
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Adaptive Search for Interesting Things

William Squires
wsquires@masonlive.gmu.edu

Sean Luke
sean@cs.gmu.edu

Technical Report GMU-CS-TR-2012-4

Abstract

The results of a parameter sweep over a multidimen-
sional parameter space are often used to gain an under-
standing of the space beyond simply identifying optima.
But sweeps are costly, and so it is highly desirable to
adaptively sample the space in such a way as to concen-
trate precious samples on the more “interesting” areas
of the space. In this paper we analyze and expand on
a previous work which defined such areas as those in
which the slope of some quality function was high. We
develop a performance metric in terms of generalizabil-
ity of the resulting sampled model, examine the existing
method in terms of scalability and accuracy, and then
propose and examine two population-based approaches
which address some of its shortcomings.

1 Introduction

There are two common reasons why one would itera-
tively, and adaptively, probe for the quality or nature of
points in a space with regard to some function f . One is
of course to find points which optimize that function in
some sense (such as maximization). But another equally
common reason is to collect a set of points which best
help us understand the shape of the surface of f , per-
haps to ultimately build up a model of the surface. This
is usually known as parameter sweeping. For example,
scientists often use parameter sweeps to understand the
sensitivity of a surface to changes in various parameters.

One approach to doing this is to perform independent
sensitivity analyses on each parameter of interest. The
problem with this approach is that by projecting out the
other parameters during a given sensitivity test, we com-
pletely disregard linkages and relationships among the
parameters. Thus it is desirable to probe in the joint pa-
rameter space. However, depending on the complexity
of the surface, the number of points required to accu-
rately model the surface can become prohibitively large,
and particularly so as the dimensionality of the joint

parameter space grows. But points are expensive: each
may represent an experimental test using those parame-
ters. Thus the goal is to probe adaptively so as to maxi-
mize understanding of the nature of the surface with a
minimum of samples.

To attack this issue Luke et al [8] proposed a model-
free adaptive sampling approach based loosely on a
population-based technique similar to an evolutionary
algorithm. Their technique was to initially sample ran-
domly, then begin selecting pairs of points which were
likely to have some interesting but so-far unexplored fea-
ture of the space between them. Between each such pair
Luke et al generated one or more children through an
iterated bracketing technique. The goal was to sample
points more densely on “interesting” regions of the space
than on non-interesting regions.

Luke et al defined interesting regions as those for which
the magnitude of the gradient of the surface was great-
est — that is, where the surface had its steeper slopes.
This was a reasonable assumption: to understand a sur-
face from a set of samples, it was best to place samples
on the steeper slopes. For example, if a surface had a
broad swath of flat area, there was no need to waste
samples in that region: just sample once and declare that
everything else in the neighborhood resembled it.

However there were three major issues left open by
this research. First, the effectiveness of the algorithm
was measured by plotting the concentration of individu-
als in each range of “interestingness” (slope) in the sur-
face, and arguing visually for the apparent correlation.
Second, the bracketing approach produced individuals
which were excessively crowded along the slope, reduc-
ing the effectiveness of the algorithm at minimizing the
number of necessary samples. Third, the method was
only tested for two dimensions of parameters: it was
not clear if it would scale. Indeed, we suspected that
the so-called curse of dimensionality was likely to rear its
head.

1

This paper seeks to tackle these three issues:

1. We propose a significantly better measure of “inter-
estingness”. This boils down, fundamentally, to gen-
eralizability of the resulting sampled model. While
this new definition allows us to perform quantita-
tive assessment, it does not discard the philosophi-
cal underpinnings of the original approach: indeed
it is strongly associated with it.

2. We improve the algorithm through adaptive brack-
eting and crowding in order to reduce undue sam-
ple density along the gradient.

3. We examine the scalability both of the original algo-
rithm and the revised one.

1.1 Finding Interesting Things

In [8] a novel steady-state population based parame-
ter sweeping algorithm was defined and demonstrated
using three 2-dimensional problems. Although their al-
gorithm was not an optimizer, they used EA terminology
and so the surface function of interest f was effectively a
fitness function. The algorithm, which we call the Fixed
Bracketing Sweep, or FBS, is roughly defined as follows:

1. Generate an initial population of individuals over
the parameter space using a uniform random distri-
bution.

2. Choose parent 1 randomly from the population, or
with some exploration probability (set to 0.1), intro-
duce a new random sample as parent 1.

3. Choose parent 2 from the population using a double
tournament (described below).

4. Repeat N times:

(a) Generate a child somewhere along the line seg-
ment joining parent 1 and parent 2.

(b) Among the child and two parents, select the
two new “parents” 1 and 2 for the next itera-
tion of the loop (described below).

5. If the maximum population size has not yet been
reached, go to step 2.

Note that, unlike traditional population-based meth-
ods, this algorithm never removes individuals from its
population: the population continues to grow and grow.

The Double Tournament Parent 2 is selected using a
tournament of size 15, where the superior individual
is one whose fitness is most different from Parent 1. En-
trants to this tournament were not selected at random
with replacement, but rather were the winners of 15 other
tournaments at a second level. The second-level tourna-
ments, each of size 10, treated the superior individual as

the one who was nearest in distance to Parent 2. Entrants
to these tournaments were selected at random with re-
placement. The idea behind this approach was to find
parent pairs which were nearby but very different in f ,
thus making it more likely that between them the surface
had a steep gradient somewhere.

Iterated Bracketing In the bracketing loop, the parents
for the next bracketing iteration are the child and the par-
ent that is most different from the child both in terms of
distance and fitness. Specifically, the parent which min-
imized the function ||location(parent)−location(child)||

|fitness(parent)−fitness(child| . Using
this approach, children are successively created in the
space with the likely steepest slope.

2 Related Work

Experimental Design Part of experimental design con-
cerns itself with organizing a finite and costly set of sam-
ples (experiments) so as to maximize understanding of
the underlying response surface of the environment [4].
In most cases a full sweep of all combinations of param-
eters is infeasible, and so we must content ourselves
with some limited subsampling, either via deterministic
but fractional sampling, which simply reduces the reso-
lution of the parameter settings of interest, or through
uniform random sampling. In some cases, where each
parameter is discrete or discretizable, some strategies
determine those points on a grid which, if projected in
each dimension, maximize the number of different set-
tings attempted for a given parameter. Perhaps the most
well-known such approach is the latin hypercube [14].
Many techniques then fit a curve to the provided sam-
ples in order to simplify, interpolate, or extrapolate the
results. Such curve fitting is generally straightforward
regression, using models as simple as linear regression
to neural networks or mixtures of gaussians: and this
area has a huge literature (see [1] for a current overview
of the myriad options). In the evolutionary computation
realm, fitting curves to response surfaces has long been a
goal of symbolic regression (for example, [15, 7, 11, 13]).

K-Nearest Neighbor In this paper we are focusing on
the first step (sampling), rather than on the later step
(modeling). However in order to assess the quality of
our sampling method, we must fit a model to a set of
validation points. For that, we apply the 3-Nearest Neigh-
bor algorithm. The general K-Nearest Neighbor (or K-NN)
algorithm is among the simplest, and often most robust,
predictors: any given point in space is modeled as the
average, or voting result, among the three points in the
original training sample which were closest to it. Tra-
ditionally K-NN has been used for binary classification
(see again [1]), but variants of it may be used for curve-
fitting. Typically a point is estimated as the average of its

2

-4
-2

 0
 2

 4

-4
-2

 0
 2

 4
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

-4
-2

 0
 2

 4

-4
-2

 0
 2

 4
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

-4

-2

 0

 2

 4

-4
-2

 0
 2

 4
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

Cross Pyramid Michalewicz

Figure 1: The Cross, Pyramid, and Michalewicz functions in 2D

three nearest neighbors from the original training sam-
ple, weighted in some way according to their distance
from the point. In our work, we chose (for point ~x and

nearest neighbor samples ~y(1), ~y(2), ~y(3)):

f (~x) = ∑i wi f (~y(i))
∑i wi

Where the weighting function is defined as:

wi =
1

||~x−~y(i)||2

In [6] it was proven that with sufficient training sam-
ples an accurate prediction of actual values within some
ε is possible for continuous functions with bounded
slope. Further it was proven that the number of samples
required is polynomial in the dimensionality of the prob-
lem. The optimal value of K may vary from problem to
problem [12], but K = 3 has long been the most popular
choice and the default for many studies (including ours).

Crowding Crowding is a niching technique whereby
individuals are chosen to die, or refused entry into the
population, if their genotypical or phenotypical region
contains too many individuals. Crowding is largely used
as a diversity maintenance mechanism in evolutionary
computation. In the original formulation of crowding
[2], new children were introduced to a steady-state pop-
ulation by selecting (via tournament selection), killing
off, and replacing individuals which were near to them
in the space. Later versions [5] had the introduced child
competing with the candidate selected to die. [9] ad-
dresses the problem of stochastic errors in replacement,
which can result in eventual convergence to a single
value in the population. A number of crowding and re-
placement algorithms have been developed since, such
as Deterministic Crowding, Probabilistic Crowding, and
other local tournament algorithms which use additional
information in the replacement process [10]. Crowding

also takes a central role in guaranteeing good diversity
along Pareto fronts in modern multiobjective optimiza-
tion algorithms, such as NSGA-II [3] and SPEA2 [16].

In this paper, crowding is used to control the parent
selection process and avoid creating children in already
crowded areas of parameter space. However, in our
approach, crowding simply determines whether brack-
eting should continue adding children (that is, whether
the loop in Line 4 of Section 1.1 should be cut off early).
Thus in our form of crowding, children are simply pre-
vented from being added to the population, and so we
have no need for a notion of replacement.

3 Experimental Methodology

We propose a new approach for testing how well an
algorithm samples the “interesting parts” of the environ-
ment: simply how well the resulting samples modeled
a set of random and unseen validation points. Our pro-
cedure is as follows. We first run the algorithm in ques-
tion and produce a sample (population) of points. We
then feed these points into a 3-Nearest Neighbor learner,
as described in Section 2, to build a model. Then we
provide the model with randomly generated validation
samples equal to the population size. The performance
of the algorithm is the root mean square error over all
the validation samples.

To see how this tests the “interesting” areas, consider
the following. If too many points are wasted on open,
flat regions of the space, then fewer points will lie on
the areas of change and the total error will increase. The
method has an advantage as well: because the 3-NN
learner in question is an interpolation procedure, exces-
sive points on unchanging slopes (flat tilted regions) will
also not benefit much from excessive points.

We tested with three test problems: simple (Cross),
moderate (Step Pyramid), and complex (Michalewicz). To
examine scaling, we also tested with parameter dimen-
sions 2 through 5 (only 2 was used in the original paper).

3

Each test was examined at ten equal population size
intervals to assess algorithm performance as the popu-
lation size increased. Tests were repeated 50 times for
statistical accuracy, and confidence intervals were gener-
ated at each size interval. All of the plots in this paper
include 95% confidence intervals, but the error is very
small due to the large number of samples at the end of
each run.

The test problems are all generalizable to any N di-
mensions, but the Figure 1 shows the two-dimensional
cases. All functions were plotted in a space ranging from
[-5, 5] in each dimension.

Cross The Cross function was selected from [8], and
represents a relatively “easy” problem. We found the
other two problems used in [8] to be similarly “easy” and
so were omitted here. The cross function generalized to
n dimensions is:

cross(~x) =
n

∑
i=1

σ(xi, 5)

where σ(u, β) is the sigmoid function:

σ(u, β) =
1

1 + e−βu

Step Pyramid The Step Pyramid function is a medium
level of complexity with less flat area than Cross. This
function produces a ziggurat-like pyramid with various
steps, controlled by the step size s, set to 2.0 for these
experiments. Like Cross, the Step Pyramid function uses
the sigmoid function to provide a continuous surface.
The function is:

f (~x) =
1

1 + σ(−5s(edgedist(~x)− step(~x)), 5)
+ step(~x)− 1

where step and edgedist are defined as:

step(~x) =max
(

1,
edgedist(~x)− 1

s

)
edgedist(~x) =min

i
(min(5− xi, 5 + xi))

Michalewicz The Michalewicz function is a well
known test function for evolutionary algorithms which
produces a complex surface with many peaks and val-
leys. The function was chosen as a “difficult” function
for the algorithm, as it had very few flat regions. The
value for m controls the steepness of the peaks and val-
leys in the function. We set m = 2:

f (~x) = −
n

∑
i=1

sin(xi) sin(x2
i i/π))2m

We do not show results for the Michalewicz function
because we found that all tested methods performed
universally poorly on it: it appears that this technique is
only effective for surfaces with some degree of “uninter-
estingness” to them to allow adaptive sampling.

4 First Experiment:
Fixed Bracketing

We began by analyzing the original algorithm in [8] un-
der different bracket sizes, and comparing them to uni-
formly randomly distributed points. In [8] both bracket
sizes of 1 and 5 were shown, though only a bracket size
of 1 was tested. We wished to understand the effect of
increasing bracketing had on the generalizability of the
resulting model.

Results for the 2D Pyramid and Cross functions are
shown in Figure 2. In the previously used performance
measure, the five bracket iterations showed (visually) a
higher concentration of individuals in the higher slope
regions and therefore suggested superior performance
using five brackets.

Our results showed otherwise. As the number of
brackets increased, the overall performance decreased.
This trend was consistent regardless of the dimension-
ality of the problem. However, the performance rela-
tive to the uniform random model was more problem
dependent. For the Pyramid problem, bracket counts
of one and three were consistently better than random
up through 4D, and a bracket count of five was clearly
worse. For the 5D Pyramid problem the single bracket
count was still better than random. But for the Cross
problem the performance did not hold up as the dimen-
sions are increased. Whereas in 2D both one and three
brackets were better than random, by 3D only the one-
bracket situation was better than random, and by 4D
nothing was better to random. The algorithm was not
effective in sampling the Michalewicz problem for any
number of brackets regardless of dimensionality. Also,
in all cases the difference in model performance between
random and the algorithm increased with the population
size.

These were clearly negative results: a fixed number of
brackets did not seem to improve the algorithm (unlike
visual inspection would suggest) and for the Cross prob-
lem, once four dimensions was reached, the algorithm
did not outperform random samples.

5 Adaptive Bracketing

The analysis of the fixed bracketing algorithm showed
that performance degrades as the bracket count increases
and this holds at all points as the population size in-
creases. Even so, it is plausible that the algorithm could
perform better if the number of bracket iterations adap-
tively changed based on the current population of in-
dividuals. If there is still a lot of exploration that can
be performed, additional brackets should improve the
algorithm performance.

We accomplished adaptive bracketing by incorporat-
ing crowding information from the population into the
algorithm. If the area in which a child is created is

4

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 2 4 6 8 10 12 14 16 18 20

Bracket=1

Bracket=3

Bracket=5

Random

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 10 20 30 40 50 60 70 80 90 100

Bracket=1

Bracket=3

Bracket=5

Random

2D Cross 3D Cross

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 100 150 200 250 300 350 400

Bracket=1

Bracket=3

Bracket=5

Random

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 200 400 600 800 1000 1200 1400 1600 1800 2000

Bracket=1

Bracket=3

Bracket=5

Random

4D Cross 5D Cross

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 2 4 6 8 10 12 14 16 18 20

Bracket=1

Bracket=3

Bracket=5

Random

 0.035

 0.04

 0.045

 0.05

 0.055

 200 400 600 800 1000 1200 1400 1600 1800 2000

Bracket=1

Bracket=3

Bracket=5

Random

2D Pyramid (3D and 4D are very similar) 5D Pyramid

Figure 2: Fixed Bracketing Results. The X Axis is the current population size (× 1000). The Y Axis is performance
(lower is preferred).

crowded, the bracketing loop would be interrupted.
Early in the algorithm, the distribution of individuals
in parameter space was relatively sparse and a higher
number of bracketing iterations can be applied. As the al-
gorithm progressed, the high slope areas would become
more densely populated and the number of bracket iter-
ations would decrease, ultimately to one.

5.1 Algorithm Modifications

Implementation of the modifications required the intro-
duction of three additional parameters:

• The crowding factor C f ∈ R|0 < C f < 1 is multiplied
by the longest diagonal in the parameter space to
create a crowding radius. Neighboring individuals
that fall within the crowding radius of a reference
individual are said to crowd that individual.

• If the number of neighboring individuals within
the crowding radius exceeds a crowding limit Cθ ∈
Z|Cθ > 0, then the reference individual is crowded.
In all tests, Cθ = 10.

• When a random individual is inserted into the popu-
lation as parent 1, we don’t add it to the population

5

if it is crowded, unless the maximum number of
retries is reached. In all tests the maximum number
of random retries was 5.

The algorithm is repeated below with changes in ital-
ics.

1. Generate an initial population of uniform random
individuals over the parameter space.

2. Choose parent 1 randomly from the population, or
according to the exploration probability introduce
a new random sample as parent 1. If the random
individual is crowded, try a new random individual up
to a maximum number of random retries.

3. Choose parent 2 from the population using a double
tournament.

4. While maximum bracketing count has not been
reached:

(a) Generate a child between parent 1 and parent
2 using linear recombination.

(b) “Deactivate” any parent or child that is crowded,
so that the individual no longer participates in the
selection process.

(c) Determine parents for next iteration of the
bracketing loop.

(d) If either parent for the next iteration of the bracket-
ing loop is inactive, interrupt the loop.

5. Return to step 2 until the maximum population size
has been reached.

The rationale behind deactivating a crowded individ-
ual is that once it has become crowded it is unlikely that
information can be gained by using that individual as a
parent later in the algorithm.

5.2 Analysis

The test method used for the fixed bracketing algorithm
was repeated for adaptive bracketing with one differ-
ence: the maximum number of brackets was now fixed
at five, but the value of the crowding factor was varied.
The results are shown in Figure 3. Each plot has five lines
defined from top to bottom in the legend as follows:

• A crowding factor value that provided good results
(varied with problem).

• The largest crowding factor such that the algorithm
would reach the maximum population size. If the
crowding factor was too large, the algorithm would
deactivate the entire population before the maxi-
mum was reached.

• Dynamic adaptive bracketing (described in the next
section).

• Results of using the original algorithm using one
bracket iteration (Bracket=1).

• Results of using uniform random sampling.

The results for the Cross problem showed crowding to
be quite effective in 2D. In 3D, the crowding method still
performed marginally better than for Bracket=1, but not
until the population size was large. For the 4D problem,
the crowding methods were less effective at smaller sizes
than Bracket=1 and Random for nearly the entire run.
For the 5D problem, the algorithm performance was
worse than random, though some crowding methods
outperformed Bracket=1 when the population was large.

The results for the Pyramid problem are similar, except
that the Bracket=1 method performs better for 3D, 4D,
and 5D than other methods until the population size
was large. The 4D plot clearly shows that the higher
crowding value performs better at smaller population
sizes but degrades badly as the population size becomes
large.

As for fixed bracketing on the Michalewicz problem,
the algorithm could not match the performance of ran-
dom at any crowding factor. For 2D and 3D the crowding
methods outperform Bracket=1 only when the popula-
tion becomes large. For 4D and 5D the crowding meth-
ods do not outperform Bracket=1 at any point during
the populations sizes tested.

This meant that crowding could help boost bracketing
over the ordinary Bracket=1, but usually it required the
population sizes to be quite large to be worthwhile.

Furthermore, the larger crowding factor would per-
form better at lower population sizes (roughly under
10,000) while the smaller crowding factor would per-
form better at higher population sizes. This observation
led us to a dynamic approach described in the next sec-
tion.

6 Dynamic Adaptive Bracketing

In the analysis of the adaptive crowding algorithm,
larger crowding factors performed well at lower popu-
lation sizes while smaller crowding values performed
better at higher population sizes. In addition to the
population size, the effectiveness of a crowding factor
also depended on the problem and dimensionality. The
result was that it required a significant amount of ex-
perimentation to determine the most effective crowding
factor, which is counterproductive to the goal of mini-
mizing samples in the parameter sweep. If the algorithm
were able to start with a high level of crowding and dy-
namically adjust it down as the algorithm progresses,
it should be possible to get performance as good as or
better than any fixed crowding value without any exper-
imentation.

6

6.1 Algorithm Modifications

Implementation of the dynamic crowding introduced
five new algorithm parameters. However the algorithm
performed relatively well with default values in all but
one case. The new algorithm parameters include:

Initial crowding factor: The (relatively high) value of
0.01 worked well for dimensions of 3 or higher. A
value of 0.005 was used for 2D.

Crowding evaluation interval: Adjusts the crowding
factor each time this many new individuals are
added to the population. A value of 500 was used
in all cases.

Desired active population size: If the active population
size exceeded this value, the algorithm would ad-
just the crowding factor up by the crowding factor
increment (discussed next). Recall that during adap-
tive bracketing, crowded individuals were removed
from the active population. A good default value,
which we used, was the initial population size.

Crowding factor increment: The amount the algorithm
increased the crowding factor by if the population
was too large. A value of 0.0001 was used in all
cases.

Random retry decrement: The amount the algorithm
decreased the crowding factor by if the maximum
number of random retries (5) was reached. A ran-
dom retry occurred when the algorithm attempted
to add a random individual, but was unable to due
to crowding. A value of 0.0005 was used in all cases.

The full algorithm was as follows:

1. Generate an initial population of uniform random
individuals over the parameter space.

2. Choose parent 1 randomly from the population, or
according to the exploration probability introduce
a new random sample as parent 1. If the random
individual is crowded, try a new random individual
up to a maximum number of retries.

3. Choose parent 2 from the population using a double
tournament.

4. While maximum bracketing count has not been
reached:

(a) Generate a child between parent 1 and parent
2 using linear recombination.

(b) Deactivate any parent or child that is crowded,
so that the individual no longer participates in
the selection process.

(c) Determine parents for next iteration of the
bracketing loop.

(d) If the crowding evaluation interval is reached:
i. If the maximum number of random retries

was reached during the interval, decrement
the crowding factor.

ii. Otherwise, if the active population size exceeds
the target, increment the crowding factor.

(e) If either parent for the next iteration of the
bracketing loop is inactive, interrupt the loop.

5. Return to step 2 until the maximum population size
has been reached.

6.2 Analysis

The results of the dynamic adaptive bracketing algo-
rithm, shown in Figure 3, were somewhat inconclusive.
In most cases the performance of the dynamic algo-
rithm tracked closely with the best fixed crowding factor.
The 4D Pyramid chart shows this most clearly. The dy-
namic adaptive bracketing plot initially tracks with the
larger crowding factor, but eventually tracks to the lower
crowding factor when it begins to perform better. As
a result, the dynamic algorithm was fairly effective in
eliminating the experimentation with crowding factors.
However, while the algorithm performed approximately
as well as the best adaptive bracketing algorithm for
any given problem, it did not significantly improve the
overall performance at any point.

7 Conclusions

This paper detailed an expansion to [8], which had used
a population-based method to attempt to adaptively
sample in those regions of the space which were more
“interesting”, defined as having high slopes. We tackled
four major things. First, we recast the search for “interest-
ing” regions of the space into a more formal framework
of generalizability to a validation set of samples. While
the recasting does not deviate philosophically from the
original idea, it allowed us to directly examine the work
in [8], and compare it with other techniques, in a quanti-
tative fashion. Second, we examined the original algo-
rithm’s bracketing mechanism to see how it performed
in terms of the this new measure. Third, we introduced
two different algorithms in an attempt to salvage the
bracketing procedure given its original unexpected poor
performance, and examined their results. Finally, we
examined how well these methods would scale with
increasing numbers of dimensions.

A New Measure And the Original Algorithm An im-
proved method of performance evaluation was intro-
duced that measures the effectiveness of the parame-
ter sweep as input to a machine learning model. This
method scales well to higher dimensions and provided
useful insight into the effect of increasing the number of

7

bracket iterations in the algorithm. Using this measure
we discovered that in the original algorithm, in all cases
the performance was best when a single child was cre-
ated between parents and became steadily worse and
the number of brackets increased.

Adaptive Bracketing Our second set of experiments
tested a potential improvement to the algorithm which
adaptively adjusted the number of children created be-
tween parents based on the level of crowding in the
population. While the algorithm was able to achieve
better results in some cases, a high degree of experimen-
tation was required to determine the appropriate level
of crowding.

A third set of experiments tested another algorithm
modification meant to eliminate the experimentation
needed to determine the best level of crowding to adap-
tively control bracketing. While the these modifications
were largely successful in controlling the level of crowd-
ing, they did not substantially improve the overall per-
formance.

Scaling In the Pyramid problem, most techniques
scaled well with increasing number of dimensions, con-
sistently outperforming Random sampling. But in the
simpler Cross problem this was not the case: initially
methods would outperform Random sampling, but as
the dimensionality increased, Random sampling even-
tually rose to the top. This may put a damper on the
scalability of the technique beyond a moderate number
of parameters, as we had imagined might occur.

It should be noted that all forms of the algorithm per-
formed poorly on the Michalewicz problem, regardless
of dimensionality or known population size, when com-
pared to the performance of the random model. It is
likely that these algorithms are not suitable for such
complex problems because they are, well interesting ev-
erywhere.

References

[1] Christopher Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[2] Kenneth De Jong. An Analysis of the Behaviour of a
Class of Genetic Adaptive Systems. PhD thesis, Uni-
versity of Michigan, 1975.

[3] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal,
and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective opti-
mization: NSGA-II. In Parallel Problem Solving from
Nature (PPSN VI), pages 849–858. Springer, 2000.

[4] S. Ghosh and C. R. Rao, editors. Design and Analysis
of Experiments, volume 13 of Handbook of Statistics.
Elsevier Science, 1996.

[5] Georges Harik. Finding multimodal solutions using
restricted tournament selection. In Larry J. Eshel-
man, editor, Proceedings of the 6th International Con-
ference on Genetic Algorithms, pages 24–31. Morgan
Kaufmann, 1995.

[6] D. Kibler, D. W. Aha, and M. K. Albert. Instance-
based prediction of real-valued attributes. Comput.
Intell., 5:51–57, May 1989.

[7] T.L. Lew, A.B. Spencer, F. Scarpa, K. Worden,
A. Rutherford, and F. Hemez. Identification of re-
sponse surface models using genetic programming.
Mechanical Systems and Signal Processing, 20(8):1819
– 1831, 2006.

[8] Sean Luke, Deepankar Sharma, and Gabriel Catalin
Balan. Finding interesting things: Population-based
adaptive parameter sweeping.

[9] R. Manner, Samir Mahfoud, and Samir W. Mahfoud.
Crowding and preselection revisited. In Parallel
Problem Solving From Nature, pages 27–36. North-
Holland, 1992.

[10] Ole J. Mengshoel and David E. Goldberg. The
crowding approach to niching in genetic algorithms.
Evolutionary Computation, 16(3):315–54, 2008.

[11] Ivar Siccama and Maarten Keijzer. Genetic pro-
gramming as a method to develop powerful pre-
dictive models for clinical diagnosis. In Genetic and
Evolutionary Computation Conference (GECCO2005)
workshop program, pages 164–166, Washington, D.C.,
USA, 25-29 June 2005. ACM Press.

[12] Tony Townsend-Weber and Dennis Kibler. Instance-
based prediction of continuous values, 1994.

[13] E.J. Vladislavleva, G.F. Smits, and D. Den Hertog.
Order of nonlinearity as a complexity measure for
models generated by symbolic regression via pareto
genetic programming. IEEE Transactions on Evolu-
tionary Computation, 13(2):333–349, 2009.

[14] G. Gary Wang. Adaptive response surface method
using inherited latin hypercube design points.
ASME Transactions, Journal of Mechanical Design,
125(2):210–220, 2003.

[15] Y. S. Yeun, B. J. Kim, Y. S. Yang, and W. S. Ruy.
Polynomial genetic programming for response sur-
face modeling part 2: adaptive approximate models
with probabilistic optimization problems. Structural
and Multidisciplinary Optimization, 29(1):35–49, Jan-
uary 2005.

[16] Eckart Zitzler, Marco Laumanns, and Lothar Thiele.
SPEA2: Improving the strength pareto evolution-
ary algorithm for multiobjective optimization. In

8

K. Giannakoglou, D. Tshalis, J. Periaux, K. Papail-
iou, and T. Fogarty, editors, Evolutionary Methods for
Design, Optimization, and Control, pages 19–26, 2002.

9

 0.005

 0.01

 0.015

 0.02

 0.025

 2 4 6 8 10 12 14 16 18 20

Cr=0.001

Cr=0.0025

Dynamic

Fixed Bracket=1

Random

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 2 4 6 8 10 12 14 16 18 20

Cr=0.0015

Cr=0.0025

Dynamic

Fixed Bracket=1

Random

2D Cross 2D Pyramid

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 10 20 30 40 50 60 70 80 90 100

Cr=0.007

Cr=0.009

Dynamic

Fixed Bracket=1

Random

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 10 20 30 40 50 60 70 80

Cr=0.005

Cr=0.009

Dynamic

Fixed Bracket=1

Random

3D Cross 3D Pyramid

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 100 150 200 250 300 350 400

Cr=0.015

Cr=0.02

Dynamic

Fixed Bracket=1

Random

 0.03

 0.035

 0.04

 0.045

 0.05

 100 150 200 250 300 350 400

Cr=0.01

Cr=0.015

Dynamic

Fixed Bracket=1

Random

4D Cross 4D Pyramid

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 200 400 600 800 1000 1200 1400 1600 1800 2000

Cr=0.02

Cr=0.025

Dynamic

Fixed Bracket=1

Random

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 200 400 600 800 1000 1200 1400 1600 1800 2000

Cr=0.02

Cr=0.025

Dynamic

Fixed Bracket=1

Random

5D Cross 5D Pyramid

Figure 3: Comparison of Adaptive Bracketing, Dynamic Adaptive Bracketing, a Single Fixed Bracket, and Random
points. The X Axis is the current population size (× 1000). The Y Axis is performance (lower is preferred).

10

