each row, we decide, with an indepen-
dent mutation probability PM = 0.25, whether to mutate
that row. If we decide to do so, then we add random
Gaussian noise, of standard deviation σM = 0.1, to each
element in the row. If the chosen noise would move the
element to less than 0.0 or greater than 1.0, it is rejected
and a new noise value is selected. After convolving the
entire row with noise, we renormalize the row so that its
elements sum to one.

Collapsing the Pareto Front NSGA-II does not pro-
duce a single solution, but rather produces a Pareto front
of solutions. However while multiple objectives are
useful in solution discovery, at the end of the day the
algorithm must produce a single co-clustering solution
which is then tested for generalization. In earlier work
[16] we ignored this issue and simply assessed the qual-
ity of the final solution as the average generalization
score over each member of the front or of the popula-
tion. However here we take another tack. Once NSGA-II
has produced a Pareto front, we then return the solution
whose Ψo f (C, E) score is highest.

6 Experiments

We performed experiments comparing our revised
MOEA methods with the Gradient Ascent methods de-
scribed in [17, 18]. The experiments were done on six
benchmark datasets from the UCI Machine Learning
Repository3 (Iris, Wine, Glass, and E. Coli) and on one
time-series dataset from UCR Time Series Classification
Page4 (Trace Data). Because of very high time cost in-
volved, we performed only ten independent runs for
each combination of technique and dataset, and collected
the results. As both the gradient-based and the multiob-
jective evolutionary approaches are stochastic in nature,
we performed non-parametric two-tailed t-tests to de-
termine statistical significance. P-values are shown in
Figure 1.

1PC1 was set to the reciprocal of the total number of objects. That is,
PC1 = 1/|D|.

2PC2 was set to 0.5
3http://archive.ics.uci.edu/ml/
4http://www.cs.ucr.edu/∼eamonn/time series data/

Measurement Unusually for a machine learning
method, a co-clustering has two equally important mea-
sures of accuracy: how well it properly clusters the object
data, and how well it properly clusters the features.

The Θo, Θ f , and Θo f measures are formulated to as-
sess the similarity of the consensus clustering C with a
reference classification Ĉ drawn from existing labelled
validation data. The measures are computed in terms
of Normalized Mutual Information (NMI) [34] by taking
into account their object-based representations (Θo) and
feature-based representations (Θ f ), or both (Θo f ). NMI
is a commonly used measure to assess the quality in
clustering in general. The formal description of these
measures may be found in [18]. Θo f is the final, com-
prehensive assessment measure that takes into account
both co-clustering aspects.

Results Table 1 summarizes the performance results.
Our preference based MOEA model tends to attain better
consensus co-clustering in terms of Θ f and Θo f on the
simpler problems (Iris, Wine, Glass). However on E.
Coli and the much more difficult TraceData, it could not
outperform the gradient ascent algorithm.

This was the opposite of what we had expected. We
had hypothesized that local optima would trap the gra-
dient ascent algorithm on the more complex problems,
but on the simpler problems a straightforward gradient
ascent should outperform a global algorithm like the
MOEA. This suggests that the underlying spaces may
not be what we had expected.

We note that the overall Θo f performance of the
MOEA was largely based on its very strong Θ f scores:
indeed it was never able to outperform its gradient as-
cent counterpart in Θo. Nonetheless, the Θ f scores were
strong enough to easily outweigh the Θo differences.

One issue we faced was the fact that while the Ψo and
Ψ f functions were very basic, the Ψo f function is more
sophisticated and likely more powerful for optimization.
In order to improve our results for the more complex
data sets, and also to successfully win on all three fronts
instead of just Ψ f and Ψo f , we will need to improve
these functions to make them more accurate.

7 Conclusion

While in early experiments [16], a trivial MOEA out-
performed an Expectation Maximization approach, in
later implementations a gradient ascent formulation pro-
duced much better-performing models than either of
them [17, 18]. However we believed, and still believe,
that a more sophisticated MOEA can ultimately outper-
form a gradient ascent approach as it works around local
optima.

To this end we have developed a Preference-based
MOEA which develops the Pareto front using basic
heuristics on the features and objects, but also applies,
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Data Set Algorithm Θf P-value Θo P-value Θof P-value

Iris

MOEA-CB-PCE 0.5564 (> 99.8%) 0.0813 0.7348 (> 95.0%)
CB-PCE 0.2332 0.4702 (> 99.8%) 0.6902

MOEA-FCB-PCE 0.5444 (> 99.8%) 0.1826 ≈ 0.2027 (> 95.0%)
FCB-PCE 0.2002 0.2655 ≈ 0.1805

Wine

MOEA-CB-PCE 0.5945 (> 99.8%) 0.1943 0.7748 (> 99.8%)
CB-PCE 0.1142 0.4119 (> 99.0%) 0.3402

MOEA-FCB-PCE 0.6244 (> 99.8%) 0.1001 0.2381 ≈
FCB-PCE 0.1463 0.2518 (> 99.8%) 0.2355 ≈

Glass

MOEA-CB-PCE 0.7464 (> 99.8%) 0.0834 0.9048 (> 99.8%)
CB-PCE 0.1302 0.4702 (> 99.8%) 0.1203

MOEA-FCB-PCE 0.6244 (> 95.0%) 0.1026 0.2397 ≈
FCB-PCE 0.4639 0.4525 (> 99.8%) 0.1193 ≈

E. Coli

MOEA-CB-PCE -0.003 -0.0013 0.011
CB-PCE 0.0046 (> 99.8%) 0.0894 (> 99.8%) 0.0881 (> 99.8%)

MOEA-FCB-PCE -0.003 -0.0009 0.019
FCB-PCE 0.0043 (> 99.8%) 0.105 (> 99.8%) 0.112 (> 99.8%)

TraceData

MOEA-CB-PCE -0.00241 -0.0492 -0.0587
CB-PCE 0.018 (> 99.8%) 0.2347 (> 99.8%) 0.2493 (> 99.8%)

MOEA-FCB-PCE -0.00246 -0.04956 -0.0591
FCB-PCE 0.0177 (> 99.8%) 0.1854 (> 99.8%) 0.247 (> 99.8%)

Table 1: Results on the different benchmark datasets. Each gradient algorithm (CB-PCE, FCB-PCE) is compared
against a MOEA employing the same objective function in its tournament selector, hill-climbing, and final Pareto
front reduction. ≈ means no statistically significant difference (of at least 95%) between the two algorithms. Bold
faced results are statistically significantly superior. We measured four levels of P-values: 95%, 98%, 99%, and 99.8%.

as the preference function, the same joint heuristic used
in the gradient ascent formulations. The results from
our experiments demonstrate the efficacy of the MOEA
approach in terms of feature based clustering method
(i.e. in terms of Θ f ) and for simpler problems. How-
ever more work and tuning remains in order to get the
MOEA to the stage where it outperforms the gradient
ascent algorithms universally.
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